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• 1987: Diaconis and Freedman paper entitled:
“A dozen de Finetti-style theorems
in search of a theory”

• Since then Diaconis has written at least a half dozen further
papers on de Finetti theorems.

• Is there a theory now??

Some Theory for Estimation – p. 3/27



Types of shape restrictions for functions on R

• Monotone

Some Theory for Estimation – p. 4/27



Types of shape restrictions for functions on R

• Monotone
• Unimodal, antimodal, piecewise monotone

Some Theory for Estimation – p. 4/27



Types of shape restrictions for functions on R

• Monotone
• Unimodal, antimodal, piecewise monotone
• Convex, concave, log-concave

Some Theory for Estimation – p. 4/27



Types of shape restrictions for functions on R

• Monotone
• Unimodal, antimodal, piecewise monotone
• Convex, concave, log-concave
• k−monotone, completely monotone

Some Theory for Estimation – p. 4/27



Types of shape restrictions for functions on R

• Monotone
• Unimodal, antimodal, piecewise monotone
• Convex, concave, log-concave
• k−monotone, completely monotone
• mixtures of normal (convolution - deconvolution)

Some Theory for Estimation – p. 4/27



Types of shape restrictions for functions on R

• Monotone
• Unimodal, antimodal, piecewise monotone
• Convex, concave, log-concave
• k−monotone, completely monotone
• mixtures of normal (convolution - deconvolution)
• · · ·

Some Theory for Estimation – p. 4/27



Types of shape restrictions for functions on R
d

• Monotone: blockwise decreasing

Some Theory for Estimation – p. 5/27



Types of shape restrictions for functions on R
d

• Monotone: blockwise decreasing
• Monotone: mixtures of (anchored at zero rectangular)

uniform densities

Some Theory for Estimation – p. 5/27



Types of shape restrictions for functions on R
d

• Monotone: blockwise decreasing
• Monotone: mixtures of (anchored at zero rectangular)

uniform densities
• Monotone: distribution functions

Some Theory for Estimation – p. 5/27



Types of shape restrictions for functions on R
d

• Monotone: blockwise decreasing
• Monotone: mixtures of (anchored at zero rectangular)

uniform densities
• Monotone: distribution functions
• Convex

Some Theory for Estimation – p. 5/27



Types of shape restrictions for functions on R
d

• Monotone: blockwise decreasing
• Monotone: mixtures of (anchored at zero rectangular)

uniform densities
• Monotone: distribution functions
• Convex
• Mixtures (normal, . . . )

Some Theory for Estimation – p. 5/27



Types of shape restrictions for functions on R
d

• Monotone: blockwise decreasing
• Monotone: mixtures of (anchored at zero rectangular)

uniform densities
• Monotone: distribution functions
• Convex
• Mixtures (normal, . . . )
• . . .

Some Theory for Estimation – p. 5/27



Types of functions to be estimated on R and R
d

• Density function f

Some Theory for Estimation – p. 6/27



Types of functions to be estimated on R and R
d

• Density function f
• Hazard function h:

h(x) =
f(x)

1 − F (x)

Some Theory for Estimation – p. 6/27



Types of functions to be estimated on R and R
d

• Density function f
• Hazard function h:

h(x) =
f(x)

1 − F (x)

• Intensity function λ of a Poison process

Some Theory for Estimation – p. 6/27



Types of functions to be estimated on R and R
d

• Density function f
• Hazard function h:

h(x) =
f(x)

1 − F (x)

• Intensity function λ of a Poison process
• Distribution functions in interval censoring models

Some Theory for Estimation – p. 6/27



Types of functions to be estimated on R and R
d

• Density function f
• Hazard function h:

h(x) =
f(x)

1 − F (x)

• Intensity function λ of a Poison process
• Distribution functions in interval censoring models
• Spectral density function

Some Theory for Estimation – p. 6/27



Types of functions to be estimated on R and R
d

• Density function f
• Hazard function h:

h(x) =
f(x)

1 − F (x)

• Intensity function λ of a Poison process
• Distribution functions in interval censoring models
• Spectral density function
• · · ·

Some Theory for Estimation – p. 6/27



What kind of theory?
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What kind of theory?

