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• Setting: semiparametric model, X ∼ Pθ,η ∈ P

Semiparametric models with data missing by designand inverse probability weighted empirical processes:partial results and open problems – p. 4/20



1. Semiparametric models with missing data by design

• Setting: semiparametric model, X ∼ Pθ,η ∈ P
• parametric part: θ ∈ Θ ⊂ Rd

Semiparametric models with data missing by designand inverse probability weighted empirical processes:partial results and open problems – p. 4/20



1. Semiparametric models with missing data by design

• Setting: semiparametric model, X ∼ Pθ,η ∈ P
• parametric part: θ ∈ Θ ⊂ Rd

• nonparametric part: η ∈ H ⊂ B, a Banach space

Semiparametric models with data missing by designand inverse probability weighted empirical processes:partial results and open problems – p. 4/20



1. Semiparametric models with missing data by design

• Setting: semiparametric model, X ∼ Pθ,η ∈ P
• parametric part: θ ∈ Θ ⊂ Rd

• nonparametric part: η ∈ H ⊂ B, a Banach space
• Assume:

Semiparametric models with data missing by designand inverse probability weighted empirical processes:partial results and open problems – p. 4/20



1. Semiparametric models with missing data by design

• Setting: semiparametric model, X ∼ Pθ,η ∈ P
• parametric part: θ ∈ Θ ⊂ Rd

• nonparametric part: η ∈ H ⊂ B, a Banach space
• Assume:

◦ There exist
√

n−consistent, asymptotically Gaussian ML
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1. Semiparametric models with missing data by design

• Setting: semiparametric model, X ∼ Pθ,η ∈ P
• parametric part: θ ∈ Θ ⊂ Rd

• nonparametric part: η ∈ H ⊂ B, a Banach space
• Assume:

◦ There exist
√

n−consistent, asymptotically Gaussian ML
estimators (θ̂n, η̂n) of θ and η under i.i.d. random
sampling (i.e. complete data).

◦ Scores l̇θ and l̇ηn = Bθ,ηh, h ∈ H ⊂ B
in a Donsker class F .

◦ Information operator l̇Tη l̇η = B∗
0B0

continuously invertible on its range

◦ (θ̂n, η̂n) are consistent for (θ0, η0).
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• Missing data – by design! X not observed for all items /
individuals
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individuals

• X̃ = X̃(X) observable part of X in phase 1
• Auxiliary U helps predict inclusion in subsample

◦ W = (X,U) ∈ W observable only in validation (phase 2)
sample

◦ V = (X̃, U) ∈ V observable in phase 1 (for all)

• Phase 1: {W1, . . . ,WN} i.i.d. P = PW

◦ but observe only {V1, . . . , VN}
• Phase 2: Sampling indicators {ξ1, . . . , ξN}

◦ observe Wi (all of Xi) if ξi = 1
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Many choices for the (phase 2) sampling indicators ξi! Here:
• Bernoulli (Manski-Lerman) sampling

Pr(ξi = 1|Wi) = Pr(ξi = 1|Vi) = π0(Vi)

independent
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◦ (ξj,1, . . . , ξj,Nj
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Pr(ξji = 1|V1, . . . , VN ) = nj/Nj .

◦ The vectors (ξj,1, . . . , ξj,Nj
), j = 1, . . . , J are independent
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2. Horovitz-Thompson (or IPW Likelihood) Estimators

• Define inverse probability weighted (IPW) empirical
measure:

P
π
N =

1
N

N∑
i=1

ξi

πi
δXi

, δx = Dirac measure at x

πi =

{
π0(Vi) if Bernoulli sampling
nj

Nj
1{Vi ∈ Vj} if finite pop’ln stratified sampling
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π
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d

P
π
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nj
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• Jointly solve the finite - (for θ) and infinite (for η) dimensional
equations

P
π
N l̇θ = 0 in R

d

P
π
N l̇η = 0 ∀h ∈ H

• MLE for complete data solves same equations with PN

instead of P
π
N .
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Our Main Result:

• θ̂N solving the IPW estimating equations is asymptotically
linear

√
N(θ̂N − θ0) =

1√
N

N∑
i=1

ξi

πi
l̃θ0(Xi) + op(1)

= G
π
N (l̃θ0) + op(1)

where l̃θ(x) is the semparametric efficient influence function
for θ (complete data)

G
π
N =

√
N(Pπ

N − P ).
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3. Finite sampling empirical processes, stratified sampling

