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• Talk at Joint Statistical Meetings
• Washington, D.C.
• August 3, 2009
• Email: jaw@stat.washington.edu
http: //www.stat.washington.edu/jaw/jaw.research.html
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1. Background

Prediction is very difficult, especially when it involves the future.
(Niels Bohr).
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Some Boundaries and Restrictions:
• Focus here on:

◦ Statistical inference (theory and methods)
◦ Research problems
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Some Boundaries and Restrictions:
• Focus here on:

◦ Statistical inference (theory and methods)
◦ Research problems

• Other recent surveys, reviews, and reports:
◦ Report on the Future of Statistics (Stat. Sci. 2004); Lindsay,
Kettenring, and Siegmund.

◦ Longer on-line version of above: Statistics: Challenges and
Opportunities for the Twenty-First Century.

◦ Statistics in the 21st Century; Raftery, Tanner, and Wells.
22 vignettes (organized by George Casella) on “Theory
and Methods”

• Personal, subjective, and biased view, with lots ignored
mostly due to personal ignorance.
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Problems for the future (of Statistical Inference) mentioned by Kiefer,
Savage, and Le Cam, 1967;
Conference at University of Wisconsin on “The Future of Statistics”

• Problems mentioned by Kiefer:
◦ Theory of nonparametric inference: testing and
estimation.

◦ Theory of nonparametric Bayes procedures. (Theory
developing over last 10+ years: e.g. Le Cam lecture by
van der Vaart at this meeting.)

◦ Rates of convergence. (Götze, Bickel, van Zwet, Peter
Hall, ... )

◦ Nonparametric regression / curve estimation. (Hints of
model selection, penalized estimation.)
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• Problems, Le Cam:
◦ Alternatives to Bayesian statistics?
◦ Specification of stochastic structure?
◦ Stability of experiments? (Distance between
experiments? Discrete versus continuous
parameterizations?)

◦ Stability and relations to invariance?
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• Problems, Le Cam:
◦ Alternatives to Bayesian statistics?
◦ Specification of stochastic structure?
◦ Stability of experiments? (Distance between
experiments? Discrete versus continuous
parameterizations?)

◦ Stability and relations to invariance?
• Problems mentioned by Savage:

◦ Descriptive statistics (look at the data).
◦ Multi-parameter problems and nonparametric problems
◦ Weather forecasting?
◦ Medical diagnosis?
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• Problems mentioned by Audience:
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• Problems mentioned by Audience:
◦ Colin Mallows:

• Effect of computing facilities on statistical inference?
• Subset regression?
• What should we be teaching in inference?

◦ George H. Ball (Stanford Research Institute).
• “... select some subset of the variables if we have
more than five or six ... ”

• Change of perspective with computing power?
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2. What recent developments?

The future ain’t what it used to be. (Yogi Berra)
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Data: Numbers of papers per year for several topics.
• Topics explicitly mentioned at the 1967 Madison meeting

◦ Nonparametric Bayes methods (Kiefer)
◦ Robustness (Kiefer)
◦ Subset regression (Mallows, Ball)→ model selection
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Data: Numbers of papers per year for several topics.
• Topics explicitly mentioned at the 1967 Madison meeting

◦ Nonparametric Bayes methods (Kiefer)
◦ Robustness (Kiefer)
◦ Subset regression (Mallows, Ball)→ model selection

• Topics implicit or “hinted at” in discussion at the 1967
Madision meeting
◦ Alternatives to Bayes methods (Le Cam)
→ empirical Bayes estimation

◦ Structure of stochastic models (Le Cam)
→ graphical models

◦ Multiple comparisons / multiple testing (Savage)
→ false discovery rate

◦ Multiparameter - nonparametric models (Savage)
→ semiparametric models
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• Topics not mentioned at the 1967 UW meeting
◦ Bootstrap methods
◦ Markov chain monte carlo
◦ Empirical process theory / methods
◦ Lasso + regression
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• Topics not mentioned at the 1967 UW meeting
◦ Bootstrap methods
◦ Markov chain monte carlo
◦ Empirical process theory / methods
◦ Lasso + regression

• Many other possible topics (not pursued here)
◦ Hierarchical models
◦ Metaanalysis
◦ Nonparametric function estimation
◦ Causal inference
◦ Missing data
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3. Possible future directions?

The best way to predict the future is to invent it. (Alan Kay)
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• Inference for networks, trees, and graphs. (Non-Euclidean
data and/or parameters)
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• Inference for networks, trees, and graphs. (Non-Euclidean
data and/or parameters)
◦ Recent talks by Bickel and Chen, Fienberg, and Marron
(IMS-China meeting)

◦ More math connections possible and needed: probability
models, combinatorics, computational algebra
development (and limit theory) ahead of statisticians?
• Probability models; combinatorics, computational
algebra .

• Algorithms.
• One basis for work by Bickel and Chen: theory
developed by Aldous (1985) and Kallenberg

◦ Networks ubiquitous: internet, social networks, citation
networks, ...
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• Efficiency theory incorporating computational expense or
effort required
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• Efficiency theory incorporating computational expense or
effort required
◦ Meinshausen, Bickel, and Rice (2009).
◦ Wainwright (2006).
◦ Stark (2008): “controlled computational cost” in inverse
problems.

