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1. Log-concave densities on R1

Suppose that

p(x) = exp(ϕ(x)) = exp (−(−ϕ(x)))

where ϕ is concave (and −ϕ is convex). The class of all
densities p on R of the form is called the class of log-concave
densities, Plog−concave.
Properties of log-concave densities:

• A density p on R is log-concave if and only if its convolution
with any unimodal density is again unimodal (Ibragimov,
1956).
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1. Log-concave densities on R1

Suppose that

p(x) = exp(ϕ(x)) = exp (−(−ϕ(x)))

where ϕ is concave (and −ϕ is convex). The class of all
densities p on R of the form is called the class of log-concave
densities, Plog−concave.
Properties of log-concave densities:

• A density p on R is log-concave if and only if its convolution
with any unimodal density is again unimodal (Ibragimov,
1956).

• Every log-concave density p is unimodal (but need not be
symmetric).
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• Many parametric families are log-concave, for example:
◦ Normal (µ, σ2)
◦ Uniform(a, b)
◦ Gamma(r, λ) for r ≥ 1
◦ Beta(a, b) for a, b ≥ 1
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• Many parametric families are log-concave, for example:
◦ Normal (µ, σ2)
◦ Uniform(a, b)
◦ Gamma(r, λ) for r ≥ 1
◦ Beta(a, b) for a, b ≥ 1

• tr densities with r > 0 are not log-concave
• Tails of log-concave densities are necessarily

sub-exponential
• Plog−concave = the class of “Polyá frequency functions of

order 2”, PFF2, in the terminology of Schoenberg (1951)
and Karlin (1968). See Marshall and Olkin (1979), chapter
18, and Dharmadhikari and Joag-Dev (1988), page 150. for
nice introductions.
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2. Nonparametric estimation, log-concave on R1

• The (nonparametric) MLE p̂n exists (Rufibach, Dümbgen
and Rufibach).
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Bickel and Fan (1996) consider alternatives to maximum
likelihood for the class of unimodal densities.
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• Consistency and rates of convergence for p̂n:
Dümbgen and Rufibach, (2007); Pal, Woodroofe and Meyer
(2007).
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2. Nonparametric estimation, log-concave on R1

• The (nonparametric) MLE p̂n exists (Rufibach, Dümbgen
and Rufibach).

• p̂n can be computed: R-package “logcondens” (Dümbgen
and Rufibach)

• In contrast, the (nonparametric) MLE for the class of
unimodal densities on R1 does not exist. Birgé (1997) and
Bickel and Fan (1996) consider alternatives to maximum
likelihood for the class of unimodal densities.

• Consistency and rates of convergence for p̂n:
Dümbgen and Rufibach, (2007); Pal, Woodroofe and Meyer
(2007).

• Pointwise limit theory? Yes! Balabdaoui, Rufibach, and
Wellner (2007).

Nonparametric estimation of log-concave densities – p. 6/23



0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

de
ns

ity
 fu

nc
tio

ns

0 1 2 3 4 5

7

6

5

4

3

2

1

0

lo
g

de
ns

ity
 fu

nc
tio

ns

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

CD
Fs

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

ha
za

rd
 fu

nc
tio

ns

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

de
ns

ity
 fu

nc
tio

ns

0 2 4 6 8 10

7

6

5

4

3

2

1

0

lo
g

de
ns

ity
 fu

nc
tio

ns

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

CD
Fs

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0
ha

za
rd

 fu
nc

tio
ns

Nonparametric estimation of log-concave densities – p. 7/23



• Assumptions

Nonparametric estimation of log-concave densities – p. 8/23



• Assumptions
◦ p is log-concave, p(x0) > 0.

Nonparametric estimation of log-concave densities – p. 8/23



• Assumptions
◦ p is log-concave, p(x0) > 0.
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√
2Γ(3/4)/π: k = 4.
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0 W (s)ds − tk+2, W standard

2-sided Brownian motion.
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◦ ϕ(k) is continuous in a neighborhood of x0.
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√
2Γ(3/4)/π: k = 4.

• Driving process: Yk(t) =
∫ t
0 W (s)ds − tk+2, W standard

2-sided Brownian motion.
• Process Hk determined by limit Fenchel relations:

◦ Hk(t) ≤ Yk(t) for all t ∈ R
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0 W (s)ds − tk+2, W standard

2-sided Brownian motion.
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◦ Hk(t) ≤ Yk(t) for all t ∈ R
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• Pointwise limit theorem for p̂n(x0):
(

nk/(2k+1)(p̂n(x0) − p(x0))
n(k−1)/(2k+1)(p̂′n(x0) − p′(x0))

)
→d

(
ckH

(2)
k (0)

dkH
(3)
k (0)

)

where

ck ≡
(

p(x0)k+1|ϕ(k)(x0)|
(k + 2)!