• Finite sampling empirical measure for stratum
j ∈ {1, . . . , J}:

P
ξ
j,Nj

=
1

Nj

Nj∑
i=1

ξjiδXji
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3. Finite sampling empirical processes, stratified sampling

• Finite sampling empirical measure for stratum
j ∈ {1, . . . , J}:

P
ξ
j,Nj

=
1

Nj

Nj∑
i=1

ξjiδXji

• Closely related to exchangeably weighted bootstrap empirical
measure
of Praestgaard and Wellner (1993),
van der Vaart and Wellner (1996), section 3.6
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• Finite sampling empirical process

G
ξ
j,Nj

=
√

Nj

(
P

ξ
j,Nj

− nj

Nj
Pj,Nj

)
,

where

Pj,Nj
=

1
Nj

Nj∑
i=1

δXji
.
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• Finite sampling empirical process

G
ξ
j,Nj

=
√

Nj

(
P

ξ
j,Nj

− nj

Nj
Pj,Nj

)
,

where

Pj,Nj
=

1
Nj

Nj∑
i=1

δXji
.

• Suppose that F is a P0−Donsker class of functions
containing all the scores l̇θ and l̇η corresponding to
parameter values in a neighborhood of the (θ0, η0)
(guaranteed by Assumption 1).
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)
,

where

Pj,Nj
=

1
Nj

Nj∑
i=1

δXji
.

• Suppose that F is a P0−Donsker class of functions
containing all the scores l̇θ and l̇η corresponding to
parameter values in a neighborhood of the (θ0, η0)
(guaranteed by Assumption 1).

• νj ≡ P0(Vj)
• nj/Nj →p pj
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Step one: Weak convergence of Finite Sampling Empirical Process
• Define:

G = a P0−Brownian bridge process indexed by F
Gj = a P0|j-Brownian bridge process indexed by F

Gj(f) =
1√
νj

G{(f − P0|j(f)|1Vj
}, f ∈ F

P0|j(f) = E (f(X)|V ∈ Vj) .
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Step one: Weak convergence of Finite Sampling Empirical Process
• Define:

G = a P0−Brownian bridge process indexed by F
Gj = a P0|j-Brownian bridge process indexed by F

Gj(f) =
1√
νj

G{(f − P0|j(f)|1Vj
}, f ∈ F

P0|j(f) = E (f(X)|V ∈ Vj) .

• By the exchangeably weighted bootstrap limit theorem
(Praestgaard & Wellner, 1993), with
{G, G1, . . . , GJ} ∈ UC(F) independent

(GN , Gξ
1,N1

, . . . , Gξ
J,NJ

)�(G,
√

p1(1 − p1)G1, . . . ,
√

pJ(1 − pJ )GJ),

G
π
N = GN +

J∑
j=1

Nj

N

(
Nj

nj

)
G

ξ
j,Nj
�G +

J∑
j=1

√
νj

√
1 − pj

pj
Gj
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Step two: Apply van der Vaart’s general Z-theorem (vdvW, 3.3.1):

√
N(θ̂N − θ0) = G

π
N (�̃θ0,η0) + op(1)�N(0,Σ)

• Asymptotic variances under stratified sampling

Σ =

{
Ĩ−1 +

∑J
j=1 νj

1−pj

pj
Ej(�̃⊗2), Bernoulli sampling

Ĩ−1 +
∑J

j=1 νj
1−pj

pj
V arj(�̃), finite popl’n sampling
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Step two: Apply van der Vaart’s general Z-theorem (vdvW, 3.3.1):

√
N(θ̂N − θ0) = G

π
N (�̃θ0,η0) + op(1)�N(0,Σ)

• Asymptotic variances under stratified sampling

Σ =

{
Ĩ−1 +

∑J
j=1 νj

1−pj

pj
Ej(�̃⊗2), Bernoulli sampling

Ĩ−1 +
∑J

j=1 νj
1−pj

pj
V arj(�̃), finite popl’n sampling

• Gain from stratified sampling is centering of efficient scores
◦ Can reduce variance (considerably) via finite popl’n

sampling.
◦ Select strata via covariates so that �̃ has small

conditional variances on the strata
◦ Alternatively: Bernoulli sampling, but model the

selection probabilities πα(V ) and estimate the α’s
(Norm’s talk on Monday)
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Norm’s talk on Monday:
• Application to Cox regression

Different finish here: back to the math!
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Norm’s talk on Monday:
• Application to Cox regression
• Bernoulli sampling with estimated weights

