Nonparametric estimation of log-concave densities

Jon A. Wellner

University of Washington

Nonparametric estimation of log-concave densities - p. 1/23

- Talk at U. C. Berkeley November 4, 2009
- Email: jaw@stat.washington.edu http: //www.stat.washington.edu/jaw/jaw.research.html
- Based on joint work with Fadoua Balabdaoui, Kaspar Rufibach, and Arseni Seregin

Outline

- 1. Log-concave densities on \mathbb{R}^1
- 2. Nonparametric estimation, log-concave on \mathbb{R}^1
- 3. Limit theory at a fixed point in \mathbb{R}^1
- 4. Estimation of the mode, log-concave density on \mathbb{R}^1
- 5. Generalizations: s-concave densities on \mathbb{R}^1 and \mathbb{R}^d
- 6. Summary; problems and open questions

1. Log-concave densities on \mathbb{R}^1

Suppose that

$$p(x) = \exp(\varphi(x)) = \exp\left(-(-\varphi(x))\right)$$

where φ is concave (and $-\varphi$ is convex). The class of all densities p on \mathbb{R} of the form is called the class of *log-concave* densities, $\mathcal{P}_{log-concave}$.

Properties of log-concave densities:

 A density p on R is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).

1. Log-concave densities on \mathbb{R}^1

Suppose that

$$p(x) = \exp(\varphi(x)) = \exp\left(-(-\varphi(x))\right)$$

where φ is concave (and $-\varphi$ is convex). The class of all densities p on \mathbb{R} of the form is called the class of *log-concave* densities, $\mathcal{P}_{log-concave}$.

Properties of log-concave densities:

- A density p on R is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).
- Every log-concave density *p* is unimodal (but need not be symmetric).

- Many parametric families are log-concave, for example:
 - Normal (μ, σ^2)
 - \circ **Uniform**(a, b)
 - \circ Gamma (r, λ) for $r \geq 1$
 - \circ Beta(a,b) for $a,b \geq 1$

- Many parametric families are log-concave, for example:
 - \circ Normal (μ, σ^2)
 - Uniform(a, b)
 - \circ Gamma (r,λ) for $r\geq 1$
 - \circ Beta(a,b) for $a,b \geq 1$
- t_r densities with r > 0 are not log-concave

- Many parametric families are log-concave, for example:
 - \circ Normal (μ, σ^2)
 - Uniform(a, b)
 - \circ Gamma (r, λ) for $r \geq 1$
 - \circ Beta(a,b) for $a,b \geq 1$
- t_r densities with r > 0 are not log-concave
- Tails of log-concave densities are necessarily sub-exponential

- Many parametric families are log-concave, for example:
 - Normal (μ, σ^2)
 - Uniform(a, b)
 - \circ Gamma (r, λ) for $r \geq 1$
 - Beta(a, b) for $a, b \ge 1$
- t_r densities with r > 0 are not log-concave
- Tails of log-concave densities are necessarily sub-exponential
- $\mathcal{P}_{log-concave}$ = the class of "Polyá frequency functions of order 2", PFF_2 , in the terminology of Schoenberg (1951) and Karlin (1968). See Marshall and Olkin (1979), chapter 18, and Dharmadhikari and Joag-Dev (1988), page 150. for nice introductions.

- 2. Nonparametric estimation, log-concave on \mathbb{R}^1
 - The (nonparametric) MLE \hat{p}_n exists (Rufibach, Dümbgen and Rufibach).

- The (nonparametric) MLE \hat{p}_n exists (Rufibach, Dümbgen and Rufibach).
- \hat{p}_n can be computed: R-package "logcondens" (Dümbgen and Rufibach)

- The (nonparametric) MLE \hat{p}_n exists (Rufibach, Dümbgen and Rufibach).
- \hat{p}_n can be computed: R-package "logcondens" (Dümbgen and Rufibach)
- In contrast, the (nonparametric) MLE for the class of unimodal densities on \mathbb{R}^1 does not exist. Birgé (1997) and Bickel and Fan (1996) consider alternatives to maximum likelihood for the class of unimodal densities.

