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1. Introduction and framework: persistence
Setting:

• Data: n i.i.d. copies Z1, . . . , Zn of
Z = (Y,X1, . . . ,Xp) ≡ (Y,X); write Zi = (Y i,Xi

1, . . . ,X
i
p),

i = 1, . . . , n.
• Dimension of X, p = pn large, pn = nα, α > 1
• Goal: Predict Y on the basis of the covariates Xj ,

j = 1, . . . , p

• Predictors Ŷ of Y of the form Ŷ =
∑p

j=1 βjXj = β′X with
β ∈ Bn ⊂ Rp for each n.

• Natural sets Bn to consider are

Bn,k ≡ {β ∈ Rp : #{j : βj $= 0} = k} = {β ∈ Rp : ‖β‖0 = k},
Bn,b ≡ {β ∈ Rp : ‖β‖1 ≤ b}.

where k = kn → ∞ and b = bn → ∞.
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• For Z = (Y,X) ∼ P on (Rp+1,Bp+1), define

LP (β) = EP



Y −
p∑

j=1

βjXj




2

.
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• For Z = (Y,X) ∼ P on (Rp+1,Bp+1), define

LP (β) = EP



Y −
p∑

j=1

βjXj




2

.

• For a given sequence of distributions {Pn} of Z and
sequence of sets {Bn} with Bn ⊂ Rp, define

β∗
n(Pn) ≡ β∗

n ≡ argminβ∈Bn
LPn

(β).

Thus β∗
n is a deterministic sequence in Rp determined by Pn

and Bn.
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• For Z = (Y,X) ∼ P on (Rp+1,Bp+1), define

LP (β) = EP



Y −
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βjXj




2

.

• For a given sequence of distributions {Pn} of Z and
sequence of sets {Bn} with Bn ⊂ Rp, define

β∗
n(Pn) ≡ β∗

n ≡ argminβ∈Bn
LPn

(β).

Thus β∗
n is a deterministic sequence in Rp determined by Pn

and Bn.
• This corresponds to the unknown “ideal predictor”

Ŷ ∗ = β∗
n
X which would be available to us if we knew Pn.
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• Definition. (Greenshtein and Ritov, 2004).
Given a set of possible predictors Bn, a sequence of
procedures {β̂n} is persistent (or persistent relative to {Bn} and
{Pn}) if, for every sequence Pn ∈ Pn

LPn
(β̂n) − LPn

(β∗
n) →p 0.
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2. A theorem of Greenshtein and Ritov

Theorem. If p = pn = nα and

F (Zi) ≡ max
0≤j,k≤p

|Xi
jX

i
k − EPn

(Xi
jX

i
j)|

satisfies EPn
F 2(Z1) ≤ M < ∞ for all n ≥ 1, then for

bn = o((n/ log n)1/4) the procedures given by

β̂n ≡ argminβ∈Bn,bn
LPn

(β) (1)

are persistent with respect to

Bn,bn
≡ {β ∈ Rp : ‖β‖1 ≤ bn}.
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• Comment 1. The persistent procedures β̂n in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.
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• Comment 1. The persistent procedures β̂n in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.

• Comment 2. Greenshtein and Ritov (2004) also prove
related results for procedures based on the “model selection
sets” Bn,k under the assumption that
k = kn = o((n/logn)1/2).
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• Comment 1. The persistent procedures β̂n in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.

• Comment 2. Greenshtein and Ritov (2004) also prove
related results for procedures based on the “model selection
sets” Bn,k under the assumption that
k = kn = o((n/logn)1/2).

• Proof, part 1: Let γ′ = (−1, β1, . . . , βp)′ ≡ (β0, . . . , βp)′ ∈ Rp+1,
and let Y ≡ X0. Then

LP (β) = EP (Y − β′X)2 = γ′ΣPγ

where ΣP ≡ (σij) = (EP (XiXj))0≤i,j≤p.
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• Proof, part 1, continued: Let Pn be the empirical measure of
Z1, . . . , Zn. Then

LPn
(β) = γ′ΣPn

γ ≡ γ′(σ̂ij)γ ≡ γ′Σ̂γ.

Define εnij and E = (εnij) by

εn
ij ≡ σ̂ij − σij, E ≡ (εn

ij) ≡ Σ̂ − ΣP .

