Semiparametric models with data missing by design and inverse probability weighted empirical processes: partial results and open problems

Jon A. Wellner

Joint work with Norman Breslow

University of Washington

- joint work with Norman E. Breslow, University of Washington
- Talk at Joint Statistical Meetings, August 9, 2006
- Email: jaw@stat.washington.edu http: //www.stat.washington.edu/jaw/jaw.research.html

Outline

- 1. Semiparametric models with missing data by design
- 2. Horovitz Thompson estimators
- 3. Finite sampling empirical processes for stratified sampling
- 4. Applying the Praestgaard Wellner theorem
- 5. Summary; problems and open questions

• Setting: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$

- 1. Semiparametric models with missing data by design
 - Setting: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$

- Setting: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$
- parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
- nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space

- Setting: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$
- parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
- nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space
- Assume:

- Setting: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$
- parametric part: $heta \in \Theta \subset \mathbb{R}^d$
- nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space
- Assume:
 - There exist \sqrt{n} -consistent, asymptotically Gaussian ML estimators $(\hat{\theta}_n, \hat{\eta}_n)$ of θ and η under i.i.d. random sampling (i.e. complete data).

- Setting: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$
- parametric part: $heta \in \Theta \subset \mathbb{R}^d$
- nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space
- Assume:
 - There exist \sqrt{n} -consistent, asymptotically Gaussian ML estimators $(\hat{\theta}_n, \hat{\eta}_n)$ of θ and η under i.i.d. random sampling (i.e. complete data).
 - Scores \dot{l}_{θ} and $\dot{l}_{\eta}n = B_{\theta,\eta}h$, $h \in \mathcal{H} \subset \mathcal{B}$ in a Donsker class \mathcal{F} .

- Setting: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$
- parametric part: $heta \in \Theta \subset \mathbb{R}^d$
- nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space
- Assume:
 - There exist \sqrt{n} -consistent, asymptotically Gaussian ML estimators $(\hat{\theta}_n, \hat{\eta}_n)$ of θ and η under i.i.d. random sampling (i.e. complete data).
 - Scores \dot{l}_{θ} and $\dot{l}_{\eta}n = B_{\theta,\eta}h$, $h \in \mathcal{H} \subset \mathcal{B}$ in a Donsker class \mathcal{F} .
 - Information operator $\dot{l}_{\eta}^T \dot{l}_{\eta} = B_0^* B_0$ continuously invertible on its range

- Setting: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$
- parametric part: $heta \in \Theta \subset \mathbb{R}^d$
- nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space
- Assume:
 - There exist \sqrt{n} -consistent, asymptotically Gaussian ML estimators $(\hat{\theta}_n, \hat{\eta}_n)$ of θ and η under i.i.d. random sampling (i.e. complete data).
 - Scores \dot{l}_{θ} and $\dot{l}_{\eta}n = B_{\theta,\eta}h$, $h \in \mathcal{H} \subset \mathcal{B}$ in a Donsker class \mathcal{F} .
 - Information operator $\dot{l}_{\eta}^T \dot{l}_{\eta} = B_0^* B_0$ continuously invertible on its range
 - $(\widehat{\theta}_n, \widehat{\eta}_n)$ are consistent for (θ_0, η_0) .

Missing data – by design! X not observed for all items / individuals

- Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1

- Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1
- Auxiliary U helps predict inclusion in subsample

- Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1
- Auxiliary *U* helps predict inclusion in subsample
 - $^\circ \ W = (X,U) \in \mathcal{W}$ observable only in validation (phase 2) sample

- Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1
- Auxiliary U helps predict inclusion in subsample
 - $^\circ \ W = (X,U) \in \mathcal{W}$ observable only in validation (phase 2) sample

•
$$V = (\widetilde{X}, U) \in \mathcal{V}$$
 observable in phase 1 (for all)

- Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1
- Auxiliary U helps predict inclusion in subsample
 - $^\circ \ W = (X,U) \in \mathcal{W}$ observable only in validation (phase 2) sample
 - $\circ V = (\widetilde{X}, U) \in \mathcal{V}$ observable in phase 1 (for all)
- Phase 1: $\{W_1, ..., W_N\}$ i.i.d. $P = P_W$

- Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1
- Auxiliary U helps predict inclusion in subsample
 - $^\circ \ W = (X,U) \in \mathcal{W}$ observable only in validation (phase 2) sample
 - $\circ V = (\widetilde{X}, U) \in \mathcal{V}$ observable in phase 1 (for all)
- Phase 1: $\{W_1, ..., W_N\}$ i.i.d. $P = P_W$
 - $^{\circ}$ but observe only $\{V_1,\ldots,V_N\}$

- Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1
- Auxiliary U helps predict inclusion in subsample
 - $^\circ \ W = (X,U) \in \mathcal{W}$ observable only in validation (phase 2) sample
 - $\circ V = (\widetilde{X}, U) \in \mathcal{V}$ observable in phase 1 (for all)
- Phase 1: $\{W_1, ..., W_N\}$ i.i.d. $P = P_W$
 - \circ but observe only $\{V_1, \ldots, V_N\}$
- Phase 2: Sampling indicators $\{\xi_1, \ldots, \xi_N\}$

- Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1
- Auxiliary U helps predict inclusion in subsample
 - $^\circ \ W = (X,U) \in \mathcal{W}$ observable only in validation (phase 2) sample
 - $\circ V = (\widetilde{X}, U) \in \mathcal{V}$ observable in phase 1 (for all)
- Phase 1: $\{W_1, ..., W_N\}$ i.i.d. $P = P_W$
 - \circ but observe only $\{V_1, \ldots, V_N\}$
- Phase 2: Sampling indicators $\{\xi_1, \ldots, \xi_N\}$
 - \circ observe W_i (all of X_i) if $\xi_i = 1$

• Bernoulli (Manski-Lerman) sampling

$$Pr(\xi_i = 1 | W_i) = Pr(\xi_i = 1 | V_i) = \pi_0(V_i)$$

• Bernoulli (Manski-Lerman) sampling

$$Pr(\xi_i = 1 | W_i) = Pr(\xi_i = 1 | V_i) = \pi_0(V_i)$$

independent

• Finite population stratified sampling

• Bernoulli (Manski-Lerman) sampling

$$Pr(\xi_i = 1 | W_i) = Pr(\xi_i = 1 | V_i) = \pi_0(V_i)$$

- Finite population stratified sampling
 - Partition \mathcal{V} into J strata $\mathcal{V} = \mathcal{V}_1 \cup \ldots \mathcal{V}_J$.

• Bernoulli (Manski-Lerman) sampling

$$Pr(\xi_i = 1 | W_i) = Pr(\xi_i = 1 | V_i) = \pi_0(V_i)$$

- Finite population stratified sampling
 - Partition \mathcal{V} into J strata $\mathcal{V} = \mathcal{V}_1 \cup \ldots \mathcal{V}_J$.
 - Phase 1: Observe $N_j = \sum_{j=1}^N 1\{V_i \in V_j\}$ subjects in stratum j

• Bernoulli (Manski-Lerman) sampling

$$Pr(\xi_i = 1 | W_i) = Pr(\xi_i = 1 | V_i) = \pi_0(V_i)$$

- Finite population stratified sampling
 - Partition \mathcal{V} into J strata $\mathcal{V} = \mathcal{V}_1 \cup \ldots \mathcal{V}_J$.
 - Phase 1: Observe $N_j = \sum_{j=1}^N 1\{V_i \in \mathcal{V}_j\}$ subjects in stratum j
 - Phase 2: Sample n_j of N_j without replacement:

• Bernoulli (Manski-Lerman) sampling

$$Pr(\xi_i = 1 | W_i) = Pr(\xi_i = 1 | V_i) = \pi_0(V_i)$$

- Finite population stratified sampling
 - Partition \mathcal{V} into J strata $\mathcal{V} = \mathcal{V}_1 \cup \ldots \mathcal{V}_J$.
 - Phase 1: Observe $N_j = \sum_{j=1}^N 1\{V_i \in \mathcal{V}_j\}$ subjects in stratum j
 - Phase 2: Sample n_j of N_j without replacement:
 - Result: sampling indicators $\xi_{j,i}$ for subject *i* in stratum *j*

• Bernoulli (Manski-Lerman) sampling

$$Pr(\xi_i = 1 | W_i) = Pr(\xi_i = 1 | V_i) = \pi_0(V_i)$$

- Finite population stratified sampling
 - Partition \mathcal{V} into J strata $\mathcal{V} = \mathcal{V}_1 \cup \ldots \mathcal{V}_J$.
 - Phase 1: Observe $N_j = \sum_{j=1}^N 1\{V_i \in \mathcal{V}_j\}$ subjects in stratum j
 - Phase 2: Sample n_j of N_j without replacement:
 - Result: sampling indicators $\xi_{j,i}$ for subject *i* in stratum *j*
 - $\circ~(\xi_{j,1},\ldots,\xi_{j,N_j})$ exchangeable with

$$Pr(\xi_{ji}=1|V_1,\ldots,V_N)=n_j/N_j.$$

• Bernoulli (Manski-Lerman) sampling

$$Pr(\xi_i = 1 | W_i) = Pr(\xi_i = 1 | V_i) = \pi_0(V_i)$$

independent

- Finite population stratified sampling
 - Partition \mathcal{V} into J strata $\mathcal{V} = \mathcal{V}_1 \cup \ldots \mathcal{V}_J$.
 - Phase 1: Observe $N_j = \sum_{j=1}^N 1\{V_i \in \mathcal{V}_j\}$ subjects in stratum j
 - Phase 2: Sample n_j of N_j without replacement:
 - Result: sampling indicators $\xi_{j,i}$ for subject *i* in stratum *j*
 - $\circ~(\xi_{j,1},\ldots,\xi_{j,N_j})$ exchangeable with

$$Pr(\xi_{ji}=1|V_1,\ldots,V_N)=n_j/N_j.$$

 \circ The vectors $(\xi_{j,1},\ldots,\xi_{j,N_j})$, $j=1,\ldots,J$ are independent