- The (nonparametric) MLE \hat{p}_n exists (Rufibach, Dümbgen and Rufibach).
- \hat{p}_n can be computed: R-package "logcondens" (Dümbgen and Rufibach)
- In contrast, the (nonparametric) MLE for the class of unimodal densities on \mathbb{R}^1 does not exist. Birgé (1997) and Bickel and Fan (1996) consider alternatives to maximum likelihood for the class of unimodal densities.
- Consistency and rates of convergence for p̂_n: Dümbgen and Rufibach, (2007); Pal, Woodroofe and Meyer (2007).

- The (nonparametric) MLE \hat{p}_n exists (Rufibach, Dümbgen and Rufibach).
- \hat{p}_n can be computed: R-package "logcondens" (Dümbgen and Rufibach)
- In contrast, the (nonparametric) MLE for the class of unimodal densities on \mathbb{R}^1 does not exist. Birgé (1997) and Bickel and Fan (1996) consider alternatives to maximum likelihood for the class of unimodal densities.
- Consistency and rates of convergence for p̂_n: Dümbgen and Rufibach, (2007); Pal, Woodroofe and Meyer (2007).
- Pointwise limit theory? Yes! Balabdaoui, Rufibach, and Wellner (2007).

• Assumptions

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$

 $\circ \varphi^{(k)}$ is continuous in a neighborhood of x_0 .

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$
 - $\circ \varphi^{(k)}$ is continuous in a neighborhood of x_0 .
- Example $p(x) = C \exp(-x^4)$ with $C = \sqrt{2}\Gamma(3/4)/\pi$: k = 4.

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$
 - $\circ \varphi^{(k)}$ is continuous in a neighborhood of x_0 .
- Example $p(x) = C \exp(-x^4)$ with $C = \sqrt{2}\Gamma(3/4)/\pi$: k = 4.
- Driving process: $Y_k(t) = \int_0^t W(s) ds t^{k+2}$, *W* standard 2-sided Brownian motion.

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$
 - $\circ \varphi^{(k)}$ is continuous in a neighborhood of x_0 .
- Example $p(x) = C \exp(-x^4)$ with $C = \sqrt{2}\Gamma(3/4)/\pi$: k = 4.
- Driving process: $Y_k(t) = \int_0^t W(s) ds t^{k+2}$, *W* standard 2-sided Brownian motion.
- Process H_k determined by limit Fenchel relations:

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$
 - $\circ \varphi^{(k)}$ is continuous in a neighborhood of x_0 .
- Example $p(x) = C \exp(-x^4)$ with $C = \sqrt{2}\Gamma(3/4)/\pi$: k = 4.
- Driving process: $Y_k(t) = \int_0^t W(s) ds t^{k+2}$, *W* standard 2-sided Brownian motion.
- Process *H_k* determined by limit Fenchel relations:
 H_k(t) ≤ *Y_k(t)* for all *t* ∈ ℝ

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$
 - $\circ \varphi^{(k)}$ is continuous in a neighborhood of x_0 .
- Example $p(x) = C \exp(-x^4)$ with $C = \sqrt{2}\Gamma(3/4)/\pi$: k = 4.
- Driving process: $Y_k(t) = \int_0^t W(s) ds t^{k+2}$, *W* standard 2-sided Brownian motion.
- Process H_k determined by limit Fenchel relations:
 - $\circ H_k(t) \leq Y_k(t)$ for all $t \in \mathbb{R}$
 - $\int_{\mathbb{R}} (H_k(t) Y_k(t)) dH_k^{(3)}(t) = 0.$

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$
 - $\circ \varphi^{(k)}$ is continuous in a neighborhood of x_0 .
- Example $p(x) = C \exp(-x^4)$ with $C = \sqrt{2}\Gamma(3/4)/\pi$: k = 4.
- Driving process: $Y_k(t) = \int_0^t W(s) ds t^{k+2}$, *W* standard 2-sided Brownian motion.
- Process H_k determined by limit Fenchel relations:
 - $\circ H_k(t) \leq Y_k(t)$ for all $t \in \mathbb{R}$
 - $\int_{\mathbb{R}} (H_k(t) Y_k(t)) dH_k^{(3)}(t) = 0.$
 - $\circ H_k^{(2)}$ is concave.