• Local (pointwise), or
• Global (with some global measure of deviations):

◦ Hellinger distance (densities or intensities)
◦ L1 or L2−distances
◦ supremum metrics

• Lower bounds, or
• Upper bounds.
• Estimation, or
• Testing (within a shape constrained family)
• Confidence sets?
• Assuming shape constraint, or
• Testing to see if a shape constraint is true?
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• Illustration of the pointwise limit theory pattern:
convex densities

• Illustration of the pointwise limit theory pattern:
log-concave densities

• Illustration of the pointwise limit theory pattern:
convex hazard functions

• A functional of interest:
estimation of the mode

Some Theory for Estimation – p. 12/27



Outline, Lecture 3
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Outline, Lecture 3

• Illustration of the pointwise limit theory pattern: competing
risks with current status data

• Partial illustration of the pointwise limit theory pattern:
k−monotone densities

• Partial illustration of the pointwise limit theory pattern:
distribution functions and monotone densities on R2

• Problems and directions ...
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empirical process theory: Kim-Pollard type lemmas

• Step 4. Localization of the Fenchel conditions
• Step 5. Weak convergence of the (localized) driving process

to a limit (Gaussian) driving process
empirical process theory: bracketing CLT with functions
dependent on n.

• Step 6. Preservation of (localized) Fenchel relations in the
limit.
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• Step 7. Unique (Gaussian world) estimator resulting from
localized limit processes and limit Fenchel relations

Global analogues:

• Global rate result via Birgé & Massart, Wong & Shen global
rate theorem (van der Vaart and Wellner (1996), Theorems
3.2.5 or 3.4.4).
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• Step 7. Unique (Gaussian world) estimator resulting from
localized limit processes and limit Fenchel relations

• Step 8 Cross-check/compare limiting result with local
pointwise lower bound theory provided by Groeneboom’s
lemma (Donoho & Liu, Le Cam).

Global analogues:

• Global rate result via Birgé & Massart, Wong & Shen global
rate theorem (van der Vaart and Wellner (1996), Theorems
3.2.5 or 3.4.4).

• Global minimax lower bounds ( Assouad’s lemma or Fano’s
lemma).
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1.2 Illustration of the pattern: the Grenander estimator

Step 0. X ∼ f on [0,∞) with f ↘ 0.

Step 1. Optimization criterion: log-likelihood or least squares

f̂n = argmaxf∈M

{
n∑

i=1

log f(Xi)

}
= argminψn(f)

where

ψn(f) ≡ 1
2

∫ ∞

0
f2(x)dx−

∫ ∞

0
f(x)dFn(x).

Step 2. Characterization: the Fenchel conditions

Fn(x) ≤ F̂n(x) ≡
∫ x

0
f̂n(t)dt for all x ∈ [0,∞), and

Fn(x) = F̂n(x) if and only if f̂n(x−) > f̂n(x+).
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The second of these is equivalent to∫ ∞

0
(F̂n(x) − Fn(x))df̂n(x) = 0.

The geometric interpretation of these two conditions is

f̂n(x) =
the left-derivative of the slope at x of the
least concave majorant F̂n of Fn
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Special feature:
Grenander and other monotone function problems.

Switching
Let

ŝn(a) ≡ argmaxs{Fn(s) − as}, a > 0.

Then for each fixed t ∈ (0,∞) and a > 0{
f̂n(t) ≤ a

}
= {ŝn(a) ≤ t} .

Warning: Not available (yet?) for other models.
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Steps 3-8 in Case 1. When f is the Uniform density on [0, 1],
Groeneboom and Pyke (1983) show that for each x0 ∈ (0, 1)

√
n(f̂n(x0) − f(x0)) →d S(x0)

where S is the left derivative of the least concave majorant C of a
standard Brownian bridge process U on [0, 1]. See handout.

• “Driving process” is U.
• Process related to estimator maintaining Fenchel relations

in the limit is C and its slope process C
(1) ≡ S:

C(t) ≥ U(t) for all t ∈ (0, 1),

C(t) = U(t) if and only if C
(1)(t−) > C

(1)(t+).

