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Qutline

1. Shape constraints in R! and R%: some background (and
limitations).

2. Goals for nonparametric estimation theory

3. Review of results for estimating a monotone density in R!

4. Review of recent shape-constrained estimation progress for
Rd

5. Summary: available theory for R?

6. Open problems and some conjectures
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1. Shape constraints in R' and R?: background

R!: Several types of shape constraints, and several types of
target functions to estimate:
* type of shape constraint:
© monotone
© convex (or concave)
° k—monotone
° completely monotone
° log —concave and s—concave
° hyperbolically monotone (Bondesson)
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1. Shape constraints in R' and R?: background

R!: Several types of shape constraints, and several types of
target functions to estimate:
* type of shape constraint:
© monotone
© convex (or concave)
° k—monotone
° completely monotone
° log —concave and s—concave
° hyperbolically monotone (Bondesson)

* Type of function:
° regression function r(x)
° density function f(x)
° hazard functions, A\(x)
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Focus here on density functions — and on methods related or
connected to Maximum Likelihood.
R?: More types of shape constraints, and (more?) types of
target functions to estimate:
* Types of shape constraint:
° block monotone or coordinate-wise monotone

© monotone with non-negative increments on rectangles
(as for a multivariate d.f.)

© convex (or concave) and decreasing
© k—monotone; completely monotone
° log —concave and s—concave

© h— transform of convex (or concave)
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Focus here on density functions — and on methods related or
connected to Maximum Likelihood.
R?: More types of shape constraints, and (more?) types of
target functions to estimate:
* Types of shape constraint:
° block monotone or coordinate-wise monotone

° monotone with non-negative increments on rectangles
(as for a multivariate d.f.)

© convex (or concave) and decreasing
© k—monotone; completely monotone
° log —concave and s—concave

© h— transform of convex (or concave)

* Types of function: regression r, density f, hazard X.. ..
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2. Goals for limit theory

* A. Consistency (pointwise or with respect to some metric or
topology)?

* B. Local (at fixed points) rates of convergence? Upper and
lower bounds?

* C. Global (summary or metric) rates of convergence? Upper
and lower bounds?

* D. Rates for smooth functionals: upper and lower bounds?

* E. Rates and corrections for inconsistency at boundary
points?

* F. Kiefer-Wolfowitz type theorems: at what rate does the
integrated version of the estimator “look like the natural
empirical estimator”?

My talk today: limited to A-C.
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3. Review for estimating a monotone density function

A. Marshall’s lemma. Consistency “easy” now via Pfanzagl|
(1989), van de Geer (1993), and empirical process methods.
B;: Local asymptotic minimax lower bound, Groeneboom
(1987?):

if f(xg) >0, f'(x¢9) < 0and f’ continuous at x(, then for any
estimator T;, of f(xo),

lim inf sup n'/*E;|T, — f(zo)| > 1
fiH(f,fo)<en=1/2

o—1/3

(21f (zo)|.f (x0))/*.

BY: Local convergence theorem, Prakasa Rao (1970):
if f(xg) >0, f'(z9) <0, and f’ is continuous at z(, then

n'3(fa(zo) = f(@0)) —a (If (z0)|f (w0)/2)"/*S(0)

where S(0) is the (left-)slope at zero of the least concave
majorant of W (t) — t?, and W is two-sided BM starting at 0.

Theorv for multivariate shane constrainte: — n 7/17



C;. Birge (1987). Let F denote the class of all decreasing
densities f on [0, 1] satisfying f < M with M > 1. Then the
minimax risk for F with respect to the L, metric

di(f,g9) = | |f(z) — g(x)|dz based on n observations is

Ry(dy,n) = inf sup Eydy(fa, f).
fn feF

Then there is an absolute constant C' such that

log M 1/3
- :

Rt = 0

Cy. Birgé (1989). Let f,, denote the Grenander estimator of
f e F. Then

X loo M 1/3
sup Erdi(fn, f) <4.75 ( ot ) .
JEFM n
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Table 1: Montone density on R*

Problem Lower Bound Upper Bound / MLE
A (consist) Grenander?
Marshall? ?

or Prakasa Rao

B (local theory)

Groeneboom (?)
rate: nl/3

const: (|f'(z)|f(x))"/?

