A Semiparametric Regression Model for Panel Count Data: When Do Pseudo-likelihood Estimators Become Badly Inefficient?

Jon A. Wellner, ${ }^{1}$ Ying Zhang, ${ }^{2}$ and Hao Liu
Department of Statistics, University of Washington, Department of Statistics, University of Central Florida, and Department of Biostatistics, University of Washington

October 2, 2001

Abstract

We consider estimation in a particular semiparametric regression model for the mean of a counting process under the assumption of "panel count" data. The basic model assumption is that the conditional mean function of the counting process is of the form $E\{\mathbb{N}(t) \mid Z\}=$ $\exp \left(\theta^{\prime} Z\right) \Lambda(t)$ where Z is a vector of covariates and Λ is the baseline mean function. The "panel count" observation scheme involves observation of the counting process \mathbb{N} for an individual at a random number K of random time points; both the number and the locations of these time points may differ across individuals.

We study maximum pseudo-likelihood and maximum likelihood estimators $\widehat{\theta}_{n}^{p s}$ and $\widehat{\theta}_{n}$ of the regression parameter θ. The pseudo-likelihood estimators are fairly easy to compute, while the full maximum likelihood estimators pose more challenges from the computational perspective. We derive expressions for the asymptotic variances of both estimators under the proportional mean model. Our primary aim is to understand when the pseudo-likelihood estimators have very low efficiency relative to the full maximum likelihood estimators. The upshot is that the pseudo-likelihood estimators can have arbitrarily small efficiency relative to the full maximum likelihood estimators when the distribution of K, the number of observation time points per individual, is very heavy-tailed.

[^0]
Outline

Section 1: Introduction: panel count data with covariates
Section 2: Two Methods of Estimation.
Section 3: Information bounds for θ under the Poisson model.
Section 4: Asymptotic normality of the two estimators of θ.
Section 5: Comparisons: maximum pseudo-likelihood versus maximum likelihood.
Section 6: Conclusions and Further Problems.
Bibliography:

1 Introduction

Suppose that $\mathbb{N}=\{\mathbb{N}(t): t \geq 0\}$ is a univariate counting process. In many applications, it is important to estimate the expected number of events $E\{\mathbb{N}(t) \mid Z\}$ which will occur by the time t, conditionally on a covariate vector Z.

In this paper we consider the proportional mean regression model given by

$$
\begin{equation*}
\Lambda(t \mid Z) \equiv E\{\mathbb{N}(t) \mid Z\}=e^{\theta^{\prime} Z} \Lambda(t) \tag{1.1}
\end{equation*}
$$

where the monotone increasing function Λ is the baseline mean function. The parameters of primary interest are θ and Λ.

The observation scheme we want to study is as follows: suppose that we observe the counting process \mathbb{N} at a random number K of random times

$$
0 \equiv T_{K, 0}<T_{K, 1}<\cdots<T_{K, K}
$$

We write $\underline{T}_{K} \equiv\left(T_{K, 1}, \ldots, T_{K, K}\right)$, and we assume that $\left(K, \underline{T}_{K} \mid Z\right) \sim G(\cdot \mid Z)$ is conditionally independent of the counting process \mathbb{N} given the covariate vector Z. We further assume that $Z \sim H$ on R^{d}, but we will make no further assumptions about G or H (modulo mild integrability and boundedness requirements).

The data for each individual will consist of

$$
\begin{equation*}
X=\left(Z, K, \underline{T}_{K}, \mathbb{N}\left(T_{K, 1}\right), \ldots, \mathbb{N}\left(T_{K, K}\right)\right) \equiv\left(Z, K, \underline{T}_{K}, \underline{\mathbb{N}}_{K}\right) . \tag{1.2}
\end{equation*}
$$

We will assume that the data consist of X_{1}, \ldots, X_{n} i.i.d. as X.
Panel count data arise in many fields including demographic studies, industrial reliability, and clinical trials; see for example Kalbfleisch and Lawless (1985), Gaver and O’Muircheartaigh (1987), Thall and Lachin (1988), Thall (1988), Sun and Kalbfleisch (1995), and Wellner and Zhang (2000) where the estimation of either the intensity of event recurrence or the mean function of a counting process with panel count data was studied. Many applications involve covariates whose effects on the underlying counting process are of interest. While there is considerable work on regression modeling for recurrent events based on continuous observations (see, for example Lawless and Nadeau (1995), Cook, Lawless, and Nadeau (1996), and Lin, Wei, Yang, and Ying (2000)), regression analysis with panel count data for counting processes has just started recently. Sun and Wei (2000) proposed estimating equation methods, while Zhang (1998) and Zhang (2001) proposed a pseudo-likelihood method for studying the multiplicative mean model (1.1) with panel count data.

To derive useful estimators for this model we will often assume, in addition to (1.1), that the counting process \mathbb{N}, conditionally on Z, is a non-homogeneous Poisson process. But our general perspective will be to study the estimators and other procedures when the Poisson assumption fails to hold and we assume only that the proportional mean assumption (1.1) holds. Such a program was carried out for estimation of Λ without any covariates for this panel count observation model by Wellner and Zhang (2000).

The outline of the rest of paper is as follows: In section 2, we describe two methods of estimation, namely maximum pseudo-likelihood estimators and maximum likelihood estimators of
θ and Λ. The basic picture is that the pseudo-likelihood estimators are computationally relatively straightforward and easy to implement, while the (full, semiparametric) maximum likelihood estimators are considerably more difficult, requiring an iterative algorithm in the computation of the profile likelihood.

In section 3 we present information calculations for the semiparametric model described by the proportional mean function assumption (1.1) together with the non-homogeneous Poisson process assumption on \mathbb{N}. This provides a baseline for comparisons of variances with the best possible asymptotic variance under the Poisson and proportional mean model assumptions. In section 4 we describe asymptotic normality results for the pseudo-likelihood and full maximum likelihood estimators $\widehat{\theta}_{n}^{p s}$ and $\widehat{\theta}_{n}$ of θ assuming only the proportional mean structure (1.1), but not assuming that \mathbb{N} is a Poisson process. Proofs of these results will be presented in detail in Liu, Wellner, and Zhang (2002). Finally, in section 4 we compare the pseudo-likelihood and full likelihood estimators of θ under three different scenarios with the goal of determining situations under which the pseudo-likelihood estimators will lose considerable efficiency relative to the full maximum likelihood estimators.

As will be seen, the rough upshot of the calculations here is that the efficiency of the pseudolikelihood estimators relative to the full maximum likelihood estimators can be low when the distribution of K, the number of observation times per subject, is heavy-tailed.

2 Two Methods of Estimation

Maximum Pseudo-likelihood Estimation: The natural pseudo-likelihood estimators for this model use the marginal distributions of \mathbb{N}, conditional on Z,

$$
P(\mathbb{N}(t)=k \mid Z)=\frac{\Lambda(t \mid Z)^{k}}{k!} \exp (-\Lambda(t \mid Z))
$$

and ignore dependence between $\mathbb{N}\left(t_{1}\right), \mathbb{N}\left(t_{2}\right)$ to obtain the pseudo-likelihood:

$$
l_{n}^{p s}(\theta, \Lambda)=\sum_{i=1}^{n} \sum_{j=1}^{K_{i}}\left\{\mathbb{N}^{(i)}\left(T_{K_{i}, j}^{(i)}\right) \log \Lambda\left(T_{K_{i}, j}^{(i)}\right)+\mathbb{N}^{(i)}\left(T_{K_{i}, j}^{(i)}\right) \theta^{\prime} Z_{i}-e^{\theta^{\prime} Z_{i}} \Lambda\left(T_{K_{i}, j}^{(i)}\right)\right\} .
$$

Then the maximum pseudo-likelihood estimator $\left(\widehat{\theta}_{n}^{p s}, \widehat{\Lambda}_{n}^{p s}\right)$ of (θ, Λ) is given by

$$
\left(\widehat{\theta}_{n}^{p s}, \widehat{\Lambda}_{n}^{p s}\right) \equiv \operatorname{argmax}_{\theta, \Lambda} p_{n}^{p s}(\theta, \Lambda)
$$

This can be implemented in two steps via the usual (pseudo-) profile likelihood. For each fixed value of θ we set

$$
\begin{equation*}
\widehat{\Lambda}_{n}^{p s}(\cdot, \theta) \equiv \operatorname{argmax}_{\Lambda} l_{n}^{p s}(\theta, \Lambda), \tag{2.3}
\end{equation*}
$$

and define

$$
l_{n}^{p s, p r o f i l e}(\theta) \equiv l_{n}^{p s}\left(\theta, \widehat{\Lambda}_{n}^{p s}(\cdot, \theta)\right)
$$

Then

$$
\widehat{\theta}_{n}^{p s}=\operatorname{argmax}_{\theta} l_{n}^{p s, p r o f i l e}(\theta), \quad \text { and } \quad \widehat{\Lambda}_{n}^{p s}=\widehat{\Lambda}_{n}^{p s}\left(\cdot, \widehat{\theta}_{n}^{p s}\right) .
$$

In fact, the optimization problem in (2.3) is easily solved as follows: Let $t_{1}<\ldots<t_{m}$ denote the ordered distinct observation time points in the collection of all observations times, $\left\{T_{K_{i}, j}^{(i)}, j=\right.$ $\left.1, \ldots, K_{i}, i=1, \ldots, n\right\}$, let $\mathbb{N}_{K_{i}, j}^{(i)} \equiv \mathbb{N}^{(i)}\left(T_{K_{i}, j}^{(i)}\right)$, and set

$$
\begin{aligned}
& w_{l}=\sum_{i=1}^{n} \sum_{j=1}^{K_{i}} 1_{\left[T_{K_{i}, j}^{(i)}=t_{l}\right]}, \quad \bar{N}_{l}=\frac{1}{w_{l}} \sum_{i=1}^{n} \sum_{j=1}^{K_{i}} \mathbb{N}_{K_{i}, j}^{(i)} 1_{\left[T_{K_{i}, j}^{(i)}=t_{l}\right]}, \\
& \bar{A}_{l}(\theta)=\frac{1}{w_{l}} \sum_{i=1}^{n} \sum_{j=1}^{K_{i}} \exp \left(\theta^{\prime} Z^{(i)}\right) 1_{\left[T_{K_{i}, j}^{(i)}=t_{l}\right]} .
\end{aligned}
$$