Then

|LPn
(β) − LPn

(β)| = |γ′(ΣPn
− ΣPn

)γ| ≤ ‖ΣPn
− ΣPn

‖∞‖γ‖2
1.
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• Proof, part 1, continued: Thus for
Bn,bn

= {β ∈ Rp : ‖β‖1 ≤ bn},

Pr

(
sup

β∈Bn,bn

|LPn
(β) − LPn

(β)| > ε

)
(2)

≤ Pr(‖ΣPn
− ΣPn

‖∞(1 + bn)2 > ε)

≤ ε−1(bn + 1)2E‖ΣPn
− ΣPn

‖∞. (3)

Thus if we can show that the expectation in the last display
satisfies

E‖ΣPn
− ΣPn

‖∞ ≤ C

√
log n

n
,

then the proof is complete:
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• Proof, part 1, continued: With β̂n ≡ argminβ∈Bn,bn
LPn

(β) it
follows that

LPn
(β̂n) − LPn

(β∗
n) ≥ 0,

LPn
(β̂n) − LPn

(β∗
n) ≤ 0,

and hence

0 ≤ LPn
(β̂n) − LPn

(β∗
n)

= LPn
(β̂n) − LPn

(β̂n) + LPn
(β̂n) − LPn

(β∗
n)

+ LPn
(β∗

n) − LPn
(β∗

n)
≤ 2 sup

β∈Bn,bn

|LPn
(β) − LPn

(β)| →p 0.
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3. First proof (part 2) – via Nemirovski’s inequality
Lemma 1. (Nemirovski’s inequality)
Let X1, . . . ,Xn be independent random vectors in Rd, d ≥ 3, with
EXi = 0 and E‖Xi‖2

2 < ∞. Then for every r ∈ [2,∞]

E
∥∥

n∑

i=1

Xi

∥∥2
r
≤ C̃ min{r, log d}

n∑

i=1

E‖Xi‖2
r

where ‖ · ‖r is the &r norm, ‖x‖r ≡ {
∑d

1 |xj |r}1/r and C̃ is an
absolute constant (i.e. not depending on r or d or n or the
distribution of the Xi’s).
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• First proof, part 2: To apply Nemirovski’s inequality to bound
E‖ΣPn

− ΣPn
‖∞, consider the matrix ΣPn

− ΣPn
as a

(p + 1)2−dimensional vector, and write

ΣPn
− ΣPn

=
n∑

i=1

Vi

≡
n∑

i=1

1
n

(
Xi

0X
i
0 − E(Xi

0X
i
0),X

i
0X

i
1 − E(Xi

0X
i
1), . . . ,

. . . ,Xi
pX

i
p − E(Xi

pX
i
p)

)
.
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• First proof, part 2: To apply Nemirovski’s inequality to bound
E‖ΣPn

− ΣPn
‖∞, consider the matrix ΣPn

− ΣPn
as a

(p + 1)2−dimensional vector, and write

ΣPn
− ΣPn

=
n∑

i=1

Vi

≡
n∑

i=1

1
n

(
Xi

0X
i
0 − E(Xi

0X
i
0),X

i
0X

i
1 − E(Xi

0X
i
1), . . . ,

. . . ,Xi
pX

i
p − E(Xi

pX
i
p)

)
.

• By our hypothesis

F (Zi) ≡ max
0≤j,k≤p

|Xi
jX

i
k − EPn

(Xi
jX

i
k)|

satisfies EPn
F (Zi)2 ≤ M < ∞.
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• First proof, part 2, continued: Then by Jensen’s inequality
followed by Nemirovski’s inequality with r = ∞,

{EPn
‖ΣPn

− ΣPn
‖∞}2 =

{
EPn

‖
n∑

i=1

Vi‖∞

}2

≤ EPn
‖

n∑

i=1

Vi‖2
∞

≤ C log((pn + 1)2)
n∑

i=1

EPn
‖Vi‖2

∞

≤ C ′ log(4n2α)
1
n2

n∑

i=1

EF (Zi)2

≤ C ′′ log n

n
,

so that

EPn
‖ΣPn

− ΣPn
‖∞ ≤ C ′′

√
log n

n
. !
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4. Proof (part 2) – via bracketing entropy bounds
• Let Gn ≡

√
n(Pn − Pn).
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4. Proof (part 2) – via bracketing entropy bounds
• Let Gn ≡

√
n(Pn − Pn).

• For a class of functions F = {f : Z → R} write
‖Gn‖F = supf∈F |Gn(f)|. For F with #(F) = d < ∞, note
that ‖Gn‖F = ‖Gn(f)‖∞ where
Gn(f) ≡ (Gn(f1), . . . , Gn(fd)).
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4. Proof (part 2) – via bracketing entropy bounds
• Let Gn ≡

√
n(Pn − Pn).