Prakasa Rao (1969)
rate: nl/3

const: (|f'(z)|f())"/?

C (global theory)

Birgé (1987)
Groeneboom (1986)

Birgé (1989)
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4. Shape-constrained estimation on R?

* “Block decreasing” densities on R = [0, 00)?
(Polonik; Biau and Devroye; Pavlides)
Decreasing along along all lines parallel to coordinate axes.
Can be viewed as the convex hull of densities which are
uniform on (compact) lower layers:

20
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* “Scale mixtures of uniform densities” on R*?: (Pavlides;
Pavlides and Wellner):

1
f(i) — d 1[Q,g] (E)dG(g)
R+ ][5 v

for some probability distribution G on R*<.
Example: dG(y1,y2) = (y1y2) 29(1/y1,1/y2,0)dy1dy, with

g(u,v,0) = {(1+0u)(14+60v)—0} exp(—u—v—0uv), 0 = .4,

A
Wl

i
Y

S

Y
%
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* Log-concave densities on R
(Cule, Samworth, Stewart; Koenker and Mizera; Seregin
and Wellner)

f(z) = exp(p(z)) = exp(—(—¢(z))

where ¢ : R? — R is concave (S0 — is convex).
Necessarily exponentially decaying tails; does not include
multivariate t—densities.

® s—convex densities and h— convex densities
(Koenker and Mizera; Seregin, Seregin and Wellner)

f(z) = h(p(z))

where ¢ : R? — R is convex, h : R — R is decreasing and
continuous; e.g. hs(u) = (1 +u/s)~% with s > d.

Larger classes than log-concave: includes multivariate t,, for
d<s<n-++d.
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Table 2: Block decreasing densities on R

Problem Lower Bound Upper Bound / MLE

A Polonik (1995,1998)

(consist) Pavlides (20087?)

B Pavlides (2008 & 2009) ?

(local) rate: nl/(d+2) rate: nl/(d+2) 22
M, 2@ f(.:z;)}l/ o const: 22

C Biau and Devroye (2003) | Biau and Devroye (2003)

(global) rate: nl/(d+2) analogues of Birgé’s

histogram estimators
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Table 3: Scale mixtures of uniform on R*¢

Problem Lower Bound Upper Bound / MLE
A Pavlides (2008)
(consist) Pavlides & Wellner (2010)
B Pavlides (2008) ?
(local) rate: n'/3 (all d) Pavlides (2008),
o 1/3 .

{ Jo95: (@) f (x)} partial results
C ?? ??
(global) | ?? (hints from entropy bounds ?7?

??

of Blei, Gao, and Li)
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Table 4: Log concave densities on R

Problem Lower Bound Upper Bound / MLE
A consistency with Cule and Samworth (2010a)
(consist) misspecification! Schumacher, Rufibach,
Samworth (2010)
computation: Cule, Samworth, Stewart (2010)
B Seregin (2010) ??
(local) rate; n?/(d+4) ?7?
{ F4+2(z)curv, (o) /Y 77
curv, () = detV2p(z)
C ?? ?7?
(global) conjectures: ?7?
27

Seregin and W (2010)
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Table 5: s—convex and h—convex densities on R

Problem Lower Bound Upper Bound / MLE
A Seregin & W (2010)
(consist) computation:
(related estimators) | Koenker & Mizera (2010)

(convex regression) Seijo and Sen (2010)
B Seregin (2010) ?? LSE rate inefficient
(local) rate: n2/(d+4) d>47?

1/(d+4)

(1o
C ?? ?? LSE rate inefficient,
(global) ?? d > 47?7

?7? ord > 477
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5. Open problems and some conjectures

local rates and global rates for shape constrained
estimators in R%?

Local (pointwise) limiting distribution theory for MLE’s and
other natural divergence-based estimators?

When are the MLE'’s rate (in-)efficient?

Conjecture 1: Block decreasing: inefficient for d > 2.
Conjecture 2: Log-concave and s—concave: inefficient for
d > 4.

Do there exist natural shape-constraints with smoothness
> 2 for which MLE’s are rate-efficient and which have
natural preservations properties under convolution,
marginalization, and so forth?

Conjecture 3: Yes for d = 1 via the hyperbolic k—monotone
classes of Bondesson?
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