2. Horovitz-Thompson (or IPW Likelihood) Estimators

Define inverse probability weighted (IPW) empirical measure:

$$\mathbb{P}_N^{\pi} = rac{1}{N} \sum_{i=1}^N rac{\xi_i}{\pi_i} \delta_{X_i}, \qquad \delta_x = \text{ Dirac measure at } x$$

 $\pi_{i} = \begin{cases} \pi_{0}(V_{i}) & \text{if Bernoulli sampling} \\ \frac{n_{j}}{N_{j}} 1\{V_{i} \in \mathcal{V}_{j}\} & \text{if finite pop'ln stratified sampling} \end{cases}$

2. Horovitz-Thompson (or IPW Likelihood) Estimators

Define inverse probability weighted (IPW) empirical measure:

$$\mathbb{P}_{N}^{\pi} = \frac{1}{N} \sum_{i=1}^{N} \frac{\xi_{i}}{\pi_{i}} \delta_{X_{i}}, \qquad \delta_{x} = \text{ Dirac measure at } x$$

 $\pi_{i} = \begin{cases} \pi_{0}(V_{i}) & \text{if Bernoulli sampling} \\ \frac{n_{j}}{N_{j}} 1\{V_{i} \in \mathcal{V}_{j}\} & \text{if finite pop'ln stratified sampling} \end{cases}$

 Jointly solve the finite - (for θ) and infinite (for η) dimensional equations

$$\mathbb{P}_{N}^{\pi}\dot{l}_{\theta} = 0 \quad \text{in } \mathbb{R}^{d}$$
$$\mathbb{P}_{N}^{\pi}\dot{l}_{\eta} = 0 \quad \forall h \in \mathcal{H}$$

2. Horovitz-Thompson (or IPW Likelihood) Estimators

Define inverse probability weighted (IPW) empirical measure:

$$\mathbb{P}_{N}^{\pi} = \frac{1}{N} \sum_{i=1}^{N} \frac{\xi_{i}}{\pi_{i}} \delta_{X_{i}}, \qquad \delta_{x} = \text{ Dirac measure at } x$$

 $\pi_{i} = \begin{cases} \pi_{0}(V_{i}) & \text{if Bernoulli sampling} \\ \frac{n_{j}}{N_{j}} \mathbb{1}\{V_{i} \in \mathcal{V}_{j}\} & \text{if finite pop'ln stratified sampling} \end{cases}$

 Jointly solve the finite - (for θ) and infinite (for η) dimensional equations

$$\mathbb{P}_{N}^{\pi}\dot{l}_{\theta} = 0 \quad \text{in } \mathbb{R}^{d}$$
$$\mathbb{P}_{N}^{\pi}\dot{l}_{\eta} = 0 \quad \forall h \in \mathcal{H}$$

MLE for complete data solves same equations with P_N instead of P^π_N.

Our Main Result:

• $\hat{\theta}_N$ solving the IPW estimating equations is asymptotically linear

$$\sqrt{N}(\widehat{\theta}_N - \theta_0) = \frac{1}{\sqrt{N}} \sum_{i=1}^N \frac{\xi_i}{\pi_i} \widetilde{l}_{\theta_0}(X_i) + o_p(1)$$
$$= \mathbb{G}_N^{\pi}(\widetilde{l}_{\theta_0}) + o_p(1)$$

where $\tilde{l}_{\theta}(x)$ is the semparametric efficient influence function for θ (complete data)

 $\mathbb{G}_N^{\pi} = \sqrt{N} (\mathbb{P}_N^{\pi} - P).$

3. Finite sampling empirical processes, stratified sampling

• Finite sampling empirical measure for stratum $j \in \{1, ..., J\}$:

$$\mathbb{P}_{j,N_j}^{\xi} = \frac{1}{N_j} \sum_{i=1}^{N_j} \xi_{ji} \delta_{X_{ji}}$$

3. Finite sampling empirical processes, stratified sampling

• Finite sampling empirical measure for stratum $j \in \{1, ..., J\}$:

$$\mathbb{P}_{j,N_j}^{\xi} = \frac{1}{N_j} \sum_{i=1}^{N_j} \xi_{ji} \delta_{X_{ji}}$$