Then it is easily shown that

$$
\begin{aligned}
\widehat{\Lambda}_{n}^{p s}(\cdot, \theta)= & \text { left-derivative of Greatest Convex } \\
& \left\{\left(\sum_{l \leq i} w_{l} \bar{A}_{l}(\theta), \sum_{l \leq i} w_{l} \bar{N}_{l}\right)\right\}_{i=1}^{m} \\
= & \max _{i \leq l} \min _{j \geq l} \frac{\sum_{i \leq p} \leq w_{p} \bar{N}_{p}}{\sum_{i \leq p} \leq w_{p} \bar{A}_{p}(\theta)} \text { at } t_{l},
\end{aligned}
$$

which is straightforward to compute.
Maximum Likelihood Estimation: Under the assumption that \mathbb{N} is (conditionally, given $Z)$ a non-homogeneous Poisson process, the likelihood can be calculated using the (conditional) independence of the increments of $\mathbb{N}, \Delta \mathbb{N}(s, t] \equiv \mathbb{N}(t)-\mathbb{N}(s)$, and the Poisson distribution of these increments:

$$
P(\Delta \mathbb{N}(s, t]=k \mid Z)=\frac{[\Delta \Lambda((s, t] \mid Z)]^{k}}{k!} \exp (-\Delta \Lambda((s, t] \mid Z))
$$

to obtain the log-likelihood:

$$
l_{n}(\theta, \Lambda)=\sum_{i=1}^{n} \sum_{j=1}^{K_{i}}\left\{\Delta \mathbb{N}_{K_{i}, j}^{(i)} \cdot \log \Delta \Lambda_{K_{i}, j}+\Delta \mathbb{N}_{K_{i}, j}^{(i)} \theta^{\prime} Z_{i}-e^{\theta^{\prime} Z_{i}} \Delta \Lambda_{K_{i}, j}\right\}
$$

where

$$
\begin{array}{rlr}
\Delta \mathbb{N}_{K j} \equiv \mathbb{N}\left(T_{K, j}\right)-\mathbb{N}\left(T_{K, j-1}\right), & & j=1, \ldots, K \\
\Delta \Lambda_{K j} \equiv \Lambda\left(T_{K, j}\right)-\Lambda\left(T_{K, j-1}\right), & j=1, \ldots, K
\end{array}
$$

Then

$$
\left(\widehat{\theta}_{n}, \widehat{\Lambda}_{n}\right) \equiv \operatorname{argmax}_{\theta, \Lambda} l_{n}(\theta, \Lambda) .
$$

This maximization can also be carried out in two steps via profile likelihood. For each fixed value of θ we set

$$
\widehat{\Lambda}_{n}(\cdot, \theta) \equiv \operatorname{argmax}_{\Lambda} l_{n}(\theta, \Lambda),
$$

and define

$$
l_{n}^{\text {profile }}(\theta) \equiv l_{n}\left(\theta, \widehat{\Lambda}_{n}(\cdot, \theta)\right) .
$$

Then

$$
\widehat{\theta}_{n}=\operatorname{argmax}_{\theta} l_{n}^{\text {profile }}(\theta), \quad \text { and } \quad \widehat{\Lambda}_{n}=\widehat{\Lambda}_{n}\left(\cdot, \widehat{\theta}_{n}\right) .
$$

Computation of the (profile) "estimator" $\widehat{\Lambda}_{n}(\cdot, \theta)$ is computationally involved, but possible via the iterative convex minorant algorithm; see e.g. Jongbloed (1998). For more on computation without covariates see Wellner and Zhang (2000).

3 Information bounds for θ under the Poisson model.

We first compute information bounds for estimation of θ under the proportional mean (nonhomogeneous) Poisson process model.

Suppose that $(\mathbb{N} \mid Z) \sim \operatorname{Poisson}(\Lambda(\cdot \mid Z))$, and $\left(\left(K, T_{K}\right) \mid Z\right) \sim G(\cdot \mid Z)$ are conditionally independent given Z. We will assume here that \mathbb{N} is conditionally a nonhomogeneous Poisson process with conditional mean function

$$
\begin{equation*}
E[\mathbb{N}(t) \mid Z]=\Lambda(t \mid Z) \equiv e^{\theta^{\prime} Z} \Lambda_{0}(t) . \tag{3.1}
\end{equation*}
$$

The second equality expresses the proportional mean regression model assumption.
The likelihood for one observation is, using the same notation introduced in Section 2,

$$
p\left(X ; \theta, \Lambda_{0}\right)=\prod_{j=1}^{K} \exp \left(-\Delta \Lambda_{K j}\right) \frac{\left(\Delta \Lambda_{K j}\right)^{\Delta \mathbb{N}_{K j}}}{\left(\Delta \mathbb{N}_{K j}\right)!}
$$

Thus the log-likelihood for $\left(\theta, \Lambda_{0}\right)$ for one observation is given by

$$
\log p\left(X ; \theta, \Lambda_{0}\right)=\sum_{j=1}^{K}\left\{\Delta \mathbb{N}_{K j} \log \Delta \Lambda_{K j}-\Delta \Lambda_{K j}-\log \left(\Delta \mathbb{N}_{K j}!\right)\right\}
$$

Differentiating this with respect to θ and Λ_{0} respectively, the scores for θ and Λ are easily seen to be

$$
\begin{equation*}
\mathrm{i}_{\theta}(x)=\sum_{j=1}^{K} Z\left(\Delta \mathbb{N}_{K j}-e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}\right), \tag{3.2}
\end{equation*}
$$

while

$$
\begin{aligned}
\mathrm{i}_{\Lambda} a(x) & =\sum_{j=1}^{K}\left\{\frac{\Delta \mathbb{N}_{K j}}{\Delta \Lambda_{0 K j}}-e^{\theta^{\prime} Z}\right\} \Delta a_{K j} \\
& =\sum_{j=1}^{K}\left\{\Delta \mathbb{N}_{K j}-e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}\right\} \frac{\Delta a_{K j}}{\Delta \Lambda_{0 K j}},
\end{aligned}
$$

where

$$
\Delta a_{K j}=\int_{T_{K, j-1}}^{T_{K, j}} a d \Lambda_{0}, \quad a \in L_{2}\left(\Lambda_{0}\right) .
$$

To compute the information bound for estimation of θ it follows from the results of Begun, Hall, Huang, and Wellner (1983) and Bickel, Klaassen, Ritov, and Wellner (1993) that we want to find a^{*} so that

$$
\dot{\mathrm{i}}_{\theta}-\dot{\mathrm{i}}_{\Lambda} a^{*} \perp \dot{\mathrm{i}}_{\Lambda} a
$$

for all $a \in L_{2}\left(\Lambda_{0}\right)$; i.e.

$$
\begin{aligned}
0 & =E\left\{\left(\mathrm{i}_{\theta}-\mathrm{i}_{\Lambda} a^{*}\right) \mathbf{i}_{\Lambda} a\right\} \\
& =E\left\{\sum_{j=1}^{K}\left(\Delta \mathbb{N}_{K j}-e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}\right)\left(Z-\frac{\Delta a_{K j}^{*}}{\Delta \Lambda_{0 K j}}\right) \mathrm{i}_{\Lambda} a\right\} \\
& =E\left\{\sum_{j=1}^{K}\left(\Delta \mathbb{N}_{K j}-e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}\right)^{2}\left(Z-\frac{\Delta a_{K j}^{*}}{\Delta \Lambda_{0 K j}}\right) \frac{\Delta a_{K j}}{\Delta \Lambda_{0 K j}}\right\} \\
& =E\left\{\sum_{j=1}^{K} e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}\left(Z-\frac{\Delta a_{K j}^{*}}{\Delta \Lambda_{0 K j}}\right) \frac{\Delta a_{K j}}{\Delta \Lambda_{0 K j}}\right\} \\
& =E_{K}\left\{\sum_{j=1}^{K} E\left\{\left.e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}\left(Z-\frac{\Delta a_{K j}^{*}}{\Delta \Lambda_{0 K j}}\right) \frac{\Delta a_{K j}}{\Delta \Lambda_{0 K j}} \right\rvert\, K\right\}\right\} \\
& =E_{K}\left\{\sum_{j=1}^{K} E\left\{\left.E\left\{\left.e^{\theta^{\prime} Z} \frac{\Delta \Lambda_{0 K j}}{}\left(Z-\frac{\Delta a_{K j}^{*}}{\Delta \Lambda_{0 K j}}\right) \frac{\Delta a_{K j}}{\Delta \Lambda_{0 K j}} \right\rvert\, K, T_{K, j-1}, T_{K, j}\right\} \right\rvert\, K\right\}\right\} \\
& =E_{K}\left\{\sum _ { j = 1 } ^ { K } E \left\{\Delta \Lambda _ { 0 K j } \frac { \Delta a _ { K j } } { \Delta \Lambda _ { 0 K j } } \left(E\left\{Z e^{\theta^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right\}\right.\right.\right. \\
& \left.\left.\left.-\frac{\Delta a_{K j}^{*}}{\Delta \Lambda_{0 K j}} E\left\{e^{\left.\theta^{\prime} Z \mid K, T_{K, j-1}, T_{K, j}\right\}}\right) \right\rvert\, K\right\}\right\} .
\end{aligned}
$$

Thus we see that the desired orthogonality holds with

$$
\begin{equation*}
\frac{\Delta a_{K j}^{*}}{\Delta \Lambda_{0 K j}}=\frac{E\left\{Z e^{\theta^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right\}}{E\left\{e^{\theta^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right\}} \tag{3.3}
\end{equation*}
$$

Hence the efficient score function for θ is given by

$$
\begin{aligned}
\mathbf{l}_{\theta}^{*}(x) & =\mathrm{i}_{\theta}(x)-\mathrm{i}_{\Lambda} a^{*}(x) \\
& =\sum_{j=1}^{K}\left(\Delta \mathbb{N}_{K j}-e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}\right)\left(Z-\frac{E\left\{Z e^{\theta^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right\}}{E\left\{e^{\theta^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right\}}\right)
\end{aligned}
$$

and the information for θ is, by computing conditionally on Z, K, T_{K},

$$
\begin{aligned}
I(\theta) & =E_{0}\left\{\mathrm{i}_{\theta}^{*}(X)^{\otimes 2}\right\} \\
& =E_{0}\left\{\sum_{j=1}^{K} e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}\left(Z-\frac{E\left\{Z e^{\theta^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right\}}{E\left\{e^{\theta^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right\}}\right)^{\otimes 2}\right\} .
\end{aligned}
$$

