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* Beyond normality: generalized Gaussian distributions
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1. Testing problems for sparse normal means

* Initial setting: multiple testing of normal means
Fori=1,...,n consider testing

HO,?L 5 Xz i~ N(O, 1)
versus

Hl,i . G N(,LLZ', 1) with i > 0.
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1. Testing problems for sparse normal means

* Initial setting: multiple testing of normal means
Fori:=1,...,n consider testing

HO,?L 5 Xz i~ N(O, 1)
versus
Hl,i c X~ N(,LLZ', 1) with i > 0.

* Sparsity: proportion e, = n"'#{i <n: p; > 0} is small;
en ~n P with0 < 8 < 1.
* Three questions (in increasing order of difficulty):
°© Q1: Can we tell if at least one null hypothesis is false?
© Q2: What is the proportion of false null hypotheses?
° Q3: Which null hypotheses are false?

* Main focus here: Q1; partial review of work on Q2.
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* Previous work: Q1: is there any signal?
° Ingster (1997, 1999)
° Jin (2004)
° Donoho and Jin (2004)
° Jager and Wellner (2007)

Testing for sparse normal means:lIs there a signal? — p. 5/41



* Previous work: Q1: is there any signal?
° Ingster (1997, 1999)
° Jin (2004)
° Donoho and Jin (2004)
° Jager and Wellner (2007)
* Previous work: Q2: What is the proportion of non-null
hypotheses?
o Swanepoel (1999)
° Efron, Tibshirani, Storey, and Tusher (2001)
© Meinshausen and Rice (2006)
° Jin and Cai (2007)

Testing for sparse normal means:lIs there a signal? — p. 5/41



* Previous work: Q1: is there any signal?
° Ingster (1997, 1999)
° Jin (2004)
° Donoho and Jin (2004)
° Jager and Wellner (2007)
* Previous work: Q2: What is the proportion of non-null
hypotheses?
o Swanepoel (1999)
° Efron, Tibshirani, Storey, and Tusher (2001)
© Meinshausen and Rice (2006)
° Jin and Cai (2007)

* Previous work: Q3: Where is the signal and how big is it?
° Benjamini and Hochberg (1995)
° Efron, Tibshirani, Storey, and Tusher (2001)
o Storey, Dai, and Leek (2005)
© Abramovich, Benjamini, Donoho, and Johnstone (2006).
© Donoho and Jin (2006)
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2. Detection boundaries and

Tukey’s “higher criticism statistic

* Change of setting: Ingster - Donoho - Jin testing problem
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2. Detection boundaries and

Tukey’s “higher criticism statistic

* Change of setting: Ingster - Donoho - Jin testing problem
°* Suppose Yi,..., Y, ii.d. GonR

°* test H: G= N(0,1) versus
Hi:G=(1-¢€¢)N(0,1)4+€eN(u,1), and, in particular, against

H™ . G = (1-€,)N(0,1) + €N (n, 1).

fore, =n=", u,=2rlogn
0<pf<1,0<r<l.

°* letd(z)=P(Z<2) = f_zoo(27r)_1/2 exp(—x?/2)dx,
Z ~ N(0,1).
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* transformto X; =1 — ®(Y;) € [0, 1] i.i.d.

F=1-G@®'(1-").
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* transformto X; =1 — ®(Y;) € [0, 1] i.i.d.
F=1-G@®'(1-").
* Then the testing problem becomes: test

Hy: F=F=U(,1) versus
H" : F(u) = u+ e {(1 —u) — (@71 — u) — pn)}
= (1 —en)u+en{l = D(®H(1 —u) — pn)}
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* transformto X; =1 — ®(Y;) € [0, 1] i.i.d.
F=1-G@®'(1-").
* Then the testing problem becomes: test
Hy: F=Fy=U(0,1) versus
H" : F(u) = u+ e {(1 —u) — (@71 — u) — pn)}
=(1—e)u+en{l = @(2 (1 —u) — pn)}
* Test statistics: Donoho-Jin

e Vi(Ea(u) — 0

sup
X1y Su<X(n/2)) \/U(1 — u)

= Tukey’s “higher criticism statistic”

where F,,(u) =n~' 3", 1j0,(X;) = empirical distribution
function of the X;’s.

