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Outline

• Testing problems for normal means
• Detection boundaries and Tukey’s “higher criticism” statistic
• A new family of statistics via phi-divergences
• Beyond normality: generalized Gaussian distributions and ...
• Estimating the proportion of false null hypotheses
• Further problems and challenges
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1. Testing problems for sparse normal means

• Initial setting: multiple testing of normal means
For i = 1, . . . , n consider testing

H0,i : Xi ∼ N(0, 1)

versus

H1,i : Xi ∼ N(µi, 1) with µi > 0.
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For i = 1, . . . , n consider testing

H0,i : Xi ∼ N(0, 1)

versus

H1,i : Xi ∼ N(µi, 1) with µi > 0.

• Sparsity: proportion εn ≡ n−1#{i ≤ n : µi > 0} is small;
εn ∼ n−β with 0 < β < 1.

• Three questions (in increasing order of difculty):
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1. Testing problems for sparse normal means

• Initial setting: multiple testing of normal means
For i = 1, . . . , n consider testing

H0,i : Xi ∼ N(0, 1)

versus

H1,i : Xi ∼ N(µi, 1) with µi > 0.

• Sparsity: proportion εn ≡ n−1#{i ≤ n : µi > 0} is small;
εn ∼ n−β with 0 < β < 1.

• Three questions (in increasing order of difculty):
◦ Q1: Can we tell if at least one null hypothesis is false?
◦ Q2: What is the proportion of false null hypotheses?
◦ Q3: Which null hypotheses are false?

• Main focus here: Q1; partial review of work on Q2.
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• Previous work: Q1: is there any signal?
◦ Ingster (1997, 1999)
◦ Jin (2004)
◦ Donoho and Jin (2004)
◦ Jager and Wellner (2007)
◦ Hall and Jin (2007)
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• Previous work: Q1: is there any signal?
◦ Ingster (1997, 1999)
◦ Jin (2004)
◦ Donoho and Jin (2004)
◦ Jager and Wellner (2007)
◦ Hall and Jin (2007)

• Previous work: Q2: What is the proportion of non-null
hypotheses?
◦ Swanepoel (1999)
◦ Efron, Tibshirani, Storey, and Tusher (2001)
◦ Meinshausen and Rice (2006)
◦ Jin and Cai (2007)

• Previous work: Q3: Where is the signal and how big is it?
◦ Benjamini and Hochberg (1995)
◦ Efron, Tibshirani, Storey, and Tusher (2001)
◦ Storey, Dai, and Leek (2005)
◦ Donoho and Jin (2006)

Testing for sparse normal mixtures:new test statistics based on phi-divergences – p. 5/27



2. Detection boundaries and
Tukey’s “higher criticism statistic

• Change of setting: Ingster - Donoho - Jin testing problem
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• Change of setting: Ingster - Donoho - Jin testing problem
• Suppose Y1, . . . , Yn i.i.d. G on R
• test H : G = N(0, 1) versus

H1 : G = (1− ε)N(0, 1) + εN(µ, 1), and, in particular, against

H(n)
1 : G = (1 − εn)N(0, 1) + εnN(µn, 1).

for εn = n−β , µn =
√

2r log n
0 < β < 1, 0 < r < 1.
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2. Detection boundaries and
Tukey’s “higher criticism statistic

• Change of setting: Ingster - Donoho - Jin testing problem
• Suppose Y1, . . . , Yn i.i.d. G on R
• test H : G = N(0, 1) versus

H1 : G = (1− ε)N(0, 1) + εN(µ, 1), and, in particular, against

H(n)
1 : G = (1 − εn)N(0, 1) + εnN(µn, 1).

for εn = n−β , µn =
√

2r log n
0 < β < 1, 0 < r < 1.

• Let Φ(z) ≡ P (Z ≤ z) =
∫ z
−∞(2π)−1/2 exp(−x2/2)dx,

Z ∼ N(0, 1).

Testing for sparse normal mixtures:new test statistics based on phi-divergences – p. 6/27



• transform to Xi ≡ 1 − Φ(Yi) ∈ [0, 1] i.i.d.

F = 1 − G(Φ−1(1 − ·)).
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• transform to Xi ≡ 1 − Φ(Yi) ∈ [0, 1] i.i.d.

F = 1 − G(Φ−1(1 − ·)).