In particular, we have the following corollary:
Corollary 1. (Current status data). If $P(K=1)=1$ (so that the only $T_{K j}$ of relevance is $T_{1,1} \equiv T$ while $T_{1,0}=0$), then the efficient score function is

$$
\mathbf{l}_{\theta}^{*}(x)=\dot{\mathrm{i}}_{\theta}(x)-\dot{\mathbf{l}}_{\Lambda} a^{*}(x)=\left(\mathbb{N}(T)-e^{\theta^{\prime} Z} \Lambda_{0}(T)\right)\left(Z-\frac{E\left\{Z e^{\left.\theta^{\prime} Z \mid T\right\}}\right.}{E\left\{e^{\theta^{\prime} Z} \mid T\right\}}\right)
$$

and the information for θ is given by

$$
I(\theta)=E_{0}\left\{\mathrm{i}_{\theta}^{*}(X)^{\otimes 2}\right\}=E_{0}\left\{e^{\theta^{\prime} Z} \Lambda_{0}(T)\left(Z-\frac{E\left\{Z e^{\theta^{\prime} Z} \mid T\right\}}{E\left\{e^{\theta^{\prime} Z} \mid T\right\}}\right)^{\otimes 2}\right\}
$$

This should be compared with the information for θ for the Cox proportional hazards model with current status data given by Huang (1996), page 547.
Corollary 2. (Case 2 Interval-censored data). If $P(K=2)=1$ (so that the only $T_{K j}$'s of relevance are $T_{2,1} \equiv T_{1}$ and $T_{2,2}=T_{2}$, while $T_{2,0}=0$), then the efficient score function is

$$
\begin{aligned}
\mathrm{l}_{\theta}^{*}(x)= & \mathrm{i}_{\theta}(x)-\dot{\mathrm{i}}_{\Lambda} a^{*}(x) \\
= & \left(\mathbb{N}\left(T_{1}\right)-e^{\theta^{\prime} Z} \Lambda_{0}\left(T_{1}\right)\right)\left(Z-\frac{E\left\{Z e^{\theta^{\prime} Z} \mid T_{1}\right\}}{E\left\{e^{\theta^{\prime} Z} \mid T_{1}\right\}}\right) \\
& \quad+\left(\mathbb{N}\left(T_{2}\right)-\mathbb{N}\left(T_{1}\right)-e^{\theta^{\prime} Z}\left(\Lambda_{0}\left(T_{2}\right)-\Lambda_{0}\left(T_{1}\right)\right)\right)\left(Z-\frac{E\left\{Z e^{\theta^{\prime} Z} \mid T_{1}, T_{2}\right\}}{E\left\{e^{\theta^{\prime} Z} \mid T_{1}, T_{2}\right\}}\right),
\end{aligned}
$$

and the information for θ is given by

$$
\begin{aligned}
I(\theta)= & E_{0}\left\{\mathrm{i}_{\theta}^{*}(X)^{\otimes 2}\right\} \\
= & E_{0}\left\{e^{\theta^{\prime} Z} \Lambda_{0}\left(T_{1}\right)\left(Z-\frac{E\left\{Z e^{\theta^{\prime} Z} \mid T_{1}\right\}}{E\left\{e^{\theta^{\prime} Z} \mid T_{1}\right\}}\right)^{\otimes 2}\right\} \\
& +E_{0}\left\{e^{\theta^{\prime} Z}\left(\Lambda_{0}\left(T_{2}\right)-\Lambda_{0}\left(T_{2}\right)\right)\left(Z-\frac{E\left\{Z e^{\theta^{\prime} Z} \mid T_{1}, T_{2}\right\}}{E\left\{e^{\theta^{\prime} Z} \mid T_{1}, T_{2}\right\}}\right)^{\otimes 2}\right\} .
\end{aligned}
$$

This should be compared with the information for θ for the Cox proportional hazards model with interval censored case II data given by Huang and Wellner (1995). Note that those calculations resulted in an integral equation to be solved, analogously to the results for the mean functional considered by Geskus and Groeneboom (1996), Geskus and Groeneboom (1997) and Geskus and Groeneboom (1999).

4 Asymptotic normality of the two estimators of θ.

Here is the crucial theorem concerning the asymptotic behavior of the maximum pseudo-likelihood and maximum likelihood estimators of θ when the proportional mean model holds, but the Poisson assumption concerning \mathbb{N} may fail.
Theorem 1. Under suitable regularity and integrability conditions, the estimators $\widehat{\theta}_{n}^{p s}$ and $\widehat{\theta}_{n}$ are asymptotically normal:

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) \rightarrow_{d} Z \sim N_{d}\left(0, A^{-1} B\left(A^{-1}\right)^{\prime}\right), \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\theta}_{n}^{p s}-\theta_{0}\right) \rightarrow_{d} Z^{p s} \sim N_{d}\left(0,\left(A^{p s}\right)^{-1} B^{p s}\left(\left(A^{p s}\right)^{-1}\right)^{\prime}\right) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
B & \equiv E m^{*}\left(\theta_{0}, \Lambda_{0} ; X\right)^{\otimes 2}=E\left\{\sum_{j, j^{\prime}=1}^{K} C_{j, j^{\prime}}(Z)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime}} Z \mid K, T_{K, j}, T_{K, j^{\prime}}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}, T_{K, j^{\prime}}\right)}\right]^{\otimes 2}\right\}, \\
A & =E\left\{\sum_{j=1}^{K} \Delta \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right]^{\otimes 2}\right\}, \\
C_{j, j^{\prime}}(Z) & =\operatorname{Cov}\left[\Delta N_{K j}, \Delta N_{K j^{\prime}} \mid Z, K, \underline{T}_{K}\right], \\
B^{p s} & =E m^{* p s}\left(\theta_{0}, \Lambda_{0} ; X\right)^{\otimes 2} \\
& =E\left\{\sum_{j, j^{\prime}=1}^{K} C_{j, j^{\prime}}^{p s}(Z)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right]\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}}\right)}\right]^{\prime}\right\}, \\
A^{p s} & =E\left\{\sum_{j=1}^{K} \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e_{0}^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right]^{\otimes 2}\right\}, \\
C_{j, j^{\prime}}^{p s}(Z) & =\operatorname{Cov}\left[N_{K j}, N_{K j^{\prime}} \mid Z, K, T_{K, j}, T_{K, j^{\prime}}\right] .
\end{aligned}
$$

Our proof of this theorem is based on the results of Zhang (1998). While we will not give the proof in detail, we will present here as sketch of the computation of the asymptotic variances given in (4.1) and (4.2).

Based on the Poisson model, the log-likelihood for $\left(\theta_{0}, \Lambda_{0}\right)$ with one observation is given by

$$
\begin{align*}
m(\theta, \Lambda ; X) & =\log p(X ; \theta, \Lambda)=\sum_{j=1}^{K}\left\{\Delta \mathbb{N}_{K j} \log \Delta \Lambda_{K j}-\Delta \Lambda_{K j}-\log \left(\Delta \mathbb{N}_{K j}!\right)\right\} \\
& =\sum_{j=1}^{K}\left\{\Delta \mathbb{N}_{K j} \log \Delta \Lambda_{0 K j}+\Delta \mathbb{N}_{K j} \theta^{\prime} Z-e^{\theta^{\prime} Z} \Delta \Lambda_{0 K j}-\log \left(\Delta \mathbb{N}_{K j}!\right)\right\} \tag{4.3}
\end{align*}
$$

Thus the \log-likelihood $l_{n}(\theta, \Lambda)$ for n i.i.d. observations is given by

$$
\begin{equation*}
l_{n}(\theta, \Lambda)=n \mathbb{P}_{n} m(\theta, \Lambda ; \cdot) \tag{4.4}
\end{equation*}
$$

The maximum likelihood estimators ($\widehat{\theta}, \widehat{\Lambda}$) are obtained by maximizing (4.4).
A natural pseudo-likelihood is obtained by simply taking the product of the marginal distributions of the observed counts at the successive observation times. Thus a log-pseudolikelihood for one observation is given by

$$
\begin{align*}
m^{p s}(\theta, \Lambda ; X) & =\sum_{j=1}^{K}\left\{\mathbb{N}_{K j} \log \Lambda_{K j}-\Lambda_{K j}-\log \left(\mathbb{N}_{K j}!\right)\right\} \\
& =\sum_{j=1}^{K}\left\{\mathbb{N}_{K j} \log \Lambda_{0 K j}+\mathbb{N}_{K j} \theta^{\prime} Z-e^{\theta^{\prime} Z} \Lambda_{0 K j}-\log \left(\mathbb{N}_{K j}!\right)\right\} \tag{4.5}
\end{align*}
$$

and the log-pseudo-likelihood $l_{n}^{p s}(\theta, \Lambda)$ for n i.i.d. observations is given by

$$
\begin{equation*}
l_{n}^{p s}(\theta, \Lambda)=n \mathbb{P}_{n} m^{p s}(\theta, \Lambda ; \cdot), \tag{4.6}
\end{equation*}
$$

and the corresponding pseudo-MLE's $\left(\widehat{\theta}^{p s}, \widehat{\Lambda}^{p s}\right)$ are obtained by maximizing (4.6).