- Assumptions
 - $\circ p$ is log-concave, $p(x_0) > 0$.
 - If $\varphi''(x_0) \neq 0$, then k = 2; otherwise, k is the smallest integer such that $\varphi^{(j)}(x_0) = 0, j = 2, \dots, k - 1, \varphi^{(k)}(x_0) \neq 0.$
 - $\circ \varphi^{(k)}$ is continuous in a neighborhood of x_0 .
- Example $p(x) = C \exp(-x^4)$ with $C = \sqrt{2}\Gamma(3/4)/\pi$: k = 4.
- Driving process: $Y_k(t) = \int_0^t W(s) ds t^{k+2}$, *W* standard 2-sided Brownian motion.
- Process H_k determined by limit Fenchel relations:
 - $\circ H_k(t) \leq Y_k(t)$ for all $t \in \mathbb{R}$
 - $\int_{\mathbb{R}} (H_k(t) Y_k(t)) dH_k^{(3)}(t) = 0.$
 - $\circ H_k^{(2)}$ is concave.

• Pointwise limit theorem for $\hat{p}_n(x_0)$:

$$\begin{pmatrix} n^{k/(2k+1)}(\widehat{p}_n(x_0) - p(x_0)) \\ n^{(k-1)/(2k+1)}(\widehat{p}'_n(x_0) - p'(x_0)) \end{pmatrix} \to_d \begin{pmatrix} c_k H_k^{(2)}(0) \\ d_k H_k^{(3)}(0) \end{pmatrix}$$

where

$$c_k \equiv \left(\frac{p(x_0)^{k+1}|\varphi^{(k)}(x_0)|}{(k+2)!}\right)^{1/(2k+1)},$$

$$d_k \equiv \left(\frac{p(x_0)^{k+2}|\varphi^{(k)}(x_0)|^3}{[(k+2)!]^3}\right)^{1/(2k+1)}$$

• Pointwise limit theorem for $\widehat{\varphi}_n(x_0)$:

$$\begin{pmatrix} n^{k/(2k+1)}(\widehat{\varphi}_n(x_0) - \varphi(x_0)) \\ n^{(k-1)/(2k+1)}(\widehat{\varphi}'_n(x_0) - \varphi'(x_0)) \end{pmatrix} \rightarrow_d \begin{pmatrix} C_k H_k^{(2)}(0) \\ D_k H_k^{(3)}(0) \end{pmatrix}$$

where

$$C_k \equiv \left(\frac{|\varphi^{(k)}(x_0)|}{p(x_0)^k(k+2)!}\right)^{1/(2k+1)},$$

$$D_k \equiv \left(\frac{|\varphi^{(k)}(x_0)|^3}{p(x_0)^{k+1}[(k+2)!]^3}\right)^{1/(2k+1)}$$

3. Estimation of the mode

Let $x_0 = M(p_0)$ be the *mode* of the log-concave density p_0 , recalling that $\mathcal{P}_{log-concave} \subset \mathcal{P}_{unimodal}$. Lower bound calculations using G. Jongbloed's perturbation of a convex decreasing density, but now perturbing φ_0 yields:

Proposition. If $p_0 \in \mathcal{P}_{log-concave}$ satisfies $p_0(x_0) > 0$, $p''_0(x_0) < 0$, and p''_0 is continuous in a neighborhood of x_0 , and T_n is any estimator of the mode $x_0 \equiv M(p_0)$, then with P_n corresponding to $p_{\epsilon_n} \equiv \exp(\varphi_{\epsilon_n})$ with $\epsilon_n \equiv \nu n^{-1/5}$ and $\nu \equiv 2p''_0(x_0)^2/(5p_0(x_0))$,

 $\liminf_{n \to \infty} n^{1/5} \inf_{T_n} \max \left\{ E_{n, P_n} | T_n - M(p_n) |, E_{n, P} | T_n - M(p_0) | \right\}$ $\geq \frac{1}{4} \left(\frac{5/2}{10e} \right)^{1/5} \left(\frac{p_0(x_0)}{p_0''(x_0)^2} \right)^{1/5}.$