 Closely related to exchangeably weighted bootstrap empirical measure of Praestgaard and Wellner (1993), van der Vaart and Wellner (1996), section 3.6 • Finite sampling empirical process

$$\mathbb{G}_{j,N_j}^{\xi} = \sqrt{N_j} \left(\mathbb{P}_{j,N_j}^{\xi} - \frac{n_j}{N_j} \mathbb{P}_{j,N_j} \right),$$

where

$$\mathbb{P}_{j,N_j} = \frac{1}{N_j} \sum_{i=1}^{N_j} \delta_{X_{ji}}.$$

• Finite sampling empirical process

$$\mathbb{G}_{j,N_j}^{\xi} = \sqrt{N_j} \left(\mathbb{P}_{j,N_j}^{\xi} - \frac{n_j}{N_j} \mathbb{P}_{j,N_j} \right),$$

where

$$\mathbb{P}_{j,N_j} = \frac{1}{N_j} \sum_{i=1}^{N_j} \delta_{X_{ji}}.$$

Suppose that *F* is a P₀-Donsker class of functions containing all the scores *i*_θ and *i*_η corresponding to parameter values in a neighborhood of the (θ₀, η₀) (guaranteed by Assumption 1).

Finite sampling empirical process

$$\mathbb{G}_{j,N_j}^{\xi} = \sqrt{N_j} \left(\mathbb{P}_{j,N_j}^{\xi} - \frac{n_j}{N_j} \mathbb{P}_{j,N_j} \right),$$

where

$$\mathbb{P}_{j,N_j} = \frac{1}{N_j} \sum_{i=1}^{N_j} \delta_{X_{ji}}.$$

Suppose that *F* is a P₀-Donsker class of functions containing all the scores *i*_θ and *i*_η corresponding to parameter values in a neighborhood of the (θ₀, η₀) (guaranteed by Assumption 1).

• $\nu_j \equiv P_0(\mathcal{V}_j)$

Finite sampling empirical process

$$\mathbb{G}_{j,N_j}^{\xi} = \sqrt{N_j} \left(\mathbb{P}_{j,N_j}^{\xi} - \frac{n_j}{N_j} \mathbb{P}_{j,N_j} \right),$$

where

$$\mathbb{P}_{j,N_j} = \frac{1}{N_j} \sum_{i=1}^{N_j} \delta_{X_{ji}}.$$

- Suppose that *F* is a P₀-Donsker class of functions containing all the scores *i*_θ and *i*_η corresponding to parameter values in a neighborhood of the (θ₀, η₀) (guaranteed by Assumption 1).
- $\nu_j \equiv P_0(\mathcal{V}_j)$

•
$$n_j/N_j \rightarrow_p p_j$$

Step one: Weak convergence of Finite Sampling Empirical Process

• Define:

 \mathbb{G} = a P_0 -Brownian bridge process indexed by \mathcal{F}

 $\mathbb{G}_j = a P_{0|j}$ -Brownian bridge process indexed by \mathcal{F}

$$\mathbb{G}_{j}(f) = \frac{1}{\sqrt{\nu_{j}}} \mathbb{G}\{(f - P_{0|j}(f)|1_{\nu_{j}})\}, \quad f \in \mathcal{F}$$

 $P_{0|j}(f) = E(f(X)|V \in \mathcal{V}_j).$

Step one: Weak convergence of Finite Sampling Empirical Process

• Define:

 \mathbb{G} = a P_0 -Brownian bridge process indexed by \mathcal{F}

 $\mathbb{G}_j = a P_{0|j}$ -Brownian bridge process indexed by \mathcal{F}

$$\mathbb{G}_{j}(f) = \frac{1}{\sqrt{\nu_{j}}} \mathbb{G}\{(f - P_{0|j}(f)|1_{\mathcal{V}_{j}})\}, \quad f \in \mathcal{F}$$

$$P_{0|j}(f) = E(f(X)|V \in \mathcal{V}_{j}).$$

 By the exchangeably weighted bootstrap limit theorem (Praestgaard & Wellner, 1993), with {G, G₁, ..., GJ} ∈ UC(F) independent

$$(\mathbb{G}_N, \mathbb{G}_{1,N_1}^{\xi}, \dots, \mathbb{G}_{J,N_J}^{\xi}) \rightsquigarrow (\mathbb{G}, \sqrt{p_1(1-p_1)} \mathbb{G}_1, \dots, \sqrt{p_J(1-p_J)} \mathbb{G}_J),$$

$$\mathbb{G}_{N}^{\pi} = \mathbb{G}_{N} + \sum_{j=1}^{J} \frac{N_{j}}{N} \left(\frac{N_{j}}{n_{j}}\right) \mathbb{G}_{j,N_{j}}^{\xi} \rightsquigarrow \mathbb{G} + \sum_{j=1}^{J} \sqrt{\nu_{j}} \sqrt{\frac{1-p_{j}}{p_{j}}} \mathbb{G}_{j}$$

$$\sqrt{N}(\hat{\theta}_N - \theta_0) = \mathbb{G}_N^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightsquigarrow N(0,\Sigma)$$