◦ Correspondence with finite population sampling
◦ Further possible efficiency gains

• Algorithm for computing variances (T. Lumley, R Survey
package)

• Extensions (unbiased estimating equations; complex
probability sampling)

Different finish here: back to the math!
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4. Applying the Praestgaard-Wellner theorem

• Recall the stratum specific empirical measure

Pj,Nj
=

1
Nj

N∑
i=1

δXj,i
=

1
Nj

N∑
i=1

δXi
1Vj

(Vi)

Note “double indexing” versus “single indexing”.
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1Vj

(Vi)

Note “double indexing” versus “single indexing”.
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4. Applying the Praestgaard-Wellner theorem

• Recall the stratum specific empirical measure

Pj,Nj
=

1
Nj

N∑
i=1

δXj,i
=

1
Nj

N∑
i=1

δXi
1Vj

(Vi)

Note “double indexing” versus “single indexing”.
• Need to show: if F is P0-Donsker and νj > 0, then F is

P0|j-Donsker on stratum Vj in the sense that

Gj,Nj
≡ √

Nj(Pj,Nj
− P0|j)� Gj in �∞(F)

• where Gj is a P0|j-Brownian bridge process:

{Gj(f) d= ν
−1/2
j G((f − P0|j(f))1Vj

), f ∈ �∞(F)}.
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• Exchangeable weights: Wn = (Wn1, . . . ,Wnn) satisfying
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◦ W1 supn ‖Wn1 − Wn‖2,1 < ∞
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• Exchangeable weights: Wn = (Wn1, . . . ,Wnn) satisfying
◦ W1 supn ‖Wn1 − Wn‖2,1 < ∞
◦ W2 n−1/2E max1≤i≤n |Wni − Wn| → 0
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◦ W1 supn ‖Wn1 − Wn‖2,1 < ∞
◦ W2 n−1/2E max1≤i≤n |Wni − Wn| → 0
◦ W3 n−1

∑n
i=1(Wni − Wn)2 →p c2
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• Exchangeable weights: Wn = (Wn1, . . . ,Wnn) satisfying
◦ W1 supn ‖Wn1 − Wn‖2,1 < ∞
◦ W2 n−1/2E max1≤i≤n |Wni − Wn| → 0
◦ W3 n−1

∑n
i=1(Wni − Wn)2 →p c2

• Exchangeably weighted bootstrap empirical measure

P̂n =
1
n

n∑
i=1

WniδXi
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• Exchangeable weights: Wn = (Wn1, . . . ,Wnn) satisfying
◦ W1 supn ‖Wn1 − Wn‖2,1 < ∞
◦ W2 n−1/2E max1≤i≤n |Wni − Wn| → 0
◦ W3 n−1

∑n
i=1(Wni − Wn)2 →p c2

• Exchangeably weighted bootstrap empirical measure

P̂n =
1
n

n∑
i=1

WniδXi

• Exchangeably weighted bootstrap empirical measure

Ĝn =
√

n(P̂n − WnPn) =
1√
n

n∑
i=1

(Wni − Wn)δXi

=
1√
n

n∑
i=1

Wni(δXi
− Pn).
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Theorem (Praestgaard & Wellner, 1993) Suppose that F− is
P−Donsker and W1-W3 hold. Then

sup
h∈BL1

|EW h(Ĝn) − Eh(cG)| →P 0.

If F has a square integrable envelope F , PF2 < ∞, then the
convergence is also (outer) almost sure.

• Apply this for each fixed strata j ∈ {1, . . . , J} with:
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P−Donsker and W1-W3 hold. Then

sup
h∈BL1

|EW h(Ĝn) − Eh(cG)| →P 0.

If F has a square integrable envelope F , PF2 < ∞, then the
convergence is also (outer) almost sure.

• Apply this for each fixed strata j ∈ {1, . . . , J} with:
◦ n = Nj random
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Theorem (Praestgaard & Wellner, 1993) Suppose that F− is
P−Donsker and W1-W3 hold. Then

sup
h∈BL1

|EW h(Ĝn) − Eh(cG)| →P 0.

If F has a square integrable envelope F , PF2 < ∞, then the
convergence is also (outer) almost sure.