Testing for sparse normal means:lIs there a signal? — p. 7/41



* Optimal detection boundary p* () defined by:

“(G) = B —1/2, 1/2 <3< 3/4
p1(h) = (1-vI=08)2 3/4<pB<1
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* Optimal detection boundary p* () defined by:

1-+v1-06)% 3/4<B<1

® Theorem 1: (Donoho - Jin, 2004). For r > p*(() the test
based on HC? is size and power consistent for testing H

p*(ﬁ):{ B —-1/2, 1/2< 3 <3/4

versus H\".
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* Optimal detection boundary p* () defined by:

“(8) = B —1/2, 1/2<3<3/4
P (1-+v/1-08), 3/4<pB<1

® Theorem 1: (Donoho - Jin, 2004). For r > p*(() the test
based on HC? is size and power consistent for testing H

versus H(”).
* With i, (an) = v/2loglog(n)(1 + o(1))

Py (HC? > hp(an)) = ap — 0, and

P (HC > hp(agn)) — 1, as n — oo.
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Figure 1. Detection boundary: » > p*(3) detectable
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Some alternative statistics:
* Berk-Jones (1979) test statistic:

R, = suplog A\, () = sup K (Fy(z), Fo(x)) with

u

K(u,v) = wulog (;) + (1 — u)log (1:5)
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Some alternative statistics:
* Berk-Jones (1979) test statistic:

R, = suplog A\, () = sup K (Fy(z), Fo(x)) with

u

K(u,v) = wulog (;) + (1 — u)log (1:5)

* Adaptation to one-sided p—value setting:

BJf=n sup KT(F,(u),u)
X(1)§u§1/2

where

2

K(u,v), if0<v<u<l,
Kt (u,v) =<¢ 0, if0<u<wv<l,
+00, otherwise.

\
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® Theorem 2: (Donoho - Jin, 2004). For r > p*(() the test
based on B.J. is size and power consistent for testing H,

versus H\"; i.e. with hy, () = \/21loglog(n)(1 + o(1))

Py (BJ' > hy(ay)) = oy — 0, and

P

H™ (BJ&F > hp(an)) — 1, as n — oo.
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3. A new family of statistics via phi-divergences

A family of test statistics connecting “Higher criticism” and Berk-Jones:

* Fors € R, x > 0 define

(st 50,1

¢s(x) =4 zlogz—z+1, s=1
—logx+ax—1, s=0.

\
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3. A new family of statistics via phi-divergences

A family of test statistics connecting “Higher criticism” and Berk-Jones:

* Fors € R, x > 0 define

(st 50,1

¢s(x) =4 zlogz—z+1, s=1
—logx+ax—1, s=0.

\

* Then define

Ks(u,v) = vos(u/v) + (1 = 0)os((1 —u)/(1 —v)).
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* Special cases:

Ki(u,v) = K(u,v)

= ulog(u/v) + (1 —u)log((1 — u)/(1 —v))
Ko(u,v) = K(v,u)

1 (u—v)?
Mgl ) = 20(1 —v)
K_l(u, ?}) = KQ(U,U) — %irt(bl__vi)

Ky ja(u,0) = 2{(vi — Vo) + (VI—u — VI—0)?)
— 41 — v — VI =) = v)}.
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* The new family of statistics:

Sn(s) _ SUPgzcRr Ks(]Fn(ZU),Fo(:E)), s> 1
SUPze[X 1), X (n)) Ks(Fy(z), Fo(z)), s<1,
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* The new family of statistics:

Sn(s) _ SUPgzcRr Ks(Fn(iU),Fo(:E)), s> 1
SUPze[X 1), X (n)) Ks(Fy(z), Fo(z)), s<1,

* Thus, with Fy(z) = =,
R, S, (0) = “reversed” Berk-Jones = R,
1 (Fp(x) — x)?

2 reR 33(1 o ZIJ) ,

§Q
VN
}_L
N——"
I

Sn(1/2)

=4 Sup {1 - Fn(x)x - \/(1 o Fn(x))(l - CU)}
r€[X 1), X(n))
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* Version of the statistics for one-sided p—value setting:

Sy =n_sup KT (Fn(u),u)
X(1)§u§1/2

where

[ Ki(u,v), HO0<v<u<l,

K (u,v) =< 0, if0<u<ov<1,
+00, otherwise.

\

Testing for sparse normal means:Is there a signal? — p. 16/41



* Version of the statistics for one-sided p—value setting:

St=n sup K (F,(u),u)

n

X(1)§u§1/2
where
[ Ki(u,v), HO0<v<u<l,
Kj(u,v)z{ 0, ifo<u<ov<l1,
| too, otherwise.