Asymptotic variances under stratified sampling

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), \end{cases}$$

Bernoulli sampling finite popl'n sampling

$$\sqrt{N}(\hat{\theta}_N - \theta_0) = \mathbb{G}_N^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightsquigarrow N(0,\Sigma)$$

Asymptotic variances under stratified sampling

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), & \text{Bernoulli sampling} \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), & \text{finite popl'n sampling} \end{cases}$$

Gain from stratified sampling is centering of efficient scores

$$\sqrt{N}(\hat{\theta}_N - \theta_0) = \mathbb{G}_N^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightsquigarrow N(0,\Sigma)$$

Asymptotic variances under stratified sampling

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), & \text{Bernoulli sampling} \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), & \text{finite popl'n sampling} \end{cases}$$

Gain from stratified sampling is centering of efficient scores
 Can reduce variance (considerably) via finite popl'n sampling.

$$\sqrt{N}(\hat{\theta}_N - \theta_0) = \mathbb{G}_N^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightsquigarrow N(0,\Sigma)$$

Asymptotic variances under stratified sampling

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), & \text{Bernoulli sampling} \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), & \text{finite popl'n sampling} \end{cases}$$

- Gain from stratified sampling is centering of efficient scores
 - Can reduce variance (considerably) via finite popl'n sampling.
 - Select strata via covariates so that $\tilde{\ell}$ has small conditional variances on the strata

$$\sqrt{N}(\hat{\theta}_N - \theta_0) = \mathbb{G}_N^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightsquigarrow N(0,\Sigma)$$

Asymptotic variances under stratified sampling

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), & \text{Bernoulli sampling} \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), & \text{finite popl'n sampling} \end{cases}$$

- Gain from stratified sampling is centering of efficient scores
 - Can reduce variance (considerably) via finite popl'n sampling.
 - Select strata via covariates so that $\tilde{\ell}$ has small conditional variances on the strata
 - Alternatively: Bernoulli sampling, but model the selection probabilities $\pi_{\alpha}(V)$ and estimate the α 's (Norm's talk on Monday)

Application to Cox regression

- Application to Cox regression
- Bernoulli sampling with estimated weights

- Application to Cox regression
- Bernoulli sampling with estimated weights
 - Correspondence with finite population sampling

- Application to Cox regression
- Bernoulli sampling with estimated weights
 - Correspondence with finite population sampling
 - Further possible efficiency gains

- Application to Cox regression
- Bernoulli sampling with estimated weights
 - Correspondence with finite population sampling
 - Further possible efficiency gains
- Algorithm for computing variances (T. Lumley, R Survey package)

- Application to Cox regression
- Bernoulli sampling with estimated weights
 - Correspondence with finite population sampling
 - Further possible efficiency gains
- Algorithm for computing variances (T. Lumley, R Survey package)
- Extensions (unbiased estimating equations; complex probability sampling)

- 4. Applying the Praestgaard-Wellner theorem
 - Recall the stratum specific empirical measure

$$\mathbb{P}_{j,N_j} = \frac{1}{N_j} \sum_{i=1}^N \delta_{X_{j,i}} = \frac{1}{N_j} \sum_{i=1}^N \delta_{X_i} \mathbb{1}_{\mathcal{V}_j}(V_i)$$

Note "double indexing" versus "single indexing".

- 4. Applying the Praestgaard-Wellner theorem
 - Recall the stratum specific empirical measure

$$\mathbb{P}_{j,N_j} = \frac{1}{N_j} \sum_{i=1}^N \delta_{\boldsymbol{X}_{j,i}} = \frac{1}{N_j} \sum_{i=1}^N \delta_{\boldsymbol{X}_i} \mathbb{1}_{\mathcal{V}_j}(V_i)$$

Note "double indexing" versus "single indexing".

4. Applying the Praestgaard-Wellner theorem

Recall the stratum specific empirical measure

$$\mathbb{P}_{j,N_j} = \frac{1}{N_j} \sum_{i=1}^N \delta_{\boldsymbol{X}_{j,i}} = \frac{1}{N_j} \sum_{i=1}^N \delta_{\boldsymbol{X}_i} \mathbb{1}_{\mathcal{V}_j}(V_i)$$

Note "double indexing" versus "single indexing".