• Then the testing problem becomes: test

H0 : F = F0 = U(0, 1) versus
H(n)

1 : F (u) = u + εn{(1 − u) − Φ(Φ−1(1 − u) − µn)}
= (1 − εn)u + εn{1 − Φ(Φ−1(1 − u) − µn)}
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• transform to Xi ≡ 1 − Φ(Yi) ∈ [0, 1] i.i.d.

F = 1 − G(Φ−1(1 − ·)).

• Then the testing problem becomes: test

H0 : F = F0 = U(0, 1) versus
H(n)

1 : F (u) = u + εn{(1 − u) − Φ(Φ−1(1 − u) − µn)}
= (1 − εn)u + εn{1 − Φ(Φ−1(1 − u) − µn)}

• Test statistics: Donoho-Jin

HC∗
n ≡ sup

X(1)≤u<X([n/2])

√
n(Fn(u) − u)√

u(1 − u)
≡ Tukey’s “higher criticism statistic”

where Fn(u) ≡ n−1 ∑n
i=1 1[0,u](Xi) = empirical distribution

function of the Xi’s.
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• Optimal detection boundary ρ∗(β) dened by:

ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4
(1 −

√
1 − β)2, 3/4 < β < 1
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ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4
(1 −

√
1 − β)2, 3/4 < β < 1

• Theorem 1: (Donoho - Jin, 2004). For r > ρ∗(β) the test
based on HC∗

n is size and power consistent for testing H0

versus H(n)
1 .
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• Optimal detection boundary ρ∗(β) dened by:

ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4
(1 −

√
1 − β)2, 3/4 < β < 1

• Theorem 1: (Donoho - Jin, 2004). For r > ρ∗(β) the test
based on HC∗

n is size and power consistent for testing H0

versus H(n)
1 .

• With hn(αn) =
√

2 log log(n)(1 + o(1))

PH0(HC∗
n > hn(αn)) = αn → 0, and

PH(n)
1

(HC∗
n > hn(αn)) → 1, as n → ∞.
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Figure 1. Detection boundary: r > ρ∗(β) detectable
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Some alternative statistics:
• Berk-Jones (1979) test statistic:

Rn ≡ sup
x

log λn(x) = sup
x

K(Fn(x), F0(x)) with

K(u, v) ≡ u log
(u

v

)
+ (1 − u) log

(
1 − u

1 − v

)
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Some alternative statistics:
• Berk-Jones (1979) test statistic:

Rn ≡ sup
x

log λn(x) = sup
x

K(Fn(x), F0(x)) with

K(u, v) ≡ u log
(u

v

)
+ (1 − u) log

(
1 − u

1 − v

)

• Adaptation to one-sided p−value setting:

BJ+
n ≡ n sup

X(1)≤u≤1/2
K+(Fn(u), u)

where

K+(u, v) ≡






K(u, v), if 0 < v < u < 1,
0, if 0 ≤ u ≤ v ≤ 1,
+∞, otherwise.
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• Theorem 2: (Donoho - Jin, 2004). For r > ρ∗(β) the test
based on BJ+

n is size and power consistent for testing H0

versus H(n)
1 ; i.e. with hn(αn) =

√
2 log log(n)(1 + o(1))

PH0(BJ+
n > hn(αn)) = αn → 0, and

PH(n)
1

(BJ+
n > hn(αn)) → 1, as n → ∞.
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3. A new family of statistics via phi-divergences

A family of test statistics connecting “Higher criticism” and Berk-Jones:
• For s ∈ R, x ≥ 0 dene

φs(x) =






1−s+sx−xs

s(1−s) , s += 0, 1
x log x − x + 1, s = 1
− log x + x − 1, s = 0 .

Testing for sparse normal mixtures:new test statistics based on phi-divergences – p. 12/27



3. A new family of statistics via phi-divergences

A family of test statistics connecting “Higher criticism” and Berk-Jones:
• For s ∈ R, x ≥ 0 dene

φs(x) =






1−s+sx−xs

s(1−s) , s += 0, 1
x log x − x + 1, s = 1
− log x + x − 1, s = 0 .