)1/(2k+1)

,

dk ≡
(

p(x0)k+2|ϕ(k)(x0)|3

[(k + 2)!]3

)1/(2k+1)

.
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• Pointwise limit theorem for ϕ̂n(x0):
(

nk/(2k+1)(ϕ̂n(x0) − ϕ(x0))
n(k−1)/(2k+1)(ϕ̂′

n(x0) − ϕ′(x0))

)
→d

(
CkH

(2)
k (0)

DkH
(3)
k (0)

)

where

Ck ≡
(

|ϕ(k)(x0)|
p(x0)k(k + 2)!

)1/(2k+1)

,

Dk ≡
(

|ϕ(k)(x0)|3

p(x0)k+1[(k + 2)!]3

)1/(2k+1)

.

Nonparametric estimation of log-concave densities – p. 10/23



3. Estimation of the mode

Let x0 = M(p0) be the mode of the log-concave density p0,
recalling that Plog−concave ⊂ Punimodal. Lower bound calculations
using G. Jongbloed’s perturbation of a convex decreasing
density, but now perturbing ϕ0 yields:
Proposition. If p0 ∈ Plog−concave satisfies p0(x0) > 0, p′′0(x0) < 0,
and p′′0 is continuous in a neighborhood of x0, and Tn is any
estimator of the mode x0 ≡ M(p0), then with Pn corresponding
to pεn

≡ exp(ϕεn
) with εn ≡ νn−1/5 and ν ≡ 2p′′0(x0)2/(5p0(x0)),

lim inf
n→∞

n1/5 inf
Tn

max {En,Pn
|Tn − M(pn)|, En,P |Tn − M(p0)|}

≥ 1
4

(
5/2
10e

)1/5 (
p0(x0)
p′′0(x0)2

)1/5

.
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On the other hand, the limit theory of Balabdaoui, Rufibach, and
Wellner (2007) noted in the previous section implies that the
mode estimator derived from the MLE p̂n of p, namely
M̂n ≡ M(p̂n) ≡ min{u : p̂n(u) = supt p̂n(t)}, satisfies, assuming
that

• ϕ(j)(x0) = 0, j = 2, . . . , k − 1,
• ϕ(k)(x0) $= 0, and
• ϕ(k) is continuous in a neighborhood of x0;

n1/(2k+1)(M̂n − M(p0)) →d

(
(4!)2p0(x0)

p′′0(x0)2

)1/(2k+1)

M(H(2)
k )

where M(H(2)
k ) = argmax(H(2)

k ).
Note that when k = 2 this agrees with the lower bound
calculation, at least up to absolute constants.
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4. Generalizations: s−concave densities on Rd

• Three generalizations:
◦ log−concave densities on Rd (Cule, Samworth, and

Stewart, 2008)
◦ s−concave densities on Rd (Seregin, 2009)
◦ h−transformed convex densities on Rd (Seregin, 2009)
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4. Generalizations: s−concave densities on Rd

• Three generalizations:
◦ log−concave densities on Rd (Cule, Samworth, and

Stewart, 2008)
◦ s−concave densities on Rd (Seregin, 2009)
◦ h−transformed convex densities on Rd (Seregin, 2009)

• A density p on Rd is log-concave if p(x) = exp(ϕ(x)) with ϕ
concave.

• Some properties:
◦ Any log−concave p is unimodal
◦ The level sets are closed convex sets
◦ Convolutions of log-concave distributions are

log-concave
◦ Marginals of log-concave distributions are log-concave
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What is known so far concerning nonparametric estimation of a
log-concave density p on Rd?

• The MLE p̂n is well-defined, with support the convex hull of
the observed data, for n > d.
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log-concave density p on Rd?

• The MLE p̂n is well-defined, with support the convex hull of
the observed data, for n > d.

• Tails of log-concave decay at least exponentially fast.
• Computable for small d via Shor’s r−algorithm: Cule,

Samworth, and Stewart (2008); R-package LogConcDEAD.
• Consistency and limit under model miss-specification:

Samworth (2009), August Oberwolfach talk.
When the true p is not log-concave, then p̂n converges to
the closest p in Plog−concave in the Kullback-Leibler sense.
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What is known so far concerning nonparametric estimation of a
log-concave density p on Rd?

• The MLE p̂n is well-defined, with support the convex hull of
the observed data, for n > d.

• Tails of log-concave decay at least exponentially fast.
• Computable for small d via Shor’s r−algorithm: Cule,

Samworth, and Stewart (2008); R-package LogConcDEAD.
• Consistency and limit under model miss-specification:

Samworth (2009), August Oberwolfach talk.
When the true p is not log-concave, then p̂n converges to
the closest p in Plog−concave in the Kullback-Leibler sense.

• Some promising applications: Cule, Samworth, Stewart
(2008); Walther (2009).
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Generalization to r−concave densities: A density p on Rd is
r−concave on C ⊂ Rd if

p(λx + (1 − λ)y) ≥ Mr(p(x), p(y);λ)

for all x, y ∈ C and 0 < λ < 1 where

Mr(a, b;λ) =






((1 − λ)ar + λbr)1/r, r $= 0, a, b > 0,
0, r < 0, ab = 0
a1−λbλ, r = 0.