On the other hand, the limit theory of Balabdaoui, Rufibach, and Wellner (2007) noted in the previous section implies that the mode estimator derived from the MLE \hat{p}_n of p, namely $\widehat{M}_n \equiv M(\widehat{p}_n) \equiv \min\{u : \widehat{p}_n(u) = \sup_t \widehat{p}_n(t)\}$, satisfies, assuming that

- $\varphi^{(j)}(x_0) = 0, \, j = 2, \dots, k-1,$
- $\varphi^{(k)}(x_0) \neq 0$, and
- $\varphi^{(k)}$ is continuous in a neighborhood of x_0 ;

$$n^{1/(2k+1)}(\widehat{M}_n - M(p_0)) \to_d \left(\frac{(4!)^2 p_0(x_0)}{p_0''(x_0)^2}\right)^{1/(2k+1)} M(H_k^{(2)})$$

where $M(H_k^{(2)}) = \operatorname{argmax}(H_k^{(2)})$. Note that when k = 2 this agrees with the lower bound calculation, at least up to absolute constants.

4. Generalizations: s-concave densities on \mathbb{R}^d

- Three generalizations:
 - \log -concave densities on \mathbb{R}^d (Cule, Samworth, and Stewart, 2008)
 - \circ s-concave densities on \mathbb{R}^d (Seregin, 2009)
 - h-transformed convex densities on \mathbb{R}^d (Seregin, 2009)

4. Generalizations: s-concave densities on \mathbb{R}^d

- Three generalizations:
 - \log -concave densities on \mathbb{R}^d (Cule, Samworth, and Stewart, 2008)
 - \circ *s*-concave densities on \mathbb{R}^d (Seregin, 2009)
 - h-transformed convex densities on \mathbb{R}^d (Seregin, 2009)
- A density p on \mathbb{R}^d is log-concave if $p(x) = \exp(\varphi(x))$ with φ concave.

4. Generalizations: s-concave densities on \mathbb{R}^d

- Three generalizations:
 - \log -concave densities on \mathbb{R}^d (Cule, Samworth, and Stewart, 2008)
 - \circ s-concave densities on \mathbb{R}^d (Seregin, 2009)
 - h-transformed convex densities on \mathbb{R}^d (Seregin, 2009)
- A density p on \mathbb{R}^d is log-concave if $p(x) = \exp(\varphi(x))$ with φ concave.
- Some properties:
 - Any \log –concave p is unimodal
 - The level sets are closed convex sets
 - Convolutions of log-concave distributions are log-concave
 - Marginals of log-concave distributions are log-concave

 The MLE p̂_n is well-defined, with support the convex hull of the observed data, for n > d.

- The MLE p̂_n is well-defined, with support the convex hull of the observed data, for n > d.
- Tails of log-concave decay at least exponentially fast.

- The MLE p̂_n is well-defined, with support the convex hull of the observed data, for n > d.
- Tails of log-concave decay at least exponentially fast.
- Computable for small d via Shor's r-algorithm: Cule, Samworth, and Stewart (2008); R-package LogConcDEAD.

- The MLE p̂_n is well-defined, with support the convex hull of the observed data, for n > d.
- Tails of log-concave decay at least exponentially fast.
- Computable for small d via Shor's r-algorithm: Cule, Samworth, and Stewart (2008); R-package LogConcDEAD.
- Consistency and limit under model miss-specification: Samworth (2009), August Oberwolfach talk.
 When the true *p* is not log-concave, then *p̂*_n converges to the closest *p* in *P*_{log-concave} in the Kullback-Leibler sense.

- The MLE p̂_n is well-defined, with support the convex hull of the observed data, for n > d.
- Tails of log-concave decay at least exponentially fast.
- Computable for small d via Shor's r-algorithm: Cule, Samworth, and Stewart (2008); R-package LogConcDEAD.
- Consistency and limit under model miss-specification: Samworth (2009), August Oberwolfach talk.
 When the true *p* is not log-concave, then *p̂*_n converges to the closest *p* in *P*_{log-concave} in the Kullback-Leibler sense.
- Some promising applications: Cule, Samworth, Stewart (2008); Walther (2009).

