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Outline

1. Shape constraints in R1 and Rd: some background (and
limitations).

2. Goals for nonparametric estimation theory
3. Review of results for estimating a monotone density in R1

4. Review of recent shape-constrained estimation progress for
Rd

5. Summary: available theory for Rd

6. Open problems and some conjectures
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1. Shape constraints in R1 and Rd: background

R1: Several types of shape constraints, and several types of
target functions to estimate:

• type of shape constraint:
◦ monotone
◦ convex (or concave)
◦ k−monotone
◦ completely monotone
◦ log−concave and s−concave
◦ hyperbolically monotone (Bondesson)
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1. Shape constraints in R1 and Rd: background

R1: Several types of shape constraints, and several types of
target functions to estimate:

• type of shape constraint:
◦ monotone
◦ convex (or concave)
◦ k−monotone
◦ completely monotone
◦ log−concave and s−concave
◦ hyperbolically monotone (Bondesson)

• Type of function:
◦ regression function r(x)
◦ density function f(x)
◦ hazard functions, λ(x)
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Focus here on density functions — and on methods related or
connected to Maximum Likelihood.
Rd: More types of shape constraints, and (more?) types of
target functions to estimate:

• Types of shape constraint:
◦ block monotone or coordinate-wise monotone
◦ monotone with non-negative increments on rectangles
(as for a multivariate d.f.)

◦ convex (or concave) and decreasing
◦ k−monotone; completely monotone
◦ log−concave and s−concave
◦ h− transform of convex (or concave)
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Focus here on density functions — and on methods related or
connected to Maximum Likelihood.
Rd: More types of shape constraints, and (more?) types of
target functions to estimate:

• Types of shape constraint:
◦ block monotone or coordinate-wise monotone
◦ monotone with non-negative increments on rectangles
(as for a multivariate d.f.)

◦ convex (or concave) and decreasing
◦ k−monotone; completely monotone
◦ log−concave and s−concave
◦ h− transform of convex (or concave)

• Types of function: regression r, density f , hazard λ . . ..
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2. Goals for limit theory

• A. Consistency (pointwise or with respect to some metric or
topology)?

• B. Local (at fixed points) rates of convergence? Upper and
lower bounds?

• C. Global (summary or metric) rates of convergence? Upper
and lower bounds?

• D. Rates for smooth functionals: upper and lower bounds?
• E. Rates and corrections for inconsistency at boundary
points?

• F. Kiefer-Wolfowitz type theorems: at what rate does the
integrated version of the estimator “look like the natural
empirical estimator”?

My talk today: limited to A-C.
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3. Review for estimating a monotone density function

A. Marshall’s lemma. Consistency “easy” now via Pfanzagl
(1989), van de Geer (1993), and empirical process methods.
BL: Local asymptotic minimax lower bound, Groeneboom
(198?):
if f(x0) > 0, f ′(x0) < 0 and f ′ continuous at x0, then for any
estimator Tn of f(x0),
lim inf
n→∞

sup
f :H(f,f0)≤cn−1/2

n1/3Ef |Tn − f(x0)| ≥
e−1/3

4
(2|f ′(x0)|f(x0))1/3.

BU : Local convergence theorem, Prakasa Rao (1970):
if f(x0) > 0, f ′(x0) < 0, and f ′ is continuous at x0, then

n1/3(f̂n(x0)− f(x0)) →d (|f ′(x0)|f(x0)/2)1/3S(0)

where S(0) is the (left-)slope at zero of the least concave
majorant ofW (t)− t2, andW is two-sided BM starting at 0.
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CL. Birgé (1987). Let F denote the class of all decreasing
densities f on [0, 1] satisfying f ≤ M withM > 1. Then the
minimax risk for F with respect to the L1 metric
d1(f, g) ≡

∫
|f(x)− g(x)|dx based on n observations is

RM (d1, n) ≡ inf
f̂n

sup
f∈F

Efd1(f̂n, f).

Then there is an absolute constant C such that

RM (d1, n) ≥ C

(
logM

n

)1/3

.

CU . Birgé (1989). Let f̂n denote the Grenander estimator of
f ∈ F . Then

sup
f∈FM

Efd1(f̂n, f) ≤ 4.75

(
logM

n

)1/3

.
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Table 1: Montone density on R+

Problem Lower Bound Upper Bound / MLE
A (consist) Grenander?