• Need to show: if \mathcal{F} is P_0 -Donsker and $\nu_j > 0$, then \mathcal{F} is $P_{0|j}$ -Donsker on stratum \mathcal{V}_j in the sense that

$$\mathbb{G}_{j,N_j} \equiv \sqrt{N_j} (\mathbb{P}_{j,N_j} - P_{0|j}) \rightsquigarrow \mathbb{G}_j \text{ in } \ell^{\infty}(\mathcal{F})$$

• where \mathbb{G}_j is a $P_{0|j}$ -Brownian bridge process:

$$\{\mathbb{G}_j(f) \stackrel{d}{=} \nu_j^{-1/2} \mathbb{G}((f - P_{0|j}(f))1_{\mathcal{V}_j}), \qquad f \in \ell^{\infty}(\mathcal{F})\}.$$

• Exchangeable weights: $W_n = (W_{n1}, \dots, W_{nn})$ satisfying • W1 $\sup_n \|W_{n1} - \overline{W}_n\|_{2,1} < \infty$

- Exchangeable weights: $W_n = (W_{n1}, \ldots, W_{nn})$ satisfying
 - W1 $\sup_n \|W_{n1} \overline{W}_n\|_{2,1} < \infty$
 - W2 $n^{-1/2}E \max_{1 \le i \le n} |W_{ni} \overline{W}_n| \to 0$

• W1
$$\sup_{n} \|W_{n1} - \overline{W}_{n}\|_{2,1} < \infty$$

• W2
$$n^{-1/2}E \max_{1 \le i \le n} |W_{ni} - \overline{W}_n| \to 0$$

• W3
$$n^{-1} \sum_{i=1}^{n} (W_{ni} - \overline{W}_n)^2 \to_p c^2$$

• W1
$$\sup_{n} \|W_{n1} - \overline{W}_{n}\|_{2,1} < \infty$$

• W2
$$n^{-1/2}E \max_{1 \le i \le n} |W_{ni} - \overline{W}_n| \to 0$$

• W3
$$n^{-1} \sum_{i=1}^{n} (W_{ni} - \overline{W}_n)^2 \rightarrow_p c^2$$

• Exchangeably weighted bootstrap empirical measure

$$\widehat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n W_{ni} \delta_{X_i}$$

• W1
$$\sup_{n} \|W_{n1} - \overline{W}_{n}\|_{2,1} < \infty$$

• W2
$$n^{-1/2}E \max_{1 \le i \le n} |W_{ni} - \overline{W}_n| \to 0$$

• W3
$$n^{-1} \sum_{i=1}^{n} (W_{ni} - \overline{W}_n)^2 \rightarrow_p c^2$$

Exchangeably weighted bootstrap empirical measure

$$\widehat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n W_{ni} \delta_{X_i}$$

Exchangeably weighted bootstrap empirical measure

$$\widehat{\mathbb{G}}_{n} = \sqrt{n} (\widehat{\mathbb{P}}_{n} - \overline{W}_{n} \mathbb{P}_{n}) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (W_{ni} - \overline{W}_{n}) \delta_{X_{i}}$$
$$= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} W_{ni} (\delta_{X_{i}} - \mathbb{P}_{n}).$$

$$\sup_{h\in BL_1} |E_W h(\widehat{\mathbb{G}}_n) - Eh(c\mathbb{G})| \to_P 0.$$

If \mathcal{F} has a square integrable envelope F, $PF^2 < \infty$, then the convergence is also (outer) almost sure.

$$\sup_{h\in BL_1} |E_W h(\widehat{\mathbb{G}}_n) - Eh(c\mathbb{G})| \to_P 0.$$

If \mathcal{F} has a square integrable envelope F, $PF^2 < \infty$, then the convergence is also (outer) almost sure.

• Apply this for each fixed strata $j \in \{1, \ldots, J\}$ with:

 $\circ n = N_j$ random

$$\sup_{h\in BL_1} |E_W h(\widehat{\mathbb{G}}_n) - Eh(c\mathbb{G})| \to_P 0.$$

If \mathcal{F} has a square integrable envelope F, $PF^2 < \infty$, then the convergence is also (outer) almost sure.

$$\circ n = N_j$$
 random

•
$$P = P_{0|j} = P_0(\cdot 1_{\mathcal{V}_j}) / P_0(1_{\mathcal{V}_j})$$

$$\sup_{h\in BL_1} |E_W h(\widehat{\mathbb{G}}_n) - Eh(c\mathbb{G})| \to_P 0.$$

If \mathcal{F} has a square integrable envelope F, $PF^2 < \infty$, then the convergence is also (outer) almost sure.

$$\circ n = N_j$$
 random

•
$$P = P_{0|j} = P_0(\cdot 1_{\mathcal{V}_j}) / P_0(1_{\mathcal{V}_j})$$

$$\circ W = (\xi_{j,i}, \dots, \xi_{j,N_j})$$

$$\sup_{h\in BL_1} |E_W h(\widehat{\mathbb{G}}_n) - Eh(c\mathbb{G})| \to_P 0.$$

If \mathcal{F} has a square integrable envelope F, $PF^2 < \infty$, then the convergence is also (outer) almost sure.

$$\circ n = N_j$$
 random

•
$$P = P_{0|j} = P_0(\cdot 1_{\mathcal{V}_j}) / P_0(1_{\mathcal{V}_j})$$

$$\circ W = (\xi_{j,i}, \dots, \xi_{j,N_j})$$

$$\circ~$$
 If $n_j/N_j
ightarrow_p p_j$, then

$$\frac{1}{N_j} \sum_{i=1}^{N_j} (\xi_{j,i} - \overline{\xi}_{j,i})^2 \to_p p_j (1 - p_j)$$