4.1 Asymptotic variance of the MLE

Based on the Poisson model, the log-likelihood for $\left(\theta_{0}, \Lambda_{0}\right)$ with one observation is given by (4.3). Using the notation of Zhang (1998), page 29, we have

$$
\begin{aligned}
m_{1}(\theta, \Lambda ; X) & =\sum_{j=1}^{K} Z\left[\Delta \mathbb{N}_{K j}-\Delta \Lambda_{0 K j} e^{\theta^{\prime} Z}\right] \\
m_{2}(\theta, \Lambda ; X)[h] & =\sum_{j=1}^{K}\left[\frac{\Delta \mathbb{N}_{K j}}{\Delta \Lambda_{0 K j}}-e^{\theta^{\prime} Z}\right] \Delta h_{K j}, \\
m_{11}(\theta, \Lambda ; X) & =-\sum_{j=1}^{K} \Delta \Lambda_{0 K j} Z Z^{\prime} e^{\theta^{\prime} Z}
\end{aligned}
$$

$$
\begin{aligned}
m_{12}(\theta, \Lambda ; X)[h] & =m_{21}^{T}(\theta, \Lambda ; X)[h]=-\sum_{j=1}^{K} Z e^{\theta^{\prime} Z} \Delta h_{K j}, \\
m_{22}(\theta, \Lambda ; X)[\mathbf{h}, h] & =-\sum_{j=1}^{K} \frac{\Delta \mathbb{N}_{K j}}{\left(\Delta \Lambda_{0 K j}\right)^{2}} \Delta \mathbf{h}_{K j} \Delta h_{K j},
\end{aligned}
$$

where $\Delta h_{K j}=\int_{T_{K, j-1}}^{T_{K, j}} h d \Lambda_{0}$ for $h \in L_{2}\left(\Lambda_{0}\right)$. By A2 of Zhang (1998), page 30, we need to find a \mathbf{h}^{*} such that

$$
\dot{S}_{12}\left(\theta_{0}, \Lambda_{0}\right)[h]-\dot{S}_{22}\left(\theta_{0}, \Lambda_{0}\right)\left[\mathbf{h}^{*}, h\right]=P\left\{m_{12}\left(\theta_{0}, \Lambda_{0} ; X\right)[h]-m_{22}\left(\theta_{0}, \Lambda_{0} ; X\right)\left[\mathbf{h}^{*}, h\right]\right\}=0,
$$

for all $h \in L_{2}\left(\Lambda_{0}\right)$. Note that

$$
\begin{aligned}
P & \left\{m_{12}\left(\theta_{0}, \Lambda_{0} ; X\right)[h]-m_{22}\left(\theta_{0}, \Lambda_{0} ; X\right)\left[\mathbf{h}^{*}, h\right]\right\} \\
& =-E\left\{\sum_{j=1}^{K}\left[Z e^{\theta_{0}^{\prime} Z}-\frac{\Delta \mathbb{N}_{K j}}{\left(\Delta \Lambda_{0 K j}\right)^{2}} \Delta \mathbf{h}_{K j}^{*}\right] \Delta h_{K j}\right\} \\
& =-E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K}\left[Z e^{\theta_{0}^{\prime} Z}-\frac{e^{\theta_{0}^{\prime} Z} \Delta \mathbf{h}_{K j}^{*}}{\Delta \Lambda_{0 K j}}\right] \Delta h_{K j}\right\} .
\end{aligned}
$$

Therefore, an obvious choice of \mathbf{h}^{*} is

$$
\Delta \mathbf{h}_{K j}^{*}=\Delta \Lambda_{0 K j} \frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)} .
$$

Hence

$$
\begin{aligned}
m^{*} & \left(\theta_{0}, \Lambda_{0} ; X\right) \\
& =m_{1}\left(\theta_{0}, \Lambda_{0} ; X\right)-m_{2}\left(\theta_{0}, \Lambda_{0} ; X\right)\left[\mathbf{h}^{*}\right] \\
& =\sum_{j=1}^{K}\left\{Z\left(\Delta \mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j}\right)-\left(\frac{\Delta \mathbb{N}_{K j}}{\Delta \Lambda_{0 K j}}-e^{\theta_{0}^{\prime} Z}\right) \Delta \Lambda_{0 K j} \frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right\} \\
& =\sum_{j=1}^{K}\left(\Delta \mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j}\right)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right]
\end{aligned}
$$

By Theorem 2.3.5 of Zhang (1998), page 32, the asymptotic variance will be $A^{-1} B\left(A^{-1}\right)^{\prime}$, where

$$
\begin{aligned}
B & =E m^{*}\left(\theta_{0}, \Lambda_{0} ; X\right)^{\otimes 2} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j, j^{\prime}=1}^{K} C\left(T_{K, j}, T_{K, j^{\prime}}, T_{K, j-1}, T_{K, j^{\prime}-1} ; Z\right)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right]\right.
\end{aligned}
$$

$$
\left.\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right)}\right]^{\prime}\right\}
$$

$$
\begin{aligned}
A & =-\dot{S}_{11}\left(\theta_{0}, \Lambda_{0}\right)+\dot{S}_{21}\left(\theta_{0}, \Lambda_{0}\right)\left[\mathbf{h}^{*}\right] \\
& =E\left\{\sum_{j=1}^{K}\left[\Delta \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z} Z Z^{\prime}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j} \frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right)} Z^{\prime}\right]\right\} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K} \Delta \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right] Z^{\prime}\right\} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K} \Delta \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right]\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& C\left(T_{K, j}, T_{K, j^{\prime}}, T_{K, j-1}, T_{K, j^{\prime}-1} ; Z\right) \\
& \quad=E\left[\left(\Delta \mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j}\right)\left(\Delta \mathbb{N}_{K j^{\prime}}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j^{\prime}}\right) \mid Z, K, T_{K, j-1}, T_{K, j}, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right] .
\end{aligned}
$$

Note that if the counting process is indeed a conditional Poisson process with the mean function given as specified,

$$
C\left(T_{K, j}, T_{K, j^{\prime}}, T_{K, j-1}, T_{K, j^{\prime}-1} ; Z\right)=\left\{\begin{array}{lll}
\Delta \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z} & , & \text { if } j=j^{\prime} \\
0 & \text { if } j \neq j^{\prime}
\end{array}\right.
$$

This yields $B=A=I\left(\theta_{0}\right)$ and thus $A^{-1} B\left(A^{-1}\right)^{\prime}=I^{-1}\left(\theta_{0}\right)$.

4.2 Asymptotic Variance of the Pseudo-MLE

Based on the Poisson model, the pseudo log-likelihood for $\left(\theta_{0}, \Lambda_{0}\right)$ with one observation is given by (4.5). Using the notation of Zhang (1998), page 29, we have

$$
\begin{aligned}
m_{1}^{p s}(\theta, \Lambda ; X) & =\sum_{j=1}^{K} Z\left[\mathbb{N}_{K j}-\Lambda_{0 K j} e^{\theta^{\prime} Z}\right] \\
m_{2}^{p s}(\theta, \Lambda ; X)[h] & =\sum_{j=1}^{K}\left[\frac{\mathbb{N}_{K j}}{\Lambda_{0 K j}}-e^{\theta^{\prime} Z}\right] h_{K j}, \\
m_{11}^{p s}(\theta, \Lambda ; X) & =-\sum_{j=1}^{K} \Lambda_{0 K j} Z Z^{\prime} e^{\theta^{\prime} Z}
\end{aligned}
$$

$$
\begin{aligned}
m_{12}^{p s}(\theta, \Lambda ; X)[h] & =m_{21}^{T}(\theta, \Lambda ; X)[h]=-\sum_{j=1}^{K} Z e^{\theta^{\prime} Z} h_{K j}, \\
m_{22}^{p s}(\theta, \Lambda ; X)[\mathbf{h}, h] & =-\sum_{j=1}^{K} \frac{\mathbb{N}_{K j}}{\left(\Lambda_{0 K j}\right)^{2}} \mathbf{h}_{K j} h_{K j},
\end{aligned}
$$

where $h_{K j}=\int_{0}^{T_{K, j}} h d \Lambda_{0}$ for $h \in L_{2}\left(\Lambda_{0}\right)$. By A2 of Zhang (1998), page 30, we need to find a \mathbf{h}^{*} such that

$$
\dot{S}_{12}^{p s}\left(\theta_{0}, \Lambda_{0}\right)[h]-\dot{S}_{22}^{p s}\left(\theta_{0}, \Lambda_{0}\right)\left[\mathbf{h}^{*}, h\right]=P\left\{m_{12}^{p s}\left(\theta_{0}, \Lambda_{0} ; X\right)[h]-m_{22}^{p s}\left(\theta_{0}, \Lambda_{0} ; X\right)\left[\mathbf{h}^{*}, h\right]\right\}=0,
$$

for all $h \in L_{2}\left(\Lambda_{0}\right)$. Note that

$$
\begin{aligned}
P\left\{m_{12}^{p s}\left(\theta_{0}, \Lambda_{0} ; X\right)[h]-m_{22}^{p s}\left(\theta_{0}, \Lambda_{0} ; X\right)\left[\mathbf{h}^{*}, h\right]\right\} & =-E\left\{\sum_{j=1}^{K}\left[Z e^{\theta_{0}^{\prime} Z}-\frac{\mathbb{N}_{K j}}{\left(\Lambda_{0 K j}\right)^{2}} \mathbf{h}_{K j}^{*}\right] h_{K j}\right\} \\
& =-E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K}\left[Z e^{\theta_{0}^{\prime} Z}-\frac{e^{\theta_{0}^{\prime} Z} \mathbf{h}_{K j}^{*}}{\Lambda_{0 K j}}\right] h_{K j}\right\} .
\end{aligned}
$$

Therefore, an obvious choice of \mathbf{h}^{*} is

$$
\mathbf{h}_{K j}^{*}=\Lambda_{0 K j} \frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)} .
$$

Hence

$$
\begin{aligned}
& m^{* p s}\left(\theta_{0}, \Lambda_{0} ; X\right) \\
& \quad=m_{1}^{p_{0}}\left(\theta_{0}, \Lambda_{0} ; X\right)-m_{2}^{p s}\left(\theta_{0}, \Lambda_{0} ; X\right)\left[\mathbf{h}^{*}\right] \\
& \quad=\sum_{j=1}^{K}\left\{Z\left(\mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j}\right)-\left(\frac{\mathbb{N}_{K j}}{\Lambda_{0 K j}}-e^{\theta_{0}^{\prime} Z}\right) \Lambda_{0 K j} \frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right\} \\
& \quad=\sum_{j=1}^{K}\left(\mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j}\right)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{e_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right] .
\end{aligned}
$$

