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• Missing data models
• Testing and profile likelihood theory
• Semiparametric mixture model theory
• Rates of convergence via empirical process methods
• Bayes methods in semiparametric models
• Model selection methods
• Empirical likelihood
• Transformation and frailty models
• Semiparametric regression models
• Extensions to non-i.i.d. data
• Critiques and possible alternative theories
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1. Introduction: some history

• Setting: classical “goodness - of - fit”

• X1, . . . ,Xn i.i.d. with distribution function F

• Fn(x) = 1
n

∑n
i=1 1[Xi≤x]

• Test H : F = F0 versus K : F �= F0, F0 is continuous
• Without loss of generality F0(x) = x, the U(0, 1) distribution

• Break hypotheses down into family of pointwise hypotheses:
Hx : F (x) = F0(x) versus Kx : F (x) �= F0(x)

• H = ∩xHx, K = ∪xKx
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• Likelihood ratio statistic for testing Hx versus Kx:

λn(x) =
supF (x) Ln(F (x))

Ln(F0(x))
=

Ln(Fn(x))
Ln(F0(x))

=
Fn(x)nFn(x)(1 − Fn(x))n(1−Fn(x))

F0(x)nFn(x)(1 − F0(x))n(1−Fn(x))

=
(

Fn(x)
F0(x)

)nFn(x)(1 − Fn(x)
1 − F0(x)

)n(1−Fn(x))
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• Thus

log λn(x) = nFn(x) log
(

Fn(x)
F0(x)

)
+ n(1 − Fn(x)) log

(
1 − Fn(x)
1 − F0(x)

)
= nK(Fn(x), F0(x))
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Fn(x)
F0(x)

)
+ n(1 − Fn(x)) log

(
1 − Fn(x)
1 − F0(x)

)
= nK(Fn(x), F0(x))

• K(u, v) ≡ u log
(

u
v

)
+ (1 − u) log

(
1−u
1−v

)
,

Kullback - Leibler “distance”
Bernoulli(u), Bernoulli(v)
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• Thus

log λn(x) = nFn(x) log
(

Fn(x)
F0(x)

)
+ n(1 − Fn(x)) log

(
1 − Fn(x)
1 − F0(x)

)
= nK(Fn(x), F0(x))

• K(u, v) ≡ u log
(

u
v

)
+ (1 − u) log

(
1−u
1−v

)
,

Kullback - Leibler “distance”
Bernoulli(u), Bernoulli(v)

• Berk-Jones (1979) test statistic:

Rn ≡ sup
x

n−1 log λn(x) = sup
x

K(Fn(x), F0(x)) .
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• History:
◦ Berk and Jones (1979)
◦ Groeneboom and Shorack (1981)
◦ Shorack and Wellner (1986, p. 786)
◦ Owen (1995): inversion of Rn to get confidence bands
finite - sample distribution via Noé’s recursion

◦ Einmahl and McKeague (2002): integral version of Rn

◦ Donoho and Jin (2002): supremum version of
Anderson-Darling statistic
with comparison to Berk - Jones statistic Rn
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2. A new family of statistics via phi-divergences

• For s ∈ R, x ≥ 0 define

φs(x) =


1−s+sx−xs

s(1−s) , s �= 0, 1

x log x − x + 1, s = 1
− log x + x − 1, s = 0 .
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• For s ∈ R, x ≥ 0 define

φs(x) =


1−s+sx−xs

s(1−s) , s �= 0, 1

x log x − x + 1, s = 1
− log x + x − 1, s = 0 .

• Then define

Ks(u, v) = vφs(u/v) + (1 − v)φs((1 − u)/(1 − v)) .
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• Special cases:

K1(u, v) = K(u, v)
= u log(u/v) + (1 − u) log((1 − u)/(1 − v))

K0(u, v) = K(v, u)

K2(u, v) =
1
2

(u − v)2

v(1 − v)

K−1(u, v) = K2(v, u) =
1
2

(u − v)2

u(1 − u)

K1/2(u, v) = 2{(√u −√
v)2 + (

√
1 − u −√

1 − v)2}
= 4{1 −√

uv −
√

(1 − u)(1 − v)}.