Let Pr denote the class of all r−concave densities on C. For
r ≤ 0 it suffices to consider C = Rd, and it is almost immediate
from the definitions that if p ∈ Pr for some r ≤ 0, then

p(x) =

{
g(x)1/r, r < 0
exp(−g(x)), r = 0

}
for g convex.
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• Long history: Avriel (1972), Prékopa (1973), Borell (1975),
Rinott (1976), Brascamp and Lieb (1976)

• Nice connections to t−concave measures.
• Known now in math-analysis as the Borell, Brascamp, Lieb

inequality
• One way to get heavier tails than log-concave!
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This motivates the following definitions:
Definition 1. (Seregin) Say that h : R → R+ is a decreasing
transformation if, with y0 ≡ sup{y : h(y) > 0},
y∞ ≡ inf{y : h(y) < ∞} ,

• h(y) = o(y−α) for some α > d as y → ∞.
• If y∞ > −∞, then h(y) , (y − y∞)−s for some s > d as

y ↘ y∞.
• If y∞ = −∞, then h(y)γh(−Cy) = o(1) as y → −∞ for some
γ,C > 0.

• h is continuously differentiable on (y∞, y0).
Examples. h(x) = x−s with s > 0 and h(x) = exp(−x) are both
decreasing transformations.
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For the definition of increasing transformations, let
y0 ≡ inf{y : h(y) > 0} and y∞ ≡ sup{y : h(y) < ∞}.
Definition 2. (Seregin) Say that h : R → R+ is a increasing
transformation if

• h(y) = o(|y|−α) for some α > d as y → −∞.
• If y∞ < ∞, then h(y) , (y∞ − y)−s for some s > d as

y ↗ y∞.
• h is continuously differentiable on (y0, y∞).

Examples. h(x) = max{x, 0} and h(x) = exp(x) are both
increasing transformations.
Definition 3. (Seregin) For h either a decreasing transformation
and C = Rd or h an increasing transformation and C = Rd

+,
define the class of convex - transformed densities Ph to be the
collection of all densities of the form

p(x) ≡ pg(x) = h(g(x))1C(x), x ∈ Rd, g convex.
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Theorem 1. (Seregin).
• For h an increasing transformation the MLE p̂n for Ph exists
almost surely.
• For h a decreasing transformation, the MLE p̂n for Ph exists if
n ≥ d(1 + γ) if y∞ = −∞ and if n ≥ d + sd2/(α(s − d)) if
y∞ > −∞.

Theorem 2. (Seregin).
• For any decreasing model Ph the sequence of maximum
likelihood estimators p̂n = h ◦ ĝn is Hellinger consistent: with
H2(P,Q) = 2−1

∫
{
√

dP −
√

dQ}2,

H(p̂n, p0) →a.s. 0. (1)

• Suppose that for a decreasing model Ph we have p0 = h(g0)
satisfying
(a) g0 is bounded.
(b) If d > 1 then

∫
Rd

+
log(1/(|x| ∧ 1))p0(x)dx < ∞.

Then the MLE p̂n over Ph is Hellinger consistent; i.e. (1) holds.
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5. Summary; problems and open questions

• Summary for R1:
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5. Summary; problems and open questions

• Summary for R1:
◦ Reasonably good understanding of basics of

nonparametric estimation of log-concave densities on R.
◦ Recent progress due to Rufibach (2007); Duembgen

and Rufibach (2008); Pal, Woodroofe, and Meyer (2007);
Balabdaoui, Rufibach, and Wellner (2009).

◦ Interesting applications of theory even for R; e.g.
Walther (2001, 2002)

◦ Quite a few problems remaining.
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• Summary for Rd:
◦ First steps toward estimation of log-concave densities on

Rd by Cule, Samworth, and Stewart (2008).
◦ First consistency proof, log-concave case (perhaps with

miss-specified model): Samworth (2009).
◦ Generalizations to r− concave classes with general

r ≤ 0 by Seregin (2009); he proves:
• Existence of MLEs for both decreasing and increasing

convex - transformed models.
• Consistency of MLEs for both decreasing and

increasing convex-transformed models.
• Asymptotic minimax lower bounds for estimation of

p(x0) and M(p0) in monotone-transformed convex
function models.
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• Problems for R
◦ Asymptotic behavior of smooth functionals: asymptotic

equivalence to usual empirical estimators under minimal
assumptions?

◦ Global rates of convergence?
◦ Limit distributional results under model

miss-specification?
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• Problems for R
◦ Asymptotic behavior of smooth functionals: asymptotic

equivalence to usual empirical estimators under minimal
assumptions?

◦ Global rates of convergence?
◦ Limit distributional results under model

miss-specification?
• Problems for Rd: many!

◦ Faster algorithms for log-concave case?
◦ Any algorithm for the r−concave case and for increasing

models?
◦ Rates of convergence of estimators at fixed points?
◦ Limiting distributions at fixed points?
◦ MLE’s will probably be rate inefficient for d ≥ 4. Two

questions:
(a) How to penalize or sieve to get estimators within the
classes which achieve the optimal rates?
(b) How to define interesting or natural smaller
subclasses for which MLE’s remain optimal?
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