By Theorem 2.3.5 of Zhang (1998), page 32, the asymptotic variance will be $\left(A^{p s}\right)^{-1} B^{p s}\left(\left(A^{p s}\right)^{-1}\right)^{\prime}$, where

$$
\begin{aligned}
B^{p s}= & E m^{* p s}\left(\theta_{0}, \Lambda_{0} ; X\right)^{\otimes 2} \\
= & E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j, j^{\prime}=1}^{K} C^{p s}\left(T_{K, j}, T_{K, j^{\prime}} ; Z\right)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right]\right. \\
& {\left.\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}}\right)}\right]\right\}, }
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
A^{p s} & =-\dot{S}_{11}^{p s}\left(\theta_{0}, \Lambda_{0}\right)+\dot{S}_{21}^{p s}\left(\theta_{0}, \Lambda_{0}\right)\left[\mathbf{h}^{*}\right] \\
& =E\left\{\sum_{j=1}^{K}\left[\Lambda_{0 K j} e^{\theta_{0}^{\prime} Z} Z Z^{\prime}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j} \frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}}\right)} Z^{\prime}\right]\right\} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K} \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right] Z^{\prime}\right\} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K} \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right]\right.
\end{array}\right], \$ 2\right\}, ~ l
$$

and

$$
C^{p s}\left(T_{K, j}, T_{K, j^{\prime}} ; Z\right)=E\left[\left(\mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j}\right)\left(\mathbb{N}_{K j^{\prime}}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j^{\prime}}\right) \mid Z, K, T_{K, j}, T_{K, j^{\prime}}\right]
$$

Note that if the counting process is indeed a conditional Poisson process with the mean function given as specified,

$$
C^{p s}\left(T_{K, j}, T_{K, j^{\prime}} ; Z\right)=e^{\theta_{0}^{\prime} Z} \Lambda_{0 K\left(j \wedge j^{\prime}\right)}
$$

This yields

$$
\begin{aligned}
B^{p s} & =A^{p s}+2 E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j<j^{\prime}} e^{\theta_{0} Z} \Lambda_{0 K j}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right]\right. \\
& \left.\quad\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}}\right)}\right]^{\prime}\right\} \\
& \neq A^{p s} .
\end{aligned}
$$

5 Comparisons: MLE versus pseudo-MLE.

Scenario 1. We first suppose that the underlying counting process is in fact a standard homogeneous Poisson process conditionally given Z, with baseline mean function $\Lambda_{0}(t)=\lambda t$, We will also assume that the distribution of $\left(K, \underline{T}_{K}\right)$ is independent of Z. As a consequence, Z is independent of $\left(K, \underline{T}_{K}\right)$, and the formulas in the preceding section simplify considerably. Because of the Poisson process assumption, $A=B=I(\theta)$, and this matrix is given by

$$
I(\theta)=E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K} \Delta \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right]^{\otimes 2}\right\}
$$

$$
\begin{aligned}
& =E_{\left(K, T_{K}\right)}\left\{\Lambda_{0}\left(T_{K, K}\right)\right\} E_{Z}\left\{e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]^{\otimes 2}\right\} \\
& \equiv E_{\left(K, T_{K}\right)}\left\{\Lambda_{0}\left(T_{K, K}\right)\right\} C
\end{aligned}
$$

so that if C is nonsingular,

$$
I(\theta)^{-1}=C^{-1} \frac{1}{E_{\left(K, T_{K}\right)}\left\{\Lambda_{0}\left(T_{K, K}\right)\right\}}
$$

On the other hand,

$$
\begin{aligned}
A^{p s} & =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K} \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right]^{\otimes 2}\right\} \\
& =E_{\left(K, T_{K}\right)}\left\{\sum_{j=1}^{K} \Lambda_{0}\left(T_{K j}\right)\right\} E\left\{e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]^{\otimes 2}\right\},
\end{aligned}
$$

while

$$
B^{p s}=E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j, j^{\prime}=1}^{K} \Lambda_{0}\left(T_{K, j \wedge j^{\prime}}\right)\right\} E_{Z}\left\{e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]^{\otimes 2}\right\}
$$

so that

$$
\left(A^{p s}\right)^{-1} B^{p s}\left(\left(A^{p s}\right)^{-1}\right)^{\prime}=C^{-1} \frac{E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j, j^{\prime}=1}^{K} \Lambda_{0}\left(T_{K, j \wedge j^{\prime}}\right)\right\}}{\left(E_{\left(K, T_{K}\right)}\left\{\sum_{j=1}^{K} \Lambda_{0}\left(T_{K j}\right)\right\}\right)^{2}}
$$

Thus it follows that the ARE of the pseudo-MLE of θ relative to the MLE of θ under the above scenario is given by

$$
\begin{aligned}
A R E(\text { pseudo }, \text { mle }) & =\frac{A^{-1} B\left(A^{-1}\right)^{T}}{\left(A^{p s}\right)^{-1} B^{p s}\left(\left(A^{p s}\right)^{-1}\right)^{T}} \\
& =\frac{\left\{E\left\{\sum_{j=1}^{K} \Lambda_{0}\left(T_{K, j}\right)\right\}\right\}^{2}}{E\left\{\Lambda_{0}\left(T_{K, K}\right)\right\} E\left\{\sum_{j, j^{\prime}=1}^{K} \Lambda_{0}\left(T_{K, j \wedge j^{\prime}}\right)\right\}} .
\end{aligned}
$$

Note that this equals 1 if $P(K=1)=1$. Actually, we have not yet used the assumption about Λ_{0}. If we assume that $\Lambda_{0}(t)=\lambda t$, then

$$
A R E(\text { pseudo, mle })=\frac{\left\{E\left\{\sum_{j=1}^{K} T_{K, j}\right\}\right\}^{2}}{E\left\{T_{K, K}\right\} E\left\{\sum_{j, j^{\prime}=1}^{K} T_{K, j \wedge j^{\prime}}\right\}}
$$

If we assume, further, that $P(K=k)=1$ for a fixed integer $k \geq 2$, and $\underline{T}_{K}=\left(T_{K, 1}, \ldots, T_{K, K}\right)$ are the order statistics of a sample of k uniformly distributed random variables on an interval $[0, M]$, then

$$
\begin{gathered}
E\left\{\sum_{j=1}^{K} T_{K, j}\right\}=\sum_{j=1}^{k} \frac{j}{k+1} M=\frac{k}{2} M, \\
E\left\{T_{K, K}\right\}=\frac{k}{k+1} M,
\end{gathered}
$$

and

$$
E\left\{\sum_{j, j^{\prime}=1}^{K} T_{K, j \wedge j^{\prime}}\right\}=\sum_{j, j^{\prime}=1}^{k} \frac{j \wedge j^{\prime}}{k+1} M=\frac{k(2 k+1)}{6} M .
$$

Hence in this case

$$
A R E(p s e u d o, m l e)=\frac{(k / 2)^{2}}{\frac{k}{k+1} \frac{k(2 k+1)}{6}}=\frac{3(k+1)}{2(2 k+1)} \rightarrow \frac{3}{4}
$$

as $k \rightarrow \infty$.

k	1	2	3	4	5	6	7	8	9	10
$I(\theta)^{-1}(k) M \lambda$	2	$3 / 2$	$4 / 3$	$5 / 4$	$6 / 5$	$7 / 6$	$8 / 7$	$9 / 8$	$10 / 9$	$11 / 10$
$V^{p s}(k) M \lambda$	2	$5 / 3$	$14 / 9$	$3 / 2$	$22 / 15$	$13 / 9$	$10 / 7$	$17 / 12$	$38 / 27$	$7 / 5$
$\operatorname{ARE}(k)$	1.00	.900	0.857	0.833	0.818	0.808	0.800	0.794	0.789	0.786

Scenario 2. A variant on these calculations is to repeat all the assumptions about Z and (K, \underline{T}_{K}), assume, conditionally on K, that $\underline{T}_{K}=\left(T_{K, 1}, \ldots, T_{K, K}\right)$ are the order statistics of a sample of K uniformly distributed random variables on an interval $[0, M]$, but now allow a distribution for K. Then

$$
\begin{gathered}
E\left\{\sum_{j=1}^{K} T_{K, j} \mid K\right\}=\sum_{j=1}^{K} \frac{j}{K+1} M=\frac{K}{2} M, \\
E\left\{T_{K, K} \mid K\right\}=\frac{K}{K+1} M,
\end{gathered}
$$

and

$$
E\left\{\sum_{j, j^{\prime}=1}^{K} T_{K, j \wedge j^{\prime}} \mid K\right\}=\sum_{j, j^{\prime}=1}^{K} \frac{j \wedge j^{\prime}}{K+1} M=\frac{K(2 K+1)}{6} M .
$$

If we let K be distributed according to $1+\operatorname{Poisson}(\mu)$, then the ARE will be asymptotically $3 / 4$ again as $\mu \rightarrow \infty$. A more interesting choice of the distribution of K is the $\operatorname{Zeta}(\alpha)$ distribution given as follows: for $\alpha>1$,

$$
P(K=k)=\frac{1 / k^{\alpha}}{\zeta(\alpha)}, \quad k=1,2, \ldots
$$

where $\zeta(\alpha)=\sum_{j=1}^{\infty} j^{-\alpha}$ is the Riemann Zeta function. Then we can compute

$$
\begin{gathered}
E\left\{\sum_{j=1}^{K} T_{K, j}\right\}= \\
E\left\{\sum_{j=1}^{K} \frac{j}{K+1}\right\} M=\frac{E_{\alpha}(K)}{2} M=\frac{M}{2} \frac{\zeta(\alpha-1)}{\zeta(\alpha)}, \\
\\
E\left\{T_{K, K}\right\}=E_{\alpha}\left(\frac{K}{K+1}\right) M,
\end{gathered}
$$

and

$$
\begin{aligned}
E\left\{\sum_{j, j^{\prime}=1}^{K} T_{K, j \wedge j^{\prime}}\right\} & =E_{\alpha}\left(\sum_{j, j^{\prime}=1}^{K} \frac{j \wedge j^{\prime}}{K+1}\right) M \\
& =\frac{M}{6} E_{\alpha}(K(2 K+1)) \\
& =\frac{M}{6}\left\{2 E_{\alpha}\left(K^{2}\right)+E_{\alpha}(K)\right\} \\
& =\frac{M}{6}\left\{\frac{2 \zeta(\alpha-2)+\zeta(\alpha-1)}{\zeta(\alpha)}\right\}
\end{aligned}
$$