• Then dene

Ks(u, v) = vφs(u/v) + (1 − v)φs((1 − u)/(1 − v)) .
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• Special cases:

K1(u, v) = K(u, v)
= u log(u/v) + (1 − u) log((1 − u)/(1 − v))

K0(u, v) = K(v, u)

K2(u, v) =
1
2

(u − v)2

v(1 − v)

K−1(u, v) = K2(v, u) =
1
2

(u − v)2

u(1 − u)

K1/2(u, v) = 2{(
√

u −
√

v)2 + (
√

1 − u −
√

1 − v)2}

= 4{1 −
√

uv −
√

(1 − u)(1 − v)}.
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• The new family of statistics:

Sn(s) =

{
supx∈R Ks(Fn(x), F0(x)), s ≥ 1
supx∈[X(1),X(n)) Ks(Fn(x), F0(x)), s < 1 ,
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• The new family of statistics:

Sn(s) =

{
supx∈R Ks(Fn(x), F0(x)), s ≥ 1
supx∈[X(1),X(n)) Ks(Fn(x), F0(x)), s < 1 ,

• Thus, with F0(x) = x,

Sn(1) = Rn, Sn(0) = “reversed” Berk-Jones ≡ R̃n

Sn(2) =
1
2

sup
x∈R

(Fn(x) − x)2

x(1 − x)
,

Sn(−1) =
1
2

sup
x∈[X(1),X(n))

(Fn(x) − x)2

Fn(x)(1 − Fn(x))

Sn(1/2)

= 4 sup
x∈[X(1),X(n))

{1 −
√

Fn(x)x −
√

(1 − Fn(x))(1 − x)}
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• Version of the statistics for one-sided p−value setting:

S+
n ≡ n sup

X(1)≤u≤1/2
K+

s (Fn(u), u)

where

K+
s (u, v) ≡






Ks(u, v), if 0 < v < u < 1,
0, if 0 ≤ u ≤ v ≤ 1,
+∞, otherwise.
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• Version of the statistics for one-sided p−value setting:

S+
n ≡ n sup

X(1)≤u≤1/2
K+

s (Fn(u), u)

where

K+
s (u, v) ≡






Ks(u, v), if 0 < v < u < 1,
0, if 0 ≤ u ≤ v ≤ 1,
+∞, otherwise.

• Theorem: (Jager - Wellner, 2007). For r > ρ∗(β) the tests
based on S+

n (s) with −1 ≤ s ≤ 2 are size and power
consistent for testing H0 versus H(n)

1 ; i.e. With
sn(αn) = log log(n)(1 + o(1))

PH0(S
+
n > sn(αn)) = αn → 0, and

PH(n)
1

(S+
n > sn(αn)) → 1, as n → ∞.
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Figure 2. Separation plots: n = 5 × 105, r = .15, β = 1/2
Smoothed histograms of reps = 200 of the statistics under the
null hypothesis and the the alternative hypothesis
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4. Beyond normality:
generalized Gaussian distributions, ...

• Donoho and Jin (2004) also computed detection boundaries
for sparse mixtures of “Generalized Gaussian” or Subbotin
distributions: X ∼ GNγ(µ) has density function

fγ,µ(x) =
1

Cγ
exp

(
−|x − µ|γ

γ

)
, Cγ = 2Γ(1/γ)γ1/γ−1.
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4. Beyond normality:
generalized Gaussian distributions, ...

• Donoho and Jin (2004) also computed detection boundaries
for sparse mixtures of “Generalized Gaussian” or Subbotin
distributions: X ∼ GNγ(µ) has density function

fγ,µ(x) =
1

Cγ
exp

(
−|x − µ|γ

γ

)
, Cγ = 2Γ(1/γ)γ1/γ−1.

• Suppose Y1, . . . , Yn i.i.d. G on R.
• Test H0 : G = GNγ(0) versus

H(n)
1 : G = (1 − εn)GNγ(0) + εnGNγ(µn) where

εn = n−β , µγ,n = (γr log n)1/γ ,

where 1/2 < β < 1, 0 < r < 1.
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• Detection boundary for 1 < γ ≤ 2:

ρ∗γ(β) =

{
(21/(γ−1) − 1)γ−1(β − 1/2), 1/2 < β ≤ 1 − 2−γ/(γ−1),

(1 − (1 − β)1/γ)γ , 1 − 2−γ/(γ−1) ≤ β < 1.
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• Detection boundary for 1 < γ ≤ 2:

ρ∗γ(β) =

{
(21/(γ−1) − 1)γ−1(β − 1/2), 1/2 < β ≤ 1 − 2−γ/(γ−1),

(1 − (1 − β)1/γ)γ , 1 − 2−γ/(γ−1) ≤ β < 1.