® Theorem: (Jager - Wellner, 2007). For » > p*(0) the tests
based on S;f(s) with —1 < s < 2 are size and power

consistent for testing Hy versus H\™; i.e. with
sn(om) = loglog(n)(1 + o(1))

Py (ST > s,(a)) = ay, — 0, and

PH@(SQLL > sp(ap)) — 1, as n — oo.
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Figure 2. Separation plots: n = 5 x 10°, r = .15, 8 = 1/2
Smoothed histograms of reps = 200 of the statistics under the
null hypothesis and the the alternative hypothesis

r=.15, beta=1/2, n=500 000, reps= 200

Testing for sparse normal means:lIs there a signal? — p. 17/41



4. Beyond normality:
generalized Gaussian distributions, ...

* Donoho and Jin (2004) also computed detection boundaries
for sparse mixtures of “Generalized Gaussian” or Subbotin

distributions: X ~ GN, (1) has density function

1 x — ul7 B
Fru(z) = 7= exp (—’ a ) , Cy=20(1/y)yY 7L
gl Y
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. Beyond normality:

generalized Gaussian distributions, ...

* Donoho and Jin (2004) also computed detection boundaries
for sparse mixtures of “Generalized Gaussian” or Subbotin
distributions: X ~ GN, (1) has density function

1 x — ul7 B
Fru(z) = 7= exp (—’ a ) , Cy=20(1/y)yY 7L
gl Y

* Suppose Yi,...,Y, ii.d. GonR.
* Test Hy : G = GN,(0) versus
Hl(”) : G =(1—€,)GNy(0) + €,GN~(n,) Where

€n — n—/B’ :u%n — (fy’r 1Og n)l/’y’

where1/2 < <1, 0<r<l1.
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* Detection boundary for 1 < ~v < 2:

e @O i3 —1/2), 1/2<B<1-277/0-D),
Pv(ﬂ) o (1 — (1 _ 5)1/7)7, 1 — 2—/(v—1) < B < 1.
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* Detection boundary for 1 < ~v < 2:

e @O i3 —1/2), 1/2<B<1-277/0-D),
Pv(ﬂ) o (1 — (1 _ 5)1/7)7, 1 — 2—/(v—1) < B < 1.

* Detection boundary for 0 < ~v < 1:
pL(B)=2(8-1/2), 1/2<p<L1.

Note: The detection boundary is the same for all for
0<y <1l
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Figure 3. Detection boundaries for GN testing problem,
v € {1,1.5,2,3}.
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* Theorem: (Donoho - Jin, 2004). For the higher criticism test
statistic applied to the p-values p; = P(GN,(0) > Y;),
i = 1,...,n. Then the detection boundary pgc ., for this
procedure is the same as the efficient detection boundary:

paCH(B) = P5(B),  1/2<fB <L
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* Theorem: (Donoho - Jin, 2004). For the higher criticism test
statistic applied to the p-values p; = P(GN,(0) > Y;),
i = 1,...,n. Then the detection boundary pgc ., for this
procedure is the same as the efficient detection boundary:

paCH(B) = P5(B),  1/2<fB <L

* Similar theorem for y2 mixtures.
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5. Estimating the proportion of false null hypotheses

* Meinshausen and Rice (2006): Assume
Yi~(1—¢€,)N(0,1) + €, F, F arbitrary.
en=n"P,1/2<p < 1.

M & R construct ¢ * such that

PemF(EnzéyR)Zl_@
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5. Estimating the proportion of false null hypotheses

* Meinshausen and Rice (2006): Assume
Yi~(1—¢€,)N(0,1) + €, F, F arbitrary.
en=n"",1/2<3<1.

M & R construct ¢ * such that

Pen,F(EnzéyR)Zl_&

* When F = N(un, 1), un = v/2rlogn, thenif r > 26 — 1,

gMR
Pen,,un< L —1‘>5)—>O

€n

for every 6 > 0.
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* Cai, Jin, and Low (2007): Assume
Yi~(1—¢€,)N(0,1) + €, N (ptn, 1),
€n =1, 1p = 2rlogn,with1/2 < < 1,0 < r < 1.
Cai, Jin, and Low construct ¢¢7/% such that

P i (€n 2 égJL> > 1 -«
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* Cai, Jin, and Low (2007): Assume
Yi~(1—¢€,)N(0,1) + €, N (ptn, 1),
€n =1, 1p = 2rlogn,with1/2 < < 1,0 < r < 1.
Cai, Jin, and Low construct ¢¢7/% such that