Hence in this case

$$
\begin{aligned}
& I(\theta)^{-1}(\alpha)=C^{-1} \frac{1}{M \lambda E_{\alpha}\left(\frac{K}{K+1}\right)}, \\
& V^{p s}(\alpha)=C^{-1} \frac{\left\{\frac{2 \zeta(\alpha-2)+\zeta(\alpha-1)}{\zeta(\alpha)}\right\}}{6 M \lambda\left(\frac{\zeta(\alpha-1)}{2 \zeta(\alpha)}\right)^{2}},
\end{aligned}
$$

and

$$
\begin{aligned}
A R E(\text { pseudo }, m l e)(\alpha) & \equiv A R E(\alpha) \\
& =\frac{\left(E_{\alpha}(K) / 2\right)^{2}}{E_{\alpha}\left\{\frac{K}{K+1}\right\} E_{\alpha} \frac{K(2 K+1)}{6}} \\
& =\frac{3}{2} \frac{\zeta(\alpha-1) / \zeta(\alpha)}{E_{\alpha}\left\{\frac{K}{K+1}\right\} \frac{2 \zeta(\alpha-2)+\zeta(\alpha-1)}{\zeta(\alpha)}} \\
& =\frac{3}{2} \frac{\zeta(\alpha-1)}{\{2 \zeta(\alpha-2)+\zeta(\alpha-1)\} E_{\alpha}\left\{\frac{K}{K+1}\right\}}
\end{aligned}
$$

and this varies between 0 and 1 as α varies from 3 to ∞; note that for $\alpha=3, E\left(K^{2}\right)=\infty=\zeta(1)$, while $E(K)=\zeta(2) / \zeta(3) \doteq 10.5844 \ldots$. See Figure 1 .

Figure 1: $\operatorname{ARE}(\alpha)$

If we change the distribution of K to $K \sim \operatorname{Unif}\left\{1, \ldots, k_{0}\right\}$, then

$$
\begin{aligned}
& E\left\{\sum_{j=1}^{K} T_{K, j}\right\}=E\left\{\sum_{j=1}^{K} \frac{j}{K+1}\right\} M=\frac{E(K)}{2} M=\frac{k_{0}+1}{4} M \\
& E\left\{\sum_{j, j^{\prime}=1}^{K} T_{K, j \wedge j^{\prime}}\right\}=E_{\alpha}\left(\sum_{j, j^{\prime}=1}^{K} \frac{j \wedge j^{\prime}}{K+1}\right) M \\
&=\frac{M}{6} E(K(2 K+1)) \\
&=\frac{M}{6}\left\{2 E\left(K^{2}\right)+E(K)\right\} \\
&=\frac{M}{6}\left\{2 \frac{\left(k_{0}+1\right)\left(2 k_{0}+1\right)}{6}+\frac{k_{0}+1}{2}\right\}
\end{aligned}
$$

while

$$
E\left\{T_{K, K}\right\}=E\left(\frac{K}{K+1}\right) M
$$

Hence in this case

$$
\begin{gathered}
I(\theta)^{-1}(\alpha)=C^{-1} \frac{1}{M \lambda E\left(\frac{K}{K+1}\right)}, \\
V^{p s}\left(k_{0}\right)=C^{-1} \frac{\frac{\left(k_{0}+1\right)\left(2 k_{0}+1\right) / 3+\left(k_{0}+1\right) / 2}{6}}{M \lambda\left(k_{0}+1\right)^{2} / 16},
\end{gathered}
$$

and

$$
\begin{aligned}
A R E(\text { pseudo }, m l e)\left(k_{0}\right) & \equiv A R E\left(k_{0}\right) \\
& =\frac{(E(K) / 2)^{2}}{E\left\{\frac{K}{K+1}\right\} E \frac{K(2 K+1)}{6}} \\
& =\frac{\left(k_{0}+1\right)^{2} / 16}{E\left\{\frac{K}{K+1}\right\} \frac{\left(k_{0}+1\right)\left(2 k_{0}+1\right) / 3+\left(k_{0}+1\right) / 2}{6}},
\end{aligned}
$$

and this varies between 1 and $9 / 16$ as k_{0} varies from 1 to ∞.
Scenario 3. We now suppose that the underlying counting process is not a Poisson process, conditionally given Z, but is, instead, defined as in terms of the "negative-binomialization" of an empirical counting process, as follows: suppose that X_{1}, X_{2}, \ldots are i.i.d. with distribution function F on R, and define

$$
\mathbb{N}_{n}(t)=\sum_{i=1}^{n} 1_{\left[X_{i} \leq t\right]} \quad \text { for } t \geq 0
$$

Suppose that $(N \mid Z) \sim \operatorname{Negative} \operatorname{Binomial}(r(Z, \gamma, \theta), p)$ where $r(Z, \gamma, \theta)=\gamma e^{\theta^{\prime} Z}$, and define \mathbb{N} by

$$
\mathbb{N}(t) \equiv \mathbb{N}_{N}(t)=\sum_{i=1}^{N} 1_{\left[X_{i} \leq t\right]}
$$

Then, since

$$
E(N \mid Z)=r(Z, \gamma, \theta) \frac{q}{p}, \quad \operatorname{Var}(N \mid Z)=r(Z, \gamma, \theta) \frac{q}{p^{2}},
$$

it follows that

$$
E\{\mathbb{N}(t) \mid Z\}=E\{E[\mathbb{N}(t) \mid Z, N] \mid Z\}=E\{N F(t) \mid Z\}=\gamma e^{\theta^{\prime} Z} F(t) \frac{q}{p}=e^{\theta^{\prime} Z} \Lambda_{0}(t)
$$

with $\Lambda_{0}(t) \equiv \gamma F(t)(q / p)$. Alternatively, $(\mathbb{N}(t) \mid Z) \sim$ Negative $\operatorname{Binomial}\left(r, \frac{p}{p+q F(t)}\right)$ by straightforward computation, and hence it follows that

$$
E\{\mathbb{N}(t) \mid Z\}=r \frac{q F(t) /(p+q F(t))}{p /(p+q F(t))}=r F(t) \frac{q}{p}=\gamma e^{\theta_{0}^{\prime} Z} \frac{q}{p} F(t)=e^{\theta_{0}^{\prime} Z} \Lambda_{0}(t)
$$

in agreement with the above calculation. Moreover

$$
\begin{aligned}
\operatorname{Var}\{\mathbb{N}(t) \mid Z\} & =r \frac{q F(t) /(p+q F(t))}{(p /(p+q F(t)))^{2}}=r \frac{q}{p} F(t)\left(1+\frac{q}{p} F(t)\right) \\
& =r \frac{q}{p} F(t)+r\left(\frac{q}{p}\right)^{2} F(t)^{2}
\end{aligned}
$$

Now we want to calculate

$$
\begin{aligned}
& C\left(T_{K, j}, T_{K, j^{\prime}}, T_{K, j-1}, T_{K, j^{\prime}-1} ; Z\right) \\
& \quad=E\left[\left(\Delta \mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j}\right)\left(\Delta \mathbb{N}_{K j^{\prime}}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j^{\prime}}\right) \mid Z, K, T_{K, j-1}, T_{K, j}, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right] .
\end{aligned}
$$

By computing conditionally on N, and using the fact that conditionally on $Z, K, T_{K, j-1}, T_{K, j}, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}$ and N, \mathbb{N} has increments with a joint multinomial distribution, we find that

$$
\begin{aligned}
& C\left(T_{K, j}, T_{K, j^{\prime}}, T_{K, j-1}, T_{K, j^{\prime}-1} ; Z\right) \\
& =E\left[\left(\Delta \mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j}\right)\left(\Delta \mathbb{N}_{K j^{\prime}}-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j^{\prime}}\right) \mid Z, K, T_{K, j-1}, T_{K, j}, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right] \\
& =E\left\{E \left[\left(\Delta \mathbb{N}_{K j}-E\left(\Delta \mathbb{N}_{K j} \mid N\right)+E\left(\Delta \mathbb{N}_{K j} \mid N\right)-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j}\right)\right.\right. \\
& \cdot\left(\Delta \mathbb{N}_{K j^{\prime}}-E\left(\Delta \mathbb{N}_{K j^{\prime}} \mid N\right)+E\left(\Delta \mathbb{N}_{K j^{\prime}} \mid N\right)-e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j^{\prime}}\right) \\
& \left.\left.\mid N, Z, K, T_{K, j-1}, T_{K, j}, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right] \mid Z, K, T_{K, j-1}, T_{K, j}, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right\} \\
& = \begin{cases}E\left\{N \Delta F_{K j}\left(1-\Delta F_{K j}\right) \mid Z, K, \underline{T}_{K}\right\}+E\left\{(N-r q / p)^{2}\left(\Delta F_{K j}\right)^{2} \mid Z, K, \underline{T}_{K}\right\}, & \text { if } j=j^{\prime} \\
-E\left\{N \Delta F_{K j} \Delta F_{K j^{\prime}} \mid Z, K, \underline{T}_{K}\right\}+E\left\{(N-r q / p)^{2} \Delta F_{K j} \Delta F_{K j^{\prime}} \mid Z, K, \underline{T}_{K}\right\}, & \text { if } j \neq j^{\prime}\end{cases} \\
& = \begin{cases}r \frac{q}{p}\left(\Delta F_{K, j}-\left(\Delta F_{K, j}\right)^{2}\right)+r \frac{q}{p^{2}} \Delta F_{K, j}^{2}, & \text { if } j=j^{\prime} \\
\left\{r \frac{q}{p^{2}}-r \frac{q}{p}\right\} \Delta F_{K j} \Delta F_{K j^{\prime}}, & \text { if } j \neq j^{\prime}\end{cases} \\
& = \begin{cases}r \frac{q}{p} \Delta F_{K, j}+r \frac{q^{2}}{p^{2}}\left(\Delta F_{K, j}\right)^{2}, & \text { if } j=j^{\prime} \\
r \frac{q^{2}}{p^{2}} \Delta F_{K j} \Delta F_{K j^{\prime}}, & \text { if } j<j^{\prime}\end{cases} \\
& = \begin{cases}e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0, K, j}+\gamma^{-1} e^{\theta_{0}^{\prime}} Z \Delta\left(\Lambda_{0, K, j}\right)^{2}, & \text { if } j=j^{\prime}, \\
\gamma e^{\theta_{0}^{\prime} Z} \frac{q^{2}}{p^{2}} \Delta F_{K j} \Delta F_{K j^{\prime}}, & \text { if } j \neq j^{\prime},\end{cases} \\
& = \begin{cases}e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0, K, j}+\gamma^{-1} e^{\theta_{0}^{\prime} Z}\left(\Delta \Lambda_{0, K, j}\right)^{2}, & \text { if } j=j^{\prime}, \\
\gamma^{-1} e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j} \Delta \Lambda_{0 K j^{\prime}}, & \text { if } j \neq j^{\prime} .\end{cases}
\end{aligned}
$$