Goodness of fit via phi-divergences:a new family of test statistics – p. 13/33



• The new family of statistics:

Sn(s) =

{
supx∈R Ks(Fn(x), F0(x)), s ≥ 1
supx∈[X(1),X(n)) Ks(Fn(x), F0(x)), s < 1 ,
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• The new family of statistics:

Sn(s) =

{
supx∈R Ks(Fn(x), F0(x)), s ≥ 1
supx∈[X(1),X(n)) Ks(Fn(x), F0(x)), s < 1 ,

• Thus, with F0(x) = x,

Sn(1) = Rn, Sn(0) = “reversed” Berk-Jones ≡ R̃n

Sn(2) =
1
2

sup
x∈R

(Fn(x) − x)2

x(1 − x)
, Sn(−1) =

1
2

sup
x∈[X(1),X(n))

(Fn(x)
Fn(x)(1 −

Sn(1/2)

= 4 sup
x∈[X(1),X(n))

{1 −
√

Fn(x)x −
√

(1 − Fn(x))(1 − x)}
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Fig. 1: φs(x), s ∈
{−1,−0.8,−0.6,−0.4,−0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.8, 2.0}
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3. Null hypothesis distribution theory

• Owen (1995) and Jager (2006):
finite sample critical points via Noé’s recursion for n ≤ 3000
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• Owen (1995) and Jager (2006):
finite sample critical points via Noé’s recursion for n ≤ 3000

• For n ≥ 3000, asymptotic theory via Jaeschke (1979) and
Eicker (1979) (cf. SW p. 597 - 615), together with

Ks(u, v) ≈ 2−1 (u − v)2

v(1 − v)
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• For n ≥ 3000, asymptotic theory via Jaeschke (1979) and
Eicker (1979) (cf. SW p. 597 - 615), together with

Ks(u, v) ≈ 2−1 (u − v)2

v(1 − v)

• Let rn ≡ log2 n + (1/2) log3 n − (1/2) log(4π).
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3. Null hypothesis distribution theory

• Owen (1995) and Jager (2006):
finite sample critical points via Noé’s recursion for n ≤ 3000

• For n ≥ 3000, asymptotic theory via Jaeschke (1979) and
Eicker (1979) (cf. SW p. 597 - 615), together with

Ks(u, v) ≈ 2−1 (u − v)2

v(1 − v)

• Let rn ≡ log2 n + (1/2) log3 n − (1/2) log(4π).
• Theorem. If F = F0, the uniform distribution on [0, 1], then for
−1 ≤ s ≤ 2

nSn(s) − rn →d Y4

where P (Y4 ≤ x) = exp(−4 exp(−x)).
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• bn ≡√2 log2 n, cn ≡ b2
n + (1/2){log3 n − log(4π)}
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• bn ≡√2 log2 n, cn ≡ b2
n + (1/2){log3 n − log(4π)}

• q
(1)
n (α) = y4,α + rn
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n + (1/2){log3 n − log(4π)}

• q
(1)
n (α) = y4,α + rn

• q
(2)
n (α) = y4,α + c2

n/(2b2
n),
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• q
(1)
n (α) = y4,α + rn

• q
(2)
n (α) = y4,α + c2

n/(2b2
n),

• q
(3)
n (α) = xα,n + c2

n/(2b2
n)
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10 ≤ n ≤ 3000.
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4. Limit theory under alternatives and power

• Theorem 1. If X1, . . . ,Xn are i.i.d. F ∈ K and 0 < s < 1, then

Sn(s) →a.s. sup
0<x<1

Ks(F (x), x) ≡ S∞(s, F ). (1)

• Theorem 2. If X1, . . . ,Xn are i.i.d. F ∈ K and s > 1, then (1)
holds if and only if∫ 1

0
{F−1(u)(1 − F−1(u))}(1−s)/sdu < ∞.
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• Poisson boundary distributions
• Theorem: (Berk & Jones, 1979). If F (x) = 1/(1 + log(1/x)), and

X1, . . . ,Xn are i.i.d. F , then

Rn = Sn(1) →d 1/U d= sup
t>0

N(t)
t

where U ∼ U(0, 1), N is a standard Poisson process.
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• Poisson boundary distributions
• Theorem: (Berk & Jones, 1979). If F (x) = 1/(1 + log(1/x)), and