Generalization to r-concave densities: A density p on \mathbb{R}^d is r-concave on $C \subset \mathbb{R}^d$ if

$$p(\lambda x + (1 - \lambda)y) \ge M_r(p(x), p(y); \lambda)$$

for all $x, y \in C$ and $0 < \lambda < 1$ where

$$M_{r}(a,b;\lambda) = \begin{cases} ((1-\lambda)a^{r} + \lambda b^{r})^{1/r}, & r \neq 0, a, b > 0, \\ 0, & r < 0, ab = 0 \\ a^{1-\lambda}b^{\lambda}, & r = 0. \end{cases}$$

Let \mathcal{P}_r denote the class of all r-concave densities on C. For $r \leq 0$ it suffices to consider $C = \mathbb{R}^d$, and it is almost immediate from the definitions that if $p \in \mathcal{P}_r$ for some $r \leq 0$, then

$$p(x) = \left\{ \begin{array}{ll} g(x)^{1/r}, & r < 0\\ \exp(-g(x)), & r = 0 \end{array} \right\} \quad \text{for } g \text{ convex}.$$

- Long history: Avriel (1972), Prékopa (1973), Borell (1975), Rinott (1976), Brascamp and Lieb (1976)
- Nice connections to *t*-concave measures.
- Known now in math-analysis as the Borell, Brascamp, Lieb inequality
- One way to get heavier tails than log-concave!

This motivates the following definitions: Definition 1. (Seregin) Say that $h : \mathbb{R} \to \mathbb{R}^+$ is a decreasing transformation if, with $y_0 \equiv \sup\{y : h(y) > 0\}$, $y_{\infty} \equiv \inf\{y : h(y) < \infty\}$,

- $h(y) = o(y^{-\alpha})$ for some $\alpha > d$ as $y \to \infty$.
- If $y_{\infty} > -\infty$, then $h(y) \asymp (y y_{\infty})^{-s}$ for some s > d as $y \searrow y_{\infty}$.
- If $y_{\infty} = -\infty$, then $h(y)^{\gamma}h(-Cy) = o(1)$ as $y \to -\infty$ for some $\gamma, C > 0$.
- *h* is continuously differentiable on (y_{∞}, y_0) .

Examples. $h(x) = x^{-s}$ with s > 0 and $h(x) = \exp(-x)$ are both decreasing transformations.

For the definition of increasing transformations, let $y_0 \equiv \inf\{y : h(y) > 0\}$ and $y_\infty \equiv \sup\{y : h(y) < \infty\}$. Definition 2. (Seregin) Say that $h : \mathbb{R} \to \mathbb{R}^+$ is a increasing transformation if

- $h(y) = o(|y|^{-\alpha})$ for some $\alpha > d$ as $y \to -\infty$.
- If $y_{\infty} < \infty$, then $h(y) \asymp (y_{\infty} y)^{-s}$ for some s > d as $y \nearrow y_{\infty}$.
- *h* is continuously differentiable on (y_0, y_∞) .

Examples. $h(x) = \max\{x, 0\}$ and $h(x) = \exp(x)$ are both increasing transformations.

Definition 3. (Seregin) For *h* either a decreasing transformation and $C = \mathbb{R}^d$ or *h* an increasing transformation and $C = \mathbb{R}^d_+$, define the class of convex - transformed densities \mathcal{P}_h to be the collection of all densities of the form

$$p(x) \equiv p_g(x) = h(g(x)) \mathbf{1}_C(x), \ x \in \mathbb{R}^d, \ g \text{ convex}.$$

Theorem 1. (Seregin).

• For *h* an increasing transformation the MLE \hat{p}_n for \mathcal{P}_h exists almost surely.

• For h a decreasing transformation, the MLE \hat{p}_n for \mathcal{P}_h exists if $n \ge d(1+\gamma)$ if $y_{\infty} = -\infty$ and if $n \ge d + sd^2/(\alpha(s-d))$ if $y_{\infty} > -\infty$.

Theorem 2. (Seregin).