• For a class of functions F = {f : Z → R} write
‖Gn‖F = supf∈F |Gn(f)|. For F with #(F) = d < ∞, note
that ‖Gn‖F = ‖Gn(f)‖∞ where
Gn(f) ≡ (Gn(f1), . . . , Gn(fd)).

• For each ε > 0 let the bracketing number N[ ](ε,F , L2(P )) be
the minimal number of brackets of L2(P )−size ε needed to
cover F .

Persistence: Alternative proofs of some results of Greenshtein and Ritov – p. 15/23



4. Proof (part 2) – via bracketing entropy bounds
• Let Gn ≡

√
n(Pn − Pn).

• For a class of functions F = {f : Z → R} write
‖Gn‖F = supf∈F |Gn(f)|. For F with #(F) = d < ∞, note
that ‖Gn‖F = ‖Gn(f)‖∞ where
Gn(f) ≡ (Gn(f1), . . . , Gn(fd)).

• For each ε > 0 let the bracketing number N[ ](ε,F , L2(P )) be
the minimal number of brackets of L2(P )−size ε needed to
cover F .

• For δ > 0, let

J[ ](δ,F , L2(P )) ≡
∫ δ

0

√
log(1 + N[ ](ε,F , L2(P ))dε.
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Lemma. (Empirical process theory bracketing entropy bound)

E∗‖Gn‖F " J[ ](1,F , L2(Pn))‖F‖Pn,2.

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. !

• In the current application take
F = {fj,k(z) = xjxk, 0 ≤ j, k ≤ p}, a finite list of functions of
cardinality #(F) = (pn + 1)2.
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Lemma. (Empirical process theory bracketing entropy bound)

E∗‖Gn‖F " J[ ](1,F , L2(Pn))‖F‖Pn,2.

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. !

• In the current application take
F = {fj,k(z) = xjxk, 0 ≤ j, k ≤ p}, a finite list of functions of
cardinality #(F) = (pn + 1)2.

• Hence N[ ](ε,F , L2(Pn)) ≤ (pn + 1)2 by choosing ε−brackets
[lj,k, uj,k] given by lj,k(z) = fj,k(z) − ε/2 and
uj,k(z) = fj,k(z) + ε/2.
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Lemma. (Empirical process theory bracketing entropy bound)

E∗‖Gn‖F " J[ ](1,F , L2(Pn))‖F‖Pn,2.

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. !

• In the current application take
F = {fj,k(z) = xjxk, 0 ≤ j, k ≤ p}, a finite list of functions of
cardinality #(F) = (pn + 1)2.

• Hence N[ ](ε,F , L2(Pn)) ≤ (pn + 1)2 by choosing ε−brackets
[lj,k, uj,k] given by lj,k(z) = fj,k(z) − ε/2 and
uj,k(z) = fj,k(z) + ε/2.

• Thus the bound in the lemma becomes

E‖Gn‖F "
√

1 + log [(pn + 1)2]‖F‖Pn,2 "
√

log n,
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• Or, equivalently

E‖ΣPn
− ΣPn

‖∞ = E‖Pn − Pn‖F "
√

n−1 log n,

in agreement with the bound given by Nemirovski’s
inequality. !
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5. Proof of Nemirovski’s inequality
Proof: For given r ∈ [2,∞) consider the map Vr from Rd to R
defined by

Vr(x) ≡ ‖x‖2
r .

Then Vr is continuously differentiable with Lipschitz continuous
derivative ∇Vr. Furthermore

Vr(x+y) ≤ Vr(x) + y′∇Vr(x) + CrVr(y) (4)

for an absolute constant C. Thus, writing∑n+1
i=1 Xi =

∑n
i=1 Xi + Xn+1, it follows from (4) that

Vr(
n+1∑

i=1

Xi) ≤ Vr(
n∑

i=1

Xi) + X ′
n+1∇Vr(

n∑

i=1

Xi) + CrVr(Xn+1).
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Taking expectations across this inequality and using
independence of Xn+1 and

∑n
i=1 Xi together with E(Xn+1) = 0

yields

EVr

(
n+1∑

i=1

Xi

)
≤ E

{
Vr

(
n∑

i=1

Xi

)
+ X ′

n+1∇Vr

(
n∑

i=1

Xi

)}

+ CrEVr(Xn+1)

= EVr

(
n∑

i=1

Xi

)
+ CrE‖Xn+1‖2

r .