• Apply this for each fixed strata j ∈ {1, . . . , J} with:
◦ n = Nj random
◦ P = P0|j = P0(·1Vj

)/P0(1Vj
)
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Theorem (Praestgaard & Wellner, 1993) Suppose that F− is
P−Donsker and W1-W3 hold. Then

sup
h∈BL1

|EW h(Ĝn) − Eh(cG)| →P 0.

If F has a square integrable envelope F , PF2 < ∞, then the
convergence is also (outer) almost sure.

• Apply this for each fixed strata j ∈ {1, . . . , J} with:
◦ n = Nj random
◦ P = P0|j = P0(·1Vj

)/P0(1Vj
)

◦ W = (ξj,i, . . . , ξj,Nj
)
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Theorem (Praestgaard & Wellner, 1993) Suppose that F− is
P−Donsker and W1-W3 hold. Then

sup
h∈BL1

|EW h(Ĝn) − Eh(cG)| →P 0.

If F has a square integrable envelope F , PF2 < ∞, then the
convergence is also (outer) almost sure.

• Apply this for each fixed strata j ∈ {1, . . . , J} with:
◦ n = Nj random
◦ P = P0|j = P0(·1Vj

)/P0(1Vj
)

◦ W = (ξj,i, . . . , ξj,Nj
)

◦ If nj/Nj →p pj , then

1
Nj

Nj∑
i=1

(ξj,i − ξj,i)
2 →p pj(1 − pj)
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• F is P0|j - Donsker: if Xj,1, . . . ,Xj,n are i.i.d. P0|j and
Pj,n = n−1

∑n
i=1 δXj,i

, then

Gj,n ≡ √
n(Pj,n − P0|j)� Gj in �∞(F)

where Gj is a P0|j - Brownian bridge process.
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• F is P0|j - Donsker: if Xj,1, . . . ,Xj,n are i.i.d. P0|j and
Pj,n = n−1

∑n
i=1 δXj,i

, then

Gj,n ≡ √
n(Pj,n − P0|j)� Gj in �∞(F)

where Gj is a P0|j - Brownian bridge process.

• Starting hypothesis: F is P0 - Donsker
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• F is P0|j - Donsker: if Xj,1, . . . ,Xj,n are i.i.d. P0|j and
Pj,n = n−1

∑n
i=1 δXj,i

, then

Gj,n ≡ √
n(Pj,n − P0|j)� Gj in �∞(F)

where Gj is a P0|j - Brownian bridge process.

• Starting hypothesis: F is P0 - Donsker
• Connecting link: double indexing (or “conditional sampling”)

representation lemma for sampling from P0.
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Lemma. (Conditional sampling representation)
• Suppose X = X1 ∪ . . . ∪ XJ ,
Xj ’s disjoint
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Lemma. (Conditional sampling representation)
• Suppose X = X1 ∪ . . . ∪ XJ ,
Xj ’s disjoint

• Let ∆ ∼ MultinomialJ (1, (ν1, . . . , νJ ))
νj = P0(X ∈ Xj)
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Lemma. (Conditional sampling representation)
• Suppose X = X1 ∪ . . . ∪ XJ ,
Xj ’s disjoint

• Let ∆ ∼ MultinomialJ (1, (ν1, . . . , νJ ))
νj = P0(X ∈ Xj)

• X†
j ∼ P0|j for j ∈ {1, . . . , J}
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Lemma. (Conditional sampling representation)
• Suppose X = X1 ∪ . . . ∪ XJ ,
Xj ’s disjoint

• Let ∆ ∼ MultinomialJ (1, (ν1, . . . , νJ ))
νj = P0(X ∈ Xj)

• X†
j ∼ P0|j for j ∈ {1, . . . , J}

• ∆, X†
1 , . . . , X†

J all independent
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Lemma. (Conditional sampling representation)
• Suppose X = X1 ∪ . . . ∪ XJ ,
Xj ’s disjoint

• Let ∆ ∼ MultinomialJ (1, (ν1, . . . , νJ ))
νj = P0(X ∈ Xj)

• X†
j ∼ P0|j for j ∈ {1, . . . , J}

• ∆, X†
1 , . . . , X†

J all independent

• Then X ∼ P0 satisfies X
d=

∑J
j=1 ∆jX

†
j .
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5. Summary; problems and open questions

• Basic tools
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5. Summary; problems and open questions

• Basic tools
◦ Exchangeably weighted bootstrap empirical process,

Praestgaard-Wellner (1993)
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5. Summary; problems and open questions
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◦ Exchangeably weighted bootstrap empirical process,