• For any decreasing model \mathcal{P}_h the sequence of maximum likelihood estimators $\hat{p}_n = h \circ \hat{g}_n$ is Hellinger consistent: with $H^2(P,Q) = 2^{-1} \int {\sqrt{dP} - \sqrt{dQ}}^2$,

$$H(\widehat{p}_n, p_0) \to_{a.s.} 0. \tag{1}$$

Suppose that for a decreasing model P_h we have p₀ = h(g₀) satisfying
(a) g₀ is bounded.
(b) If d > 1 then ∫_{ℝ^d+} log(1/(|<u>x</u>| ∧ 1))p₀(x)dx < ∞.
Then the MLE p̂_n over P_h is Hellinger consistent; i.e. (1) holds.

• Summary for \mathbb{R}^1 :

- Summary for \mathbb{R}^1 :
 - $^\circ\,$ Reasonably good understanding of basics of nonparametric estimation of log-concave densities on $\mathbb R.$

- Summary for \mathbb{R}^1 :
 - $^{\circ}$ Reasonably good understanding of basics of nonparametric estimation of log-concave densities on \mathbb{R} .
 - Recent progress due to Rufibach (2007); Duembgen and Rufibach (2008); Pal, Woodroofe, and Meyer (2007); Balabdaoui, Rufibach, and Wellner (2009).

- Summary for \mathbb{R}^1 :
 - $^{\circ}$ Reasonably good understanding of basics of nonparametric estimation of log-concave densities on \mathbb{R} .
 - Recent progress due to Rufibach (2007); Duembgen and Rufibach (2008); Pal, Woodroofe, and Meyer (2007); Balabdaoui, Rufibach, and Wellner (2009).
 - Interesting applications of theory even for \mathbb{R} ; e.g. Walther (2001, 2002)

- Summary for \mathbb{R}^1 :
 - $^{\circ}$ Reasonably good understanding of basics of nonparametric estimation of log-concave densities on \mathbb{R} .
 - Recent progress due to Rufibach (2007); Duembgen and Rufibach (2008); Pal, Woodroofe, and Meyer (2007); Balabdaoui, Rufibach, and Wellner (2009).
 - Interesting applications of theory even for \mathbb{R} ; e.g. Walther (2001, 2002)
 - Quite a few problems remaining.

• Summary for \mathbb{R}^d :

- Summary for \mathbb{R}^d :
 - First steps toward estimation of log-concave densities on \mathbb{R}^d by Cule, Samworth, and Stewart (2008).

- Summary for \mathbb{R}^d :
 - First steps toward estimation of log-concave densities on \mathbb{R}^d by Cule, Samworth, and Stewart (2008).
 - First consistency proof, log-concave case (perhaps with miss-specified model): Samworth (2009).

- Summary for \mathbb{R}^d :
 - First steps toward estimation of log-concave densities on \mathbb{R}^d by Cule, Samworth, and Stewart (2008).
 - First consistency proof, log-concave case (perhaps with miss-specified model): Samworth (2009).
 - Generalizations to r- concave classes with general $r \le 0$ by Seregin (2009); he proves:
 - Existence of MLEs for both decreasing and increasing convex transformed models.
 - Consistency of MLEs for both decreasing and increasing convex-transformed models.
 - Asymptotic minimax lower bounds for estimation of $p(x_0)$ and $M(p_0)$ in monotone-transformed convex function models.

- Problems for $\mathbb R$
 - Asymptotic behavior of smooth functionals: asymptotic equivalence to usual empirical estimators under minimal assumptions?
 - Global rates of convergence?
 - Limit distributional results under model miss-specification?

- Problems for $\mathbb R$
 - Asymptotic behavior of smooth functionals: asymptotic equivalence to usual empirical estimators under minimal assumptions?
 - Global rates of convergence?
 - Limit distributional results under model miss-specification?
- Problems for \mathbb{R}^d : many!
 - Faster algorithms for log-concave case?
 - Any algorithm for the *r*-concave case and for increasing models?
 - Rates of convergence of estimators at fixed points?
 - Limiting distributions at fixed points?
 - MLE's will probably be rate inefficient for $d \ge 4$. Two questions:

(a) How to penalize or sieve to get estimators within the classes which achieve the optimal rates?

(b) How to define interesting or natural smaller

subclasses for which MLE's remain optimal?