• Interactions between computational methods convex
analysis, optimization theory, and statistics
◦ Variational approximations: Jaakkola and Jordan (1999),
Wainright and Jordan (2008)

◦ Convex relaxations: Donoho & ...
◦ Stability of algorithms (or lack of stability), e.g. inverse
Laplace transform

◦ Scalability of algorithms (or lack of scalability).
• Replacements for Markov chain monte carlo in special
classes of models
◦ Nested Laplace approximatons: Rue, Martino, Chopin
(2008)
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• Sparsity, sparse representations, compressed sensing
◦ Ingster (1993a,1993b, 1997)
◦ Searching for sparse signals: Donoho and Jin (2004),
Johnstone and Silverman (2004)

◦ Estimation of the proportion of sparse signals:
Meinshausen and Rice (2006), Cai, Jin and Low (2007),
Jin and Cai (2007)
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• Sparsity, sparse representations, compressed sensing
◦ Ingster (1993a,1993b, 1997)
◦ Searching for sparse signals: Donoho and Jin (2004),
Johnstone and Silverman (2004)

◦ Estimation of the proportion of sparse signals:
Meinshausen and Rice (2006), Cai, Jin and Low (2007),
Jin and Cai (2007)

• More on model selection
◦ Enormous qualitative changes in past 10 years:
◦ Changing perspectives: often no one “true” model.
◦ Replace with specified goals: prediction or
variable/feature selection

◦ Often now based on “model averaging”, or “weighting”,
or “aggregation” methods.

◦ Need for much more work on inference following model
selection (e.g. H. Leeb, B. Pötscher)
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4. Some specific problems (of special interest to me)

I never think of the future - it comes soon enough. (Albert Einstein)

Back to the Future – p. 32/40



• Shape restrictions and mixture models
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• Shape restrictions and mixture models
◦ Nonparametric mixture models with smooth kernels:
limiting distribution of MLE at fixed points? Example:
Completely monotone densities (i.e. scale mixtures of
exponential); consistency of MLE due to Jewell (1982).
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• Shape restrictions and mixture models
◦ Nonparametric mixture models with smooth kernels:
limiting distribution of MLE at fixed points? Example:
Completely monotone densities (i.e. scale mixtures of
exponential); consistency of MLE due to Jewell (1982).

◦ Multivariate shape restrictions: e.g. log-concave
densities on Rd

R. Samworth (Cambridge), A. Seregin (U. Washington).
◦ Inefficiency of MLE for shape restricted families when

d ≥ d0?!
How to penalize or further constrain to find rate-efficient
estimators in the classes when d ≥ d0?

◦ Interactions between (nonparametric) mixture models
and Empirical Bayes methods: C-H Zhang (2009), Jiang
and Zhang (2009).
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• Sampling based (Horvitz - Thompson) empirical processes
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• Sampling based (Horvitz - Thompson) empirical processes
◦ {ξi}N

i=1, sampling indicators;
{πi}N

i=1, marginal inclusion probabilities;
{Xi}N

i=1, population to be sampled.

Pπ
N = N−1

N∑

i=1

ξi

πi
δXi

= Horvitz - Thompson empirical measure,

Gπ
N =

√
N(Pπ

N − P )
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◦ Finite - dimensional central limit theory known: Hájek
(1960, 1964); Rosén (1972).
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• Sampling based (Horvitz - Thompson) empirical processes,
continued

Back to the Future – p. 35/40



• Sampling based (Horvitz - Thompson) empirical processes,
continued
◦ Unifications with “model assisted survey sampling” and
survey design: e.g. Saarndal, Swensson, and Wretman
(1992); Lumley (2009).
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• Sampling based (Horvitz - Thompson) empirical processes,
continued
◦ Unifications with “model assisted survey sampling” and
survey design: e.g. Saarndal, Swensson, and Wretman
(1992); Lumley (2009).

• Estimators for (semiparametric) models under
miss-specification
◦ Behavior of estimators when P /∈ P?
◦ Bickel and Kwon (2001); Kleijn and van der Vaart
(2006).
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• Sampling based (Horvitz - Thompson) empirical processes,
continued
◦ Unifications with “model assisted survey sampling” and
survey design: e.g. Saarndal, Swensson, and Wretman
(1992); Lumley (2009).

• Estimators for (semiparametric) models under
miss-specification
◦ Behavior of estimators when P /∈ P?
◦ Bickel and Kwon (2001); Kleijn and van der Vaart (2006).
◦ Kosorok, Lee, and Fine (2004), Newey (2004).
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The Quotes, Again

• Prediction is very difficult, especially when it involves the
future.
(Niels Bohr, quoted in Alpher and Hermann (2001), p. 159).
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The Quotes, Again

• Prediction is very difficult, especially when it involves the
future.
(Niels Bohr, quoted in Alpher and Hermann (2001), p. 159).

• The future ain’t what it used to be. (Yogi Berra)
• The best way to predict the future is to invent it. (Alan Kay)
• I never think of the future - it comes soon enough. (Albert
Einstein)
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Some facts:

• In 1967 Leonard J. Savage (1917-1971) was 50.
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Some facts:

• In 1967 Leonard J. Savage (1917-1971) was 50.
• In 1967 Lucien Le Cam (1924-2000) was 43.
• In 1967 Jack Kiefer (1924-1981) was 43.
• In 1967 David Freedman (1938-2008) was 29.
• In 1969 (time of the first moon landing) less than half of the
current population of the U.S. had been born. (The national
median age in the U.S. was 36.7 years in February 2009.)
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