P i (€n 2 égJL> > 1 -«

* For any closed set € in the interior of {(3,7) : r > p*(3)},

gC’JL
sup P, ., ( - — 1‘ > 5) — 0
(B,r)€Q €n

for every 6 > 0.
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* Cai, Jin, and Low (2007): Assume
Yi~(1—¢€,)N(0,1) + €, N (ptn, 1),
€n =1, 1p = 2rlogn,with1/2 < < 1,0 < r < 1.
Cai, Jin, and Low construct ¢¢7/% such that

P i (€n 2 égJL> > 1 -«

* For any closed set € in the interior of {(3,7) : r > p*(3)},

gC’JL
sup P, ., ( - — 1‘ > 5) — 0
(B,r)€Q €n

for every 6 > 0.
* Moreover ...
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¢CJL -
Eennun ( 5 o 1) S Cn(ﬁ,r)

€n

for C,,(8,r) — 0 at the optimal rate up to powers of log n.
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6. Application: non-Gaussian-ness in the WMAP data?

The Cosmic Microwave Background radiation, CMB

also CMBR, or CBR, or MBR
or Relic Radiation

* Predicted by George Gamow, Ralph Alpher and Robert
Herman in 1948.
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6. Application: non-Gaussian-ness in the WMAP data?

The Cosmic Microwave Background radiation, CMB

also CMBR, or CBR, or MBR
or Relic Radiation

* Predicted by George Gamow, Ralph Alpher and Robert
Herman in 1948.

* CMB detectability suggested by Doroshkevich and Novikov,
1964.

* CMB observed by Penzias and Wilson, 1964-1965
(scooping D. T. Wilkinson and P. Roll).

* 1983: RELIKT-1 Soviet CMB anistropy experiment
launched.

* 1989: COBE NASA Satellite launched: 7° angular resolution
1992: first anisotropies detected by COBE
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* 1995: Wilkinson Microwave Anisotropy probe proposed.
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1995: Wilkinson Microwave Anisotropy probe proposed.
2001: WMAP satellite launched: .2° ~ 15" angular resolution
2003: second acoustic peak confirmed

2008: 5 year report issued on 5 March; third peak more
precisely located.
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1995: Wilkinson Microwave Anisotropy probe proposed.
2001: WMAP satellite launched: .2° ~ 15" angular resolution
2003: second acoustic peak confirmed

2008: 5 year report issued on 5 March; third peak more
precisely located.
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Conclusions from WMAP data:

* Average temperature of CMB: 2.275 Kelvin (-270 C or -455
F): red; warmer by ~ 0.0002°; blue; colder by ~ 0.0002° K.

* Age of universe is: 13.73 4+ 0.12 billion years old.

* Composition of universe:
°  4.6% ordinary (baryonic) matter.

°  23% unknown type of dark matter
(does not emit or absorb light)

o  72% mysterious dark energy
(acts to accelerate expansion)

° < 1% neutrinos.
* Geometry: “flat”
* Results support the “Lambda -Cosmic Dark Matter” model

Testing for sparse normal means:ls there a signal? — p. 30/41
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HC WMAP =c=300 arcmin

Testing for sparse normal means:Is there a signal? — p. 34/41



From Spergel et al., 2007:

“The detection of primordial non-Gaussian fluctuations in the
CMB would have a profound impact of the physics of the early
universe. While the simplest inflationary models predict only
mild non-Gaussianities that should be undetectable in the
WMAP data, there are a wide range of plausible mechanisms for
generating significant and detectable non-Gaussian fluctuations

7
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7. Further problems and challenges

* Exact contiguity results for HC,, and the phi-diverence
statistics under (some refinement of ) the exact optimal
boundary
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7. Further problems and challenges

* Exact contiguity results for HC,, and the phi-diverence
statistics under (some refinement of ) the exact optimal
boundary

* Do all the phi-divergence statistics achieve the optimal
detection regions for the Generalized Gaussian (Subbotin)
sparse mixture model?

* Can the phi-divergence test statistics be used to estimate ¢,
(efficiently)?

* Estimation of the null hypothesis (Efron, Jin and Cai
(2007))? Alternatives to the empirical characteristic function
methods of Jin and Cai?

* Dependence? Strong dependence studied by Hall and Jin
(2007).
Higher criticism improved on by maximum statistic.

* Weak dependence models?
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9. Some references for Higher Criticism and ...
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