Marshall? ?
or Prakasa Rao

B (local theory) Groeneboom (?) Prakasa Rao (1969)
rate: n1/3 rate: n1/3

const: (|f ′(x)|f(x))1/3 const: (|f ′(x)|f(x))1/3

C (global theory) Birgé (1987) Birgé (1989)
Groeneboom (1986)
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4. Shape-constrained estimation on Rd

• “Block decreasing” densities on R+d = [0,∞)d

(Polonik; Biau and Devroye; Pavlides)
Decreasing along along all lines parallel to coordinate axes.
Can be viewed as the convex hull of densities which are
uniform on (compact) lower layers:

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Theory for multivariate shape constraints: – p. 10/17



• “Scale mixtures of uniform densities” on R+d: (Pavlides;
Pavlides and Wellner):

f(x) =

∫

R+d

1
∏d

j=1 yj
1[0,y](x)dG(y)

for some probability distribution G on R+d.
Example: dG(y1, y2) = (y1y2)−2g(1/y1, 1/y2, θ)dy1dy2 with

g(u, v, θ) = {(1+θu)(1+θv)−θ} exp(−u−v−θuv), θ = .4,

0

1

2

0

1

2
0.0

0.2

0.4

0.6

0.8

Theory for multivariate shape constraints: – p. 11/17



• Log-concave densities on Rd

(Cule, Samworth, Stewart; Koenker and Mizera; Seregin
and Wellner)

f(x) = exp(ϕ(x)) = exp(−(−ϕ(x))

where ϕ : Rd )→ R is concave (so −ϕ is convex).
Necessarily exponentially decaying tails; does not include
multivariate t−densities.

• s−convex densities and h− convex densities
(Koenker and Mizera; Seregin, Seregin and Wellner)

f(x) = h(ϕ(x))

where ϕ : Rd )→ R is convex, h : R )→ R+ is decreasing and
continuous; e.g. hs(u) ≡ (1 + u/s)−s with s > d.
Larger classes than log-concave: includes multivariate tn for
d < s ≤ n+ d.
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Table 2: Block decreasing densities on R+d

Problem Lower Bound Upper Bound / MLE
A Polonik (1995,1998)
(consist) Pavlides (2008?)
B Pavlides (2008 & 2009) ?
(local) rate: n1/(d+2) rate: n1/(d+2) ??

{∏d
j=1

∂f
∂xj

(x)f(x)
}1/(d+2)

const: ??
C Biau and Devroye (2003) Biau and Devroye (2003)
(global) rate: n1/(d+2) analogues of Birgé’s

histogram estimators
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Table 3: Scale mixtures of uniform on R+d

Problem Lower Bound Upper Bound / MLE
A Pavlides (2008)
(consist) Pavlides & Wellner (2010)
B Pavlides (2008) ?
(local) rate: n1/3 (all d) Pavlides (2008),

{
∂df

∂x1···∂xd
(x)f(x)

}1/3
partial results

C ?? ??
(global) ?? (hints from entropy bounds ??

of Blei, Gao, and Li) ??
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Table 4: Log concave densities on Rd

Problem Lower Bound Upper Bound / MLE
A consistency with Cule and Samworth (2010a)
(consist) misspecification! Schumacher, Rufibach,

Samworth (2010)
computation: Cule, Samworth, Stewart (2010)

B Seregin (2010) ??
(local) rate: n2/(d+4) ??

{
fd+2(x)curvx(ϕ)

}1/(d+4) ??
curvx(ϕ) = det∇2ϕ(x)

C ?? ??
(global) conjectures: ??

Seregin and W (2010) ??
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Table 5: s−convex and h−convex densities on Rd

Problem Lower Bound Upper Bound / MLE
A Seregin & W (2010)
(consist) computation:

(related estimators) Koenker & Mizera (2010)
(convex regression) Seijo and Sen (2010)

B Seregin (2010) ?? LSE rate inefficient
(local) rate: n2/(d+4) d > 4 ??

{
f(x)curvx(ϕ)

h′(ϕ(x))4

}1/(d+4)
??

C ?? ?? LSE rate inefficient,
(global) ?? d > 4??

?? or d ≥ 4??
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5. Open problems and some conjectures

• local rates and global rates for shape constrained
estimators in Rd?

• Local (pointwise) limiting distribution theory for MLE’s and
other natural divergence-based estimators?

• When are the MLE’s rate (in-)efficient?
Conjecture 1: Block decreasing: inefficient for d > 2.
Conjecture 2: Log-concave and s−concave: inefficient for
d > 4.

• Do there exist natural shape-constraints with smoothness
> 2 for which MLE’s are rate-efficient and which have
natural preservations properties under convolution,
marginalization, and so forth?
Conjecture 3: Yes for d = 1 via the hyperbolic k−monotone
classes of Bondesson?
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