X1, . . . ,Xn are i.i.d. F , then

Rn = Sn(1) →d 1/U d= sup
t>0

N(t)
t

where U ∼ U(0, 1), N is a standard Poisson process.
• Generalization: let

Fs(x) =


(1 + x1−s−1

s−1 )−1/s, 1 < s < ∞,

(1 + log(1/x))−1, s = 1,
(1 − s(xs−1 − 1))1/s, s < 0.
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• Theorem. (Poisson boundaries for s ≥ 1 and s < 0).
(i) Fix s ≥ 1 and suppose that X1, . . . ,Xn are i.i.d. Fs. Then

Sn(s) →d
1
s

(
sup
t>0

N(t)
t

)s
d=

1
sU s

(ii) Fix s < 0 and suppose that X1, . . . ,Xn are i.i.d. Fs. Then

Sn(s) →d
1

1 − s

(
sup
t≥S1

t

N(t)

)−s

where S1 = E1 is the first jump point of N.
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Figure 7. Poisson boundary distribution functions,
s ∈ {1, 1.2, 1.4, 1.6, 1.8, 2} ∪ {−1,−0.8,−0.6,−0.4,−0.2, 0.0}.
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• Ingster - Donoho - Jin testing problem
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• Ingster - Donoho - Jin testing problem
• Suppose Y1, . . . , Yn i.i.d. G on R

• test H : G = Φ, the standard N(0, 1) d.f. versus
H1 : G = (1 − ε)Φ + εΦ(· − µ), and, in particular, against

H
(n)
1 : G = (1 − εn)Φ + εnΦ(· − µn)

for εn = n−β , µn =
√

2r log n
1/2 < β < 1, 0 < r < 1.
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• transform to Xi ≡ 1 − Φ(Yi) ∈ [0, 1] i.i.d.

F = 1 − G(Φ−1(1 − ·)).
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• transform to Xi ≡ 1 − Φ(Yi) ∈ [0, 1] i.i.d.

F = 1 − G(Φ−1(1 − ·)).
• Then the testing problem becomes: test

H0 : F = F0 = U(0, 1) versus

H
(n)
1 : F (u) = u + εn{(1 − u) − Φ(Φ−1(1 − u) − µn)}
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• transform to Xi ≡ 1 − Φ(Yi) ∈ [0, 1] i.i.d.

F = 1 − G(Φ−1(1 − ·)).
• Then the testing problem becomes: test

H0 : F = F0 = U(0, 1) versus

H
(n)
1 : F (u) = u + εn{(1 − u) − Φ(Φ−1(1 − u) − µn)}

• Test statistics: Donoho-Jin: Berk-Jones Rn = Sn(1) and

HC∗
n ≡ sup

X(1)≤x<X([n/2])

√
n(Fn(x) − x)√

x(1 − x)

≡ Tukey’s “higher criticism statistic”
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• Define the optimal detection boundary ρ∗(β) by

ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4
(1 −√

1 − β)2, 3/4 < β < 1
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• Define the optimal detection boundary ρ∗(β) by

ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4
(1 −√

1 − β)2, 3/4 < β < 1

• Theorem: (Donoho - Jin, 2004). For r > ρ∗(β) the tests
based on HC∗

n and Rn = Sn(1) are size and power

consistent for testing H0 versus H
(n)
1 .
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• Define the optimal detection boundary ρ∗(β) by

ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4
(1 −√

1 − β)2, 3/4 < β < 1

• Theorem: (Donoho - Jin, 2004). For r > ρ∗(β) the tests
based on HC∗

n and Rn = Sn(1) are size and power

consistent for testing H0 versus H
(n)
1 .

• Theorem: (Jager - Wellner, 2006). For r > ρ∗(β) the tests
based on Sn(s) with −1 ≤ s ≤ 2 are size and power

consistent for testing H0 versus H
(n)
1 .
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Figure 8. Detection boundary: r > ρ∗(β) detectable
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Figure 9. Separation plots: n = 5 × 105, r = .15, β = 1/2
Smoothed histograms of reps = 200 of the statistics under the
null hypothesis and the the alternative hypothesis
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•

dn =
(log n)5

n
< 1/2 if n > 1010388 ≈ 106

• Number theory; Littlewood Li(x) − π(x) changes sign
infinitely often for x large.

• Skewes (1933): first sign change of Li(x) − π(x) before

10101079

• Current estimate: first sign change of Li(x) − π(x) before
10316.
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