Praestgaard-Wellner (1993)
◦ Z- estimator theorem, van der Vaart (1995), vdV-W

(1996)
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for model
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◦ Exchangeably weighted bootstrap empirical process,

Praestgaard-Wellner (1993)
◦ Z- estimator theorem, van der Vaart (1995), vdV-W

(1996)
• Basic idea: separate calculations for sampling design and

for model
◦ Sampling assumptions give properties of IPW empirical

process G
π
N
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• Basic tools
◦ Exchangeably weighted bootstrap empirical process,

Praestgaard-Wellner (1993)
◦ Z- estimator theorem, van der Vaart (1995), vdV-W

(1996)
• Basic idea: separate calculations for sampling design and

for model
◦ Sampling assumptions give properties of IPW empirical

process G
π
N

◦ Likelihood calculations for complete data problem give
efficient influence function �̃θ for θ
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◦ Exchangeably weighted bootstrap empirical process,

Praestgaard-Wellner (1993)
◦ Z- estimator theorem, van der Vaart (1995), vdV-W

(1996)
• Basic idea: separate calculations for sampling design and

for model
◦ Sampling assumptions give properties of IPW empirical

process G
π
N

◦ Likelihood calculations for complete data problem give
efficient influence function �̃θ for θ

• Finite population theory seems closer to practice.
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5. Summary; problems and open questions

• Basic tools
◦ Exchangeably weighted bootstrap empirical process,

Praestgaard-Wellner (1993)
◦ Z- estimator theorem, van der Vaart (1995), vdV-W

(1996)
• Basic idea: separate calculations for sampling design and

for model
◦ Sampling assumptions give properties of IPW empirical

process G
π
N

◦ Likelihood calculations for complete data problem give
efficient influence function �̃θ for θ

• Finite population theory seems closer to practice.
• Extensions possible ? for other designs, other estimating

equations.
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• Other, more complex sampling designs?
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• Other, more complex sampling designs?
◦ Hájek (1964), Rosen (1972a,b), ...
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◦ Hájek (1964), Rosen (1972a,b), ...
◦ Lin (2000)
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• Other, more complex sampling designs?
◦ Hájek (1964), Rosen (1972a,b), ...
◦ Lin (2000)

• Can we handle problems with nuisance parameter
estimators not converging at rate

√
N? Not easily!
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• Other, more complex sampling designs?
◦ Hájek (1964), Rosen (1972a,b), ...
◦ Lin (2000)

• Can we handle problems with nuisance parameter
estimators not converging at rate

√
N? Not easily!

◦ Z - theorems of Huang (1995), Wellner and Zhang
(2006), Newey (1994).
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• Other, more complex sampling designs?
◦ Hájek (1964), Rosen (1972a,b), ...
◦ Lin (2000)

• Can we handle problems with nuisance parameter
estimators not converging at rate

√
N? Not easily!

◦ Z - theorems of Huang (1995), Wellner and Zhang
(2006), Newey (1994).

• Can we handle both estimating the π’s and and finite popl’n
sampling?
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N? Not easily!

◦ Z - theorems of Huang (1995), Wellner and Zhang
(2006), Newey (1994).

• Can we handle both estimating the π’s and and finite popl’n
sampling?

• Application to Cox model via Z−theorem
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◦ van der Vaart (1985), (1998) imposes extra hypotheses
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• Other, more complex sampling designs?
◦ Hájek (1964), Rosen (1972a,b), ...
◦ Lin (2000)

• Can we handle problems with nuisance parameter
estimators not converging at rate

√
N? Not easily!

◦ Z - theorems of Huang (1995), Wellner and Zhang
(2006), Newey (1994).

• Can we handle both estimating the π’s and and finite popl’n
sampling?

• Application to Cox model via Z−theorem
◦ van der Vaart (1985), (1998) imposes extra hypotheses
◦ compare vdV with Andersen and Gill (1982)
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• Other, more complex sampling designs?
◦ Hájek (1964), Rosen (1972a,b), ...
◦ Lin (2000)

• Can we handle problems with nuisance parameter
estimators not converging at rate

√
N? Not easily!

◦ Z - theorems of Huang (1995), Wellner and Zhang
(2006), Newey (1994).

• Can we handle both estimating the π’s and and finite popl’n
sampling?

• Application to Cox model via Z−theorem
◦ van der Vaart (1985), (1998) imposes extra hypotheses
◦ compare vdV with Andersen and Gill (1982)
◦ need very sharp / good Z− theorem result
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