Remark. Note that if $(N \mid Z) \sim \operatorname{Poisson}(r(Z, \gamma, \theta))$, then the process $\mathbb{N} \equiv \mathbb{N}_{N}$ is conditionally, given Z, a non-homogeneous Poisson process with conditional mean function

$$
E\{\mathbb{N}(t) \mid Z\}=\gamma e^{\theta^{\prime} Z} F(t)=e^{\theta^{\prime} Z} \Lambda_{0}(t),
$$

and conditional variance function

$$
\operatorname{Var}\{\mathbb{N}(t) \mid Z\}=\gamma e^{\theta^{\prime} Z} F(t)=e^{\theta^{\prime} Z} \Lambda_{0}(t)
$$

where $\Lambda_{0}(t)=\gamma F(t)$.
We will also assume, as in Scenarios 1 and 2, that the distribution of $\left(K, \underline{T}_{K}\right)$ is independent of Z. As a consequence, Z is independent of $\left(K, \underline{T}_{K}\right)$, and the formulas in the preceding section
again simplify. By taking F uniform on $[0, M], \Lambda_{0}(t)=\lambda t$ where $\lambda=(\gamma / M)(q / p)$, and we compute, using moments and covariances of uniform spacings, as found on page 721 of Shorack and Wellner (1986),

$$
\begin{aligned}
& B=E m^{*}\left(\theta_{0}, \Lambda_{0} ; X\right)^{\otimes 2} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j, j^{\prime}=1}^{K} C\left(T_{K, j}, T_{K, j^{\prime}}, T_{K, j-1}, T_{K, j^{\prime}-1} ; Z\right)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right]\right. \\
& \left.\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j^{\prime}-1}, T_{K, j^{\prime}}\right)}\right]^{\prime}\right\} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K}\left(e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j}+\gamma^{-1} e^{\theta_{0}^{\prime} Z}\left(\Delta \Lambda_{0 K j}\right)^{2}\right)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]^{\prime}\right\} \\
& +E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j \neq j^{\prime}}^{K} \gamma^{-1} e^{\theta_{0}^{\prime} Z} \Delta \Lambda_{0 K j} \Delta \Lambda_{0 K j^{\prime}}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]^{\prime}\right\} \\
& =C\left\{E_{K, T_{K}}\left\{\sum_{j=1}^{K}\left(\Delta \Lambda_{0 K j}+\gamma^{-1}\left(\Delta \Lambda_{0 K j}\right)^{2}\right)\right\}+\gamma^{-1} E_{K, T_{K}}\left\{\sum_{j \neq j^{\prime}}^{K} \Delta \Lambda_{0 K j} \Delta \Lambda_{0 K j^{\prime}}\right\}\right\} \\
& =C\left\{\lambda M E\left(\frac{K}{K+1}\right)+\gamma^{-1} \lambda^{2} M^{2} E\left(\frac{K}{K+2}\right)\right\} \\
& =\lambda M C\left\{E\left(\frac{K}{K+1}\right)+\gamma^{-1} \lambda M E\left(\frac{K}{K+2}\right)\right\}
\end{aligned}
$$

where, as in scenario 1 ,

$$
C \equiv E_{Z}\left\{e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]^{\otimes 2}\right\}
$$

On the other hand, we find that

$$
\begin{aligned}
A & =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K} \Delta \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j-1}, T_{K, j}\right)}\right]^{\otimes 2}\right\} \\
& =C \lambda M E\left\{\frac{K}{K+1}\right\} .
\end{aligned}
$$

Thus the asymptotic variance of the MLE for this scenario is

$$
A^{-1} B\left(A^{-1}\right)^{\prime}=(\lambda M C)^{-1} \frac{E\left\{\frac{K}{K+1}\right\}+\frac{\lambda M}{\gamma} E\left\{\frac{K}{K+2}\right\}}{\left\{E\left(\frac{K}{K+1}\right)\right\}^{2}}
$$

Now for the asymptotic variance of the pseudo-MLE under scenario 3. To calculate $B^{p s}$ we first need to calculate

$$
\begin{aligned}
& C^{p s}\left(T_{K, j}, T_{K, j^{\prime}} ; Z\right) \\
& =E\left[\left(\mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j}\right)\left(\mathbb{N}_{K j^{\prime}}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j^{\prime}}\right) \mid Z, K, T_{K, j}, T_{K, j^{\prime}}\right] \\
& =E\left\{E\left[\left(\mathbb{N}_{K j}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j}\right)\left(\mathbb{N}_{K j^{\prime}}-e^{\theta_{0}^{\prime} Z} \Lambda_{0 K j^{\prime}}\right) \mid N, Z, K, T_{K, j}, T_{K, j^{\prime}}\right] \mid Z, K, T_{K, j}, T_{K, j^{\prime}}\right\} \\
& =E\left\{N\left(F\left(T_{K, j} \wedge T_{K, j^{\prime}}\right)-F\left(T_{K, j}\right) F\left(T_{K, j^{\prime}}\right)\right)+(N-r q / p)^{2} F\left(T_{K, j}\right) F\left(T_{K, j^{\prime}}\right) \mid Z, K, T_{K, j}, T_{K, j^{\prime}}\right\} \\
& =r \frac{q}{p}\left\{F\left(T_{K, j} \wedge T_{K, j^{\prime}}\right)-F\left(T_{K, j}\right) F\left(T_{K, j}\right)\right\}+r \frac{q}{p^{2}} F\left(T_{K, j}\right) F\left(T_{K, j^{\prime}}\right) \\
& =e^{\theta_{0}^{\prime} Z} \Lambda_{0}\left(T_{K, j} \wedge T_{K, j^{\prime}}\right)+\gamma^{-1} e^{\theta_{0}^{\prime} Z} \Lambda_{0}\left(T_{K, j}\right) \Lambda_{0}\left(T_{K, j}\right) \\
& =e^{\theta_{0}^{\prime} Z} \Lambda_{0}\left(T_{K, j}\right)\left(1+\gamma^{-1} \Lambda_{0}\left(T_{K, j^{\prime}}\right)\right) \quad \text { if } j \leq j^{\prime} .
\end{aligned}
$$

We can then calculate

$$
\begin{aligned}
B^{p s} & =E m^{* p s}\left(\theta_{0}, \Lambda_{0} ; X\right)^{\otimes 2} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j, j^{\prime}=1}^{K} C^{p s}\left(T_{K, j}, T_{K, j^{\prime}} ; Z\right)\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right]\right. \\
& {\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime}} Z \mid K, T_{K, j^{\prime}}\right)}{\left.E\left(e^{\left.\theta_{0}^{\prime} Z \mid K, T_{K, j^{\prime}}\right)}\right]^{\prime}\right\}}\right.} \\
& =E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j, j^{\prime}=1}^{K}\left(\Lambda_{0}\left(T_{K, j}\right)\left(1+\gamma^{-1} \Lambda_{0}\left(T_{K, j^{\prime}}\right)\right)\right) e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z}\right)}{E\left(e^{\theta_{0}^{\prime} Z}\right)}\right]^{\prime}\right\} \\
& =C\left\{\lambda M E\left(e^{\left.\theta_{0}^{\theta_{0}^{\prime} Z}\right)}\right]\right. \\
& =C\left\{\lambda M E\left(\frac{K(2 K+1)}{6}\right)+\frac{\lambda^{2} M^{2}}{\gamma} E\left(\sum_{j, j^{\prime}}^{K} U_{K, j} U_{K, j^{\prime}}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =C\left\{\lambda M E\left(\frac{K(2 K+1)}{6}\right)+\frac{\lambda^{2} M^{2}}{\gamma} E\left(\frac{K(3 K+1)}{12}\right)\right\} \\
& =\lambda M C\left\{E\left(\frac{K(2 K+1)}{6}\right)+\frac{\lambda M}{\gamma} E\left(\frac{K(3 K+1)}{12}\right)\right\} \\
& A^{p s}=E_{\left(K, T_{K}, Z\right)}\left\{\sum_{j=1}^{K} \Lambda_{0 K j} e^{\theta_{0}^{\prime} Z}\left[Z-\frac{E\left(Z e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}{E\left(e^{\theta_{0}^{\prime} Z} \mid K, T_{K, j}\right)}\right]^{\otimes 2}\right\} \\
& \quad=\lambda M C E\left(\frac{K}{2}\right) .
\end{aligned}
$$