• No localization in this case!
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Steps 3-7 in Case 2. When f satisfies f ′(x0) < 0, f(x0) > 0 and f ′
is continuous in a neighborhood of x0, then Prakasa-Rao (1970)
showed that

n1/3(f̂n(x0) − f(x0)) →d (|f ′(x0)f(x0)|/2)1/3
S(0)

where S(0) is the slope at 0 of the least concave majorant of
W (h) − h2 for a two-sided Brownian motion process W .
Proof: See van der Vaart and Wellner (1996), pages 296 - 297.

• “Driving process” is
Z(h) ≡ √

f(x0)W (h) + f ′(x0)h2 ≡ aW (h) − bh2.

• Process related to estimator maintaining Fenchel relations
in the limit is C and its slope process C(1) ≡ S:

C(h) ≥ Z(h) for all h ∈ (−∞,∞),

C(h) = Z(h) if and only if C
(1)(h−) > C

(1)(h+).

• Localization rate is n−1/3
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Steps 3-8 in Case 3. If f (j)(x0) = 0, j = 1, . . . , p− 1, f (p)(x0) �= 0,
then from the methods of Wright (1981) and Leurgans (1982)
that

np/(2p+1)(f̂n(x0) − f(x0)) →d (f(x0)pA)1/(2p+1)
Sp(0);

with A = f (p)(x0)/(p+ 1)!. Here Sp(0) is the slope at 0 of the
least concave majorant of W (h) − |h|p+1.

• “Driving process” is Z(h) ≡ √
f(x0)W (h) −A|h|p+1.

• Process related to estimator maintaining Fenchel relations

in the limit is Cp and its slope process C
(1)
p ≡ Sp:

Cp(h) ≥ Zp(h) for all h ∈ (−∞,∞),

Cp(h) = Zp(h) if and only if C
(1)
p (h−) > C

(1)
p (h+).

• Localization rate is n−1/(2p+1)
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Steps 3-8 in Case 4. If x0 ∈ (a, b) with f(x) constant on (a, b), then
Carolan and Dykstra (1999) showed that

√
n(f̂n(x0) − f(x0)) →d

f(x0)√
p

{√
1 − pZ + S

(
x0 − a

b− a

)}
where p ≡ f(x0)(b− a) = F (b) − F (a), Z ∼ N(0, 1), S is the
process of slopes of a Brownian bridge process U as in case 1,
and Z and S are independent.
This is much as in case 1, but with a twist or two; see the
handout.

• “Driving process” is Z(h) ≡ U(F (a+ h)) − U(F (a)).
• Process related to estimator maintaining Fenchel relations

in the limit is Cloc and its slope process C
(1)
loc ≡ Sloc:

Cloc(h) ≥ Z(h) for all h ∈ [0, b − a],

Cloc(h) = Z(h) if and only if C
(1)
loc(h−) > C

(1)
loc(h+).

• Localization only to the interval [a b] Some Theory for Estimation – p. 25/27



Steps 3-8 in Case 5. If f is discontinuous at x0, then Anevski and
Hössjer (2002) show that

P (f̂n(x0)−f̄(x0) ≤ x) → P (argmax{N0(h)−ρx+d/2,x−d/2(h)} ≤ 0)

where N0 is a two-sided, centered Poisson process with rates
f(x0+) and f(x0−) to the right and left of 0 respectively,

ρB,C(h) ≡
{
Bh, h ≥ 0
−Ch, h < 0.

}
,

f̄(x0) ≡ (f(x0+) + f(x0−))/2, d ≡ f(x0−) − f(x0+). Somewhat
more naturally,

f̂n(x0) − f̄(x0) →d R(0)

where R(h) is the process of slopes (left derivatives) of the least
concave majorant of the process

M(h) ≡ N0(h) − (d/2)|h|.
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• “Driving process” is M(h) ≡ N0(h) − (d/2)|h|.
• Process related to estimator maintaining Fenchel relations

in the limit is K and its slope process K(1) ≡ R:

K(h) ≥ M(h) for all h ∈ R,

K(h) = M(h) if and only if K
(1)(h−) > K

(1)(h+).

• Localization rate is n−1!

Some Theory for Estimation – p. 27/27