By recursion this yields

EVr

(
n+1∑

i=1

Xi

)
≤ Cr

n+1∑

i=1

EVr(Xi) (5)

and hence the desired result with r rather than min{r, log d}.
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To show that we can replace r by min{r, log d} up to an absolute
constant, first note that this follows immediately for
r ≤ r(d) ≡ 2 log d with C replaced by 2C. Now suppose
r > r(d) = 2 log d. Recall that for 1 ≤ r′ ≤ r we have

‖x‖r ≤ ‖x‖r′ ≤ d(1/r′)−(1/r)‖x‖r

for all x ∈ Rd (by Hölder’s inequality).
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Thus with r′ = r(d) < r

E‖
n∑

i=1

Xi‖2
r ≤ E‖

n∑

i=1

Xi‖2
r(d)

≤ Cr(d)
n∑

i=1

E‖Xi‖2
r(d) by (5)

≤ Cr(d)
n∑

i=1

E
{
d

2
r(d)−

2
r ‖Xi‖2

r

}

≤ Cr(d)d2/r(d)
n∑

i=1

E‖Xi‖2
r

= 2Ce log d
n∑

i=1

E‖Xi‖2
r .

Thus Nemirovski’s inequality is proved for r ∈ [2,∞) with
constant C̃ given by 2eC and C the constant of (4).
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6. Summary; problems and open questions
Thus it seems that Nemirovski’s inequality yields bounds of
order comparable to those achieved by bracketing methods from
empirical process theory. Since the proofs are very different, it
may be worthwhile to explore the exact constants achieved by
the two methods in more detail. The following questions are
then of particular interest:

• What is the best constant C in the basic inequality (4)?
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6. Summary; problems and open questions
Thus it seems that Nemirovski’s inequality yields bounds of
order comparable to those achieved by bracketing methods from
empirical process theory. Since the proofs are very different, it
may be worthwhile to explore the exact constants achieved by
the two methods in more detail. The following questions are
then of particular interest:

• What is the best constant C in the basic inequality (4)?
• What are the best possible bounds of this type obtainable
via truncation and Bernstein’s inequality as used in
traditional empirical process proofs?

• How do the best possible bounds of the two types
mentioned above compare?

• Can Nemirovski’s inequality (or the method of proof) be
extended to the range 1 ≤ r ≤ 2?
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Postscript

• During the workshop Lutz Dümbgen showed that Cr in (4)
can be replaced by 1 · (r − 1).
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Postscript

• During the workshop Lutz Dümbgen showed that Cr in (4)
can be replaced by 1 · (r − 1).

• Also during the workshop Sara van de Geer obtained a
simple inequality of the same type via truncation and
Bernstein’s inequality. which can be compared to (the
refined version of) Nemirovski’s inequality with sharp
constant.
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Postscript

• During the workshop Lutz Dümbgen showed that Cr in (4)
can be replaced by 1 · (r − 1).

• Also during the workshop Sara van de Geer obtained a
simple inequality of the same type via truncation and
Bernstein’s inequality. which can be compared to (the
refined version of) Nemirovski’s inequality with sharp
constant.

• Preliminary comparison of (the refined version of)
Nemirovski’s inequality with sharp constant and the
inequality obtained via Bernstein’s inequality and truncation
arguments in the case r = ∞ and i.i.d. summands Xi show
that Nemirovski’s inequality is better for
d < 2.33268 × 1018 ≡ d0 while van de Geer’s inequality is
better for d ≥ d0. Further checking and comparisons will be
reported elsewhere.

Persistence: Alternative proofs of some results of Greenshtein and Ritov – p. 23/23



Postscript

• During the workshop Lutz Dümbgen showed that Cr in (4)
can be replaced by 1 · (r − 1).

• Also during the workshop Sara van de Geer obtained a
simple inequality of the same type via truncation and
Bernstein’s inequality. which can be compared to (the
refined version of) Nemirovski’s inequality with sharp
constant.

• Preliminary comparison of (the refined version of)
Nemirovski’s inequality with sharp constant and the
inequality obtained via Bernstein’s inequality and truncation
arguments in the case r = ∞ and i.i.d. summands Xi show
that Nemirovski’s inequality is better for
d < 2.33268 × 1018 ≡ d0 while van de Geer’s inequality is
better for d ≥ d0. Further checking and comparisons will be
reported elsewhere.

Persistence: Alternative proofs of some results of Greenshtein and Ritov – p. 23/23