Thus we find that the asymptotic variance of the pseudo-MLE $\widehat{\theta}_{n}^{p s}$ is given by

$$
\left(A^{p s}\right)^{-1} B^{p s}\left(\left(A^{p s}\right)^{-1}\right)^{\prime}=(\lambda M C)^{-1} \frac{E\left(\frac{K(2 K+1)}{6}\right)+\frac{\lambda M}{\gamma} E\left(\frac{K(3 K+1)}{12}\right)}{\left\{E\left(\frac{K}{2}\right)\right\}^{2}},
$$

and the asymptotic relative efficiency of the pseudo-mle to the mle is, under scenario 3 ,

$$
\begin{aligned}
\text { ARE }(\text { pseudo, mle })(\text { NegBin }) & =\frac{\frac{E\left\{\frac{K}{K+1}\right\}+\frac{\lambda M}{\gamma} E\left\{\frac{K}{K+2}\right\}}{\left\{E\left(\frac{K}{K+1}\right)\right\}^{2}}}{\frac{E\left(\frac{K(2 K+1)}{6}\right)+\frac{\lambda M}{\gamma} E\left(\frac{K(3 K+1)}{12}\right)}{\left\{E\left(\frac{K}{2}\right)\right\}^{2}}} \\
& =\frac{E\left\{\frac{K}{K+1}\right\}+\frac{\lambda M}{\gamma} E\left\{\frac{K}{K+2}\right\}}{E\left(\frac{K(2 K+1)}{6}\right)+\frac{\lambda M}{\gamma} E\left(\frac{K(3 K+1)}{12}\right)} \cdot\left(\frac{E(K / 2))}{E\left(\frac{K}{K+1}\right)}\right)^{2} \\
& =\frac{E\left\{\frac{K}{K+1}\right\}+\frac{\lambda M}{\gamma} E\left\{\frac{K}{K+2}\right\}}{E\left(\frac{K}{K+1}\right)} \cdot \frac{E\left(\frac{K(2 K+1)}{6}\right)}{E\left(\frac{K(2 K+1)}{6}\right)+\frac{\lambda M}{\gamma} E\left(\frac{K(3 K+1)}{12}\right)} \\
& =\frac{\left(1+\frac{\lambda M E(p s e u d o, m l e)(\text { Poisson })}{\gamma} \frac{E\left(\frac{K}{K+2}\right)}{E\left(\frac{K}{K+1}\right)}\right)}{\left(1+\frac{\lambda M}{\gamma} \frac{E\left(\frac{K(3 K+1)}{12}\right)}{E\left(\frac{K(2 K+1)}{6}\right)}\right)} \cdot A R E(\text { pseudo, mle })(\text { Poisson }) .
\end{aligned}
$$

Note that when factor $\lambda M / \gamma=q / p \rightarrow 0$, is zero then we recover our earlier result for the Poisson case. This is to be expected since Poisson $\left(\Lambda_{0}(t) \exp \left(\theta_{0}^{\prime} Z\right)\right)$ becomes the limiting distribution of Negative $\operatorname{Binomial}(r, p /(p+q F(t)))$ as $p \rightarrow 1$.

6 Conclusions and Further Problems

Conclusions

As in the case of panel count data without covariates studied in Sun and Kalbfleisch (1995) and Wellner and Zhang (2000), the pseudo likelihood estimation method for the semiparametric proportional mean model with panel count data proposed and studied in Zhang (1998) and Zhang (2001) also has advantages in terms of computational simplicity. The results of section 5 above show that the maximum pseudo-likelihood estimator of the regression parameters can be very inefficient relative to the maximum likelihood estimator, especially when the distribution of K is heavy tailed. In such cases it is clear that we will want to avoid the pseudo-likelihood estimator, and the computational effort required by the "full" maximum likelihood estimators can be justified by the consequent gain in efficiency.

Our derivation of the asymptotic normality of the maximum likelihood estimator of the regression parameters results in a relatively complicated expression for the asymptotic variance which may be difficult to estimate directly. Hence it becomes important to develop efficient algorithms for computation of the maximum likelihood estimator in order to allow implementation, for example, of bootstrap inference procedures. Alternatively, profile likelihood inference may be quite feasible in this model; see e.g. Murphy and Van der Vaart (1997), Murphy and Van der Vaart (1999), Murphy and Van der Vaart (2000) for likelihood ratio procedures in some related interval censoring models.

Further problems

The asymptotic normality results stated in section 4 will be developed and given in detail in Liu, Wellner, and Zhang (2002). There are quite a large number of interesting problems still open concerning the semiparametric model for panel count data which has been studied here. Here is a short list:

- Find a fast and reliable algorithm for computation of the MLE $\widehat{\theta}$ of θ. Although reasonable algorithms for computation of the maximum pseudo-likelihood estimators have been proposed in Zhang (1998) and Zhang (2001) based on the earlier work of Sun and Kalbfleisch (1995), good algorithms for computation of the maximum likelihood estimators have yet to be developed and implemented.
- Show that the natural semiparametric profile likelihood ratio procedures are valid for inference about the regression parameter θ via the theorems of Murphy and Van der Vaart (1997), Murphy and Van der Vaart (1999), and Murphy and Van der Vaart (2000).
- Do the non-standard likelihood ratio procdures and methods of Banerjee and Wellner (2001) extend to the present model to give tests and confidence intervals for $\Lambda_{0}(t)$?
- Are there compromise or hybrid estimators between the maximum pseudo-likelihood estimators and the full maximum likelihood estimators which have the computational advantages of the former and the efficiency advantages of the latter?
- Do similar results continue to hold for panel count data with covariates, but with other models for the mean function replacing the proportional mean model given by (1.1)?
- Are there computational or efficiency advantages to using the MLE's for one of the class of Mixed Poisson Process $(\mathbb{N} \mid Z)$, for example the Negative-Binomial model? Further comparisons with the
work of Dean and Balshaw (1997), Hougaard, Lee, and Whitmore (1997), and Lawless (1987a), LaWLESS (1987B) would be useful.

References

Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions. Ann. Statist. 29, to appear.
Begun, J. M., Hall, W. J., Huang, W.M., and Wellner, J. A. (1983). Information and asymptotic efficiency in parametric-nonparametric models. Ann. Statist. 11, 432-452.

Bickel, P. J., Klaassen, C.A.J., Ritov, Y., and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore.

Cook, R. J., Lawless, J. F., and Nadeau, C. (1996). Robust tests for treatment comparisons based on recurrent event responses. Biometrics 52, 557-571.

Dean, C. B. and Balshaw, R. (1997). Efficiency lost by analyzing counts rather than event times in Poisson and overdispersed Poisson regression models. J. Amer. Statist. Assoc. 92, 1387-1398.

Gaver, D. P., and O’Muircheartaigh, I. G. (1987). Robust Empirical Bayes analysis of event rates, Technometrics, 29, 1-15.

Geskus, R. and Groeneboom, P. (1996). Asymptotically optimal estimation of smooth functionals for interval censoring, part 1. Statist. Neerlandica 50, 69-88.

Geskus, R. and Groeneboom, P. (1997). Asymptotically optimal estimation of smooth functionals for interval censoring, part 2. Statist. Neerlandica 51, 201-219.

Geskus, R. and Groeneboom, P. (1999). Asymptotically optimal estimation of smooth functionals for interval censoring case 2. Ann. Statist. 27, 626-674.
Groeneboom, P. (1991). Nonparametric maximum likelihood estimators for interval censoring and deconvolution. Technical Report 378, Department of Statistics, Stanford University.
Groeneboom, P. (1996). Inverse problems in statistics. Proceedings of the St. Flour Summer School in Probability, 1994. Lecture Notes in Math. 1648, 67-164. Springer Verlag, Berlin.
Groeneboom, P. and Wellner, J. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. Birkhäuser, Basel.
Hougaard, P., Lee, M.T., and Whitmore, G. A. (1997). Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes. Biometrics 53, 1225-1238.
Huang, J. (1996). Efficient estimation for the Cox model with interval censoring, Annals of Statistics, 24, 540-568.
Huang, J., and Wellner, J. A. (1995). Efficient Estimation for the Cox Model with Case 2 Interval Censoring, Preprint.

Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation. Journal of Computation and Graphical Statistics 7, 310-321.
Kalbfleisch, J. D. and Lawless, J. F. (1981). Statistical inference for observational plans arising in the study of life history processes. In Symposium on Statistical Inference and Applications In Honour of George Barnard's 65th Birthday. University of Waterloo, August 5-8, 1981.
Kalbfleisch, J. D. and Lawless, J. F. (1985). The analysis of panel count data under a Markov assumption. Journal of the American Statistical Association 80, 863-871.
Lawless, J. F. (1987a). Regression methods for Poisson process data. J. Amer. Statist. Assoc. 82, 808-815.
Lawless, J. F. (1987b). Negative binomial and mixed Poisson regression. Canad. J. Statist. 15, 209-225.

Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics 37, 158-168.
Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. J. Roy. Statist. Soc. B, 711-730.
Liu, H., Wellner, J. A., and Zhang, Y. (2002). Large sample theory for two estimators in a semiparametric model for panel count data. Manuscript in progress.
Murphy, S. and Van der Vaart, A. W. (1997). Semiparametric likelihood ratio inference. Ann. Statist. 25, 1471-1509.
Murphy, S. and Van der Vaart, A. W. (1999). Observed information in semi-parametric models. Bernoulli 5, 381-412.
Murphy, S. and Van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95, 449-485.

Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.

Sun, J. and Kalbfleisch, J. D. (1995). Estimation of the mean function of point processes based on panel count data. Statistica Sinica 5, 279-290.
Sun, J. and Wei, L. J. (2000). Regression analysis of panel count data with covariate-dependent observation and censoring times. J. R. Stat. Soc. Ser. B 62, 293-302.
Thall, P. F., and Lachin, J. M. (1988). Analysis of Recurrent Events: Nonparametric Methods for Random-Interval Count Data. J. Amer. Statist. Assoc. 83, 339-347.
Thall, P. F. (1988). Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics 44, 197-209.
Wellner, J. A. and Zhang, Y. (2000). Two estimators of the mean of a counting process with panel count data. Ann. Statist. 28, 779-814.
Zhang, Y. (1998). Estimation for Counting Processes Based on Incomplete Data. Unpublished Ph.D. dissertation, University of Washington.

Zhang, Y. (2001). A semiparametric pseudo likelihood estimation method for panel count data. Biometrika 88, to appear.

University of Washington
Statistics
Box 354322
Seattle, Washington 98195-4322
U.S.A.
e-mail: jaw@stat.washington.edu
Department of Statistics
University of Central Florida
P.O. Box 162370

Orlando, Florida 32816-2370
e-mail: zhang@pegasus.cc.ucf.edu
University of Washington
Biostatistics
Box 357232
Seattle, Washington 98195-7232
U.S.A.
e-mail: hliu@u.washington.edu

[^0]: ${ }^{1}$ Research supported in part by National Science Foundation grant DMS-9932039, NIAID grant 2R01 AI29196804, and the Stieltjes Institute
 ${ }^{2}$ Research supported in part by National Science Foundation grant DMS-9532039
 AMS 2000 subject classifications. Primary: 60F05, 60F17; secondary 60J65, 60J70.
 Key words and phrases. asymptotic distributions, asymptotic efficiency, consistency, counting process, empirical processes, information bounds, maximum likelihood, missing data, poisson process, pseudo-likelihood estimators, monotone function, .