• \mathcal{F} is $P_{0|j}$ - Donsker: if $X_{j,1}, \ldots, X_{j,n}$ are i.i.d. $P_{0|j}$ and $\mathbb{P}_{j,n} = n^{-1} \sum_{i=1}^{n} \delta_{X_{j,i}}$, then

$$\mathbb{G}_{j,n} \equiv \sqrt{n}(\mathbb{P}_{j,n} - P_{0|j}) \rightsquigarrow \mathbb{G}_j \quad \text{in } \ell^{\infty}(\mathcal{F})$$

where \mathbb{G}_j is a $P_{0|j}$ - Brownian bridge process.

• \mathcal{F} is $P_{0|j}$ - Donsker: if $X_{j,1}, \ldots, X_{j,n}$ are i.i.d. $P_{0|j}$ and $\mathbb{P}_{j,n} = n^{-1} \sum_{i=1}^{n} \delta_{X_{j,i}}$, then

$$\mathbb{G}_{j,n} \equiv \sqrt{n}(\mathbb{P}_{j,n} - P_{0|j}) \rightsquigarrow \mathbb{G}_j \quad \text{in } \ell^{\infty}(\mathcal{F})$$

where \mathbb{G}_j is a $P_{0|j}$ - Brownian bridge process.

• Starting hypothesis: \mathcal{F} is P_0 - Donsker

• \mathcal{F} is $P_{0|j}$ - Donsker: if $X_{j,1}, \ldots, X_{j,n}$ are i.i.d. $P_{0|j}$ and $\mathbb{P}_{j,n} = n^{-1} \sum_{i=1}^{n} \delta_{X_{j,i}}$, then

$$\mathbb{G}_{j,n} \equiv \sqrt{n}(\mathbb{P}_{j,n} - P_{0|j}) \rightsquigarrow \mathbb{G}_j \quad \text{in } \ell^{\infty}(\mathcal{F})$$

where \mathbb{G}_j is a $P_{0|j}$ - Brownian bridge process.

- Starting hypothesis: \mathcal{F} is P_0 Donsker
- Connecting link: double indexing (or "conditional sampling") representation lemma for sampling from P₀.

• Suppose $\mathcal{X} = \mathcal{X}_1 \cup \ldots \cup \mathcal{X}_J$, \mathcal{X}_j 's disjoint

- Suppose $\mathcal{X} = \mathcal{X}_1 \cup \ldots \cup \mathcal{X}_J$, \mathcal{X}_j 's disjoint
- Let $\Delta \sim \text{Multinomial}_J(1, (\nu_1, \dots, \nu_J))$ $\nu_j = P_0(X \in \mathcal{X}_j)$

- Suppose $\mathcal{X} = \mathcal{X}_1 \cup \ldots \cup \mathcal{X}_J$, \mathcal{X}_j 's disjoint
- Let $\Delta \sim \text{Multinomial}_J(1, (\nu_1, \dots, \nu_J))$ $\nu_j = P_0(X \in \mathcal{X}_j)$

•
$$X_j^{\dagger} \sim P_{0|j}$$
 for $j \in \{1, ..., J\}$

- Suppose $\mathcal{X} = \mathcal{X}_1 \cup \ldots \cup \mathcal{X}_J$, \mathcal{X}_j 's disjoint
- Let $\Delta \sim \text{Multinomial}_J(1, (\nu_1, \dots, \nu_J))$ $\nu_j = P_0(X \in \mathcal{X}_j)$

•
$$X_j^{\dagger} \sim P_{0|j}$$
 for $j \in \{1, \dots, J\}$

•
$$\Delta, X_1^{\dagger}, \ldots, X_J^{\dagger}$$
 all independent

Lemma. (Conditional sampling representation)

- Suppose $\mathcal{X} = \mathcal{X}_1 \cup \ldots \cup \mathcal{X}_J$, \mathcal{X}_j 's disjoint
- Let $\Delta \sim \text{Multinomial}_J(1, (\nu_1, \dots, \nu_J))$ $\nu_j = P_0(X \in \mathcal{X}_j)$

•
$$X_j^{\dagger} \sim P_{0|j}$$
 for $j \in \{1, \dots, J\}$

- $\Delta, X_1^{\dagger}, \ldots, X_J^{\dagger}$ all independent
- Then $X \sim P_0$ satisfies $X \stackrel{d}{=} \sum_{j=1}^J \Delta_j X_j^{\dagger}$.

Basic tools

Basic tools

 Exchangeably weighted bootstrap empirical process, Praestgaard-Wellner (1993)

Basic tools

- Exchangeably weighted bootstrap empirical process, Praestgaard-Wellner (1993)
- Z- estimator theorem, van der Vaart (1995), vdV-W (1996)

- Basic tools
 - Exchangeably weighted bootstrap empirical process, Praestgaard-Wellner (1993)
 - Z- estimator theorem, van der Vaart (1995), vdV-W (1996)
- Basic idea: separate calculations for sampling design and for model

- Basic tools
 - Exchangeably weighted bootstrap empirical process, Praestgaard-Wellner (1993)
 - Z- estimator theorem, van der Vaart (1995), vdV-W (1996)
- Basic idea: separate calculations for sampling design and for model
 - $^{\circ}$ Sampling assumptions give properties of IPW empirical process \mathbb{G}_{N}^{π}

- Basic tools
 - Exchangeably weighted bootstrap empirical process, Praestgaard-Wellner (1993)
 - Z- estimator theorem, van der Vaart (1995), vdV-W (1996)
- Basic idea: separate calculations for sampling design and for model
 - Sampling assumptions give properties of IPW empirical process \mathbb{G}_N^{π}
 - Likelihood calculations for complete data problem give efficient influence function $\tilde{\ell}_{\theta}$ for θ

- Basic tools
 - Exchangeably weighted bootstrap empirical process, Praestgaard-Wellner (1993)
 - Z- estimator theorem, van der Vaart (1995), vdV-W (1996)
- Basic idea: separate calculations for sampling design and for model
 - Sampling assumptions give properties of IPW empirical process \mathbb{G}_N^{π}
 - Likelihood calculations for complete data problem give efficient influence function $\tilde{\ell}_{\theta}$ for θ
- Finite population theory seems closer to practice.

- Basic tools
 - Exchangeably weighted bootstrap empirical process, Praestgaard-Wellner (1993)
 - Z- estimator theorem, van der Vaart (1995), vdV-W (1996)
- Basic idea: separate calculations for sampling design and for model
 - Sampling assumptions give properties of IPW empirical process \mathbb{G}_N^{π}
 - Likelihood calculations for complete data problem give efficient influence function $\tilde{\ell}_{\theta}$ for θ
- Finite population theory seems closer to practice.
- Extensions possible ? for other designs, other estimating equations.

• Other, more complex sampling designs?

Other, more complex sampling designs?
 Májek (1964), Rosen (1972a,b), ...

- Other, more complex sampling designs?
 - Hájek (1964), Rosen (1972a,b), ...
 - Lin (2000)

- Other, more complex sampling designs?
 Májek (1964), Rosen (1972a,b), ...
 - Lin (2000)
- Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{N} ? Not easily!

- Other, more complex sampling designs?
 - Hájek (1964), Rosen (1972a,b), ...
 - Lin (2000)
- Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{N} ? Not easily!
 - Z theorems of Huang (1995), Wellner and Zhang (2006), Newey (1994).

- Other, more complex sampling designs?
 - Hájek (1964), Rosen (1972a,b), ...
 - Lin (2000)
- Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{N} ? Not easily!
 - Z theorems of Huang (1995), Wellner and Zhang (2006), Newey (1994).
- Can we handle both estimating the π 's and and finite popl'n sampling?

- Other, more complex sampling designs?
 - Hájek (1964), Rosen (1972a,b), ...
 - Lin (2000)
- Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{N} ? Not easily!
 - Z theorems of Huang (1995), Wellner and Zhang (2006), Newey (1994).
- Can we handle both estimating the π's and and finite popl'n sampling?
- Application to Cox model via Z-theorem

- Other, more complex sampling designs?
 - Hájek (1964), Rosen (1972a,b), ...
 - Lin (2000)
- Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{N} ? Not easily!
 - Z theorems of Huang (1995), Wellner and Zhang (2006), Newey (1994).
- Can we handle both estimating the π's and and finite popl'n sampling?
- Application to Cox model via Z-theorem
 - van der Vaart (1985), (1998) imposes extra hypotheses

- Other, more complex sampling designs?
 - Hájek (1964), Rosen (1972a,b), ...
 - Lin (2000)
- Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{N} ? Not easily!
 - Z theorems of Huang (1995), Wellner and Zhang (2006), Newey (1994).
- Can we handle both estimating the π 's and and finite popl'n sampling?
- Application to Cox model via Z-theorem
 - van der Vaart (1985), (1998) imposes extra hypotheses
 - compare vdV with Andersen and Gill (1982)

- Other, more complex sampling designs?
 - Hájek (1964), Rosen (1972a,b), ...
 - Lin (2000)
- Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{N} ? Not easily!
 - Z theorems of Huang (1995), Wellner and Zhang (2006), Newey (1994).
- Can we handle both estimating the π's and and finite popl'n sampling?
- Application to Cox model via Z-theorem
 - van der Vaart (1985), (1998) imposes extra hypotheses
 - compare vdV with Andersen and Gill (1982)
 - $^{\circ}$ need very sharp / good Z- theorem result