• Detection boundary for 0 < γ ≤ 1:

ρ∗γ(β) = 2(β − 1/2), 1/2 < β < 1.

Note: The detection boundary is the same for all for
0 < γ ≤ 1!
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Figure 3. Detection boundaries for GN testing problem,
γ ∈ {1, 1.5, 2, 3}.
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• Theorem: (Donoho - Jin, 2004). For the higher criticism test
statistic applied to the p-values pi ≡ P (GNγ(0) > Yi),
i = 1, . . . , n. Then the detection boundary ρHC,γ for this
procedure is the same as the efcient detection boundary:

ρHC,γ(β) = ρ∗γ(β), 1/2 < β < 1.
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• Theorem: (Donoho - Jin, 2004). For the higher criticism test
statistic applied to the p-values pi ≡ P (GNγ(0) > Yi),
i = 1, . . . , n. Then the detection boundary ρHC,γ for this
procedure is the same as the efcient detection boundary:

ρHC,γ(β) = ρ∗γ(β), 1/2 < β < 1.

• Similar theorem for χ2
ν mixtures.
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5. Estimating the proportion of false null hypotheses

• Meinshausen and Rice (2006): Assume
Yi ∼ (1 − εn)N(0, 1) + εnF , F arbitrary.
εn = n−β , 1/2 < β < 1.
M & R construct ε̂MR

n such that

Pεn,F (εn ≥ ε̂MR
n ) ≥ 1 − α
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5. Estimating the proportion of false null hypotheses

• Meinshausen and Rice (2006): Assume
Yi ∼ (1 − εn)N(0, 1) + εnF , F arbitrary.
εn = n−β , 1/2 < β < 1.
M & R construct ε̂MR

n such that

Pεn,F (εn ≥ ε̂MR
n ) ≥ 1 − α

• When F = N(µn, 1), µn =
√

2r log n, then if r > 2β − 1,

Pεn,µn

(∣∣ ε̂
MR
n

εn
− 1

∣∣ > δ

)
→ 0

for every δ > 0.
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• Cai, Jin, and Low (2007): Assume
Yi ∼ (1 − εn)N(0, 1) + εnN(µn, 1),
εn = n−β , µn =

√
2r log n, with 1/2 < β < 1, 0 < r < 1.

Cai, Jin, and Low construct ε̂CJL
n such that

Pεn,µn
(εn ≥ ε̂CJL

n ) ≥ 1 − α
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• Cai, Jin, and Low (2007): Assume
Yi ∼ (1 − εn)N(0, 1) + εnN(µn, 1),
εn = n−β , µn =

√
2r log n, with 1/2 < β < 1, 0 < r < 1.

Cai, Jin, and Low construct ε̂CJL
n such that

Pεn,µn
(εn ≥ ε̂CJL

n ) ≥ 1 − α

• For any closed set Ω in the interior of {(β, r) : r > ρ∗(β)},

sup
(β,r)∈Ω

Pεn,µn

(∣∣ ε̂
CJL
n

εn
− 1

∣∣ > δ

)
→ 0

for every δ > 0.
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• Cai, Jin, and Low (2007): Assume
Yi ∼ (1 − εn)N(0, 1) + εnN(µn, 1),
εn = n−β , µn =

√
2r log n, with 1/2 < β < 1, 0 < r < 1.

Cai, Jin, and Low construct ε̂CJL
n such that

Pεn,µn
(εn ≥ ε̂CJL

n ) ≥ 1 − α

• For any closed set Ω in the interior of {(β, r) : r > ρ∗(β)},

sup
(β,r)∈Ω

Pεn,µn

(∣∣ ε̂
CJL
n

εn
− 1

∣∣ > δ

)
→ 0

for every δ > 0.
• Moreover ...
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•

Eεn,µn

(
ε̂CJL
n

εn
− 1

)2

≤ Cn(β, r)

for Cn(β, r) → 0 at the optimal rate up to powers of log n.
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6. Further problems and challenges

• Exact contiguity results for HCn and the phi-diverence
statistics under (some renement of ) the exact optimal
boundary
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• Do all the phi-divergence statistics achieve the optimal
detection regions for the Generalized Gaussian (Subbotin)
sparse mixture model?
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(2007))? Alternatives to the empirical characteristic function
methods of Jin and Cai?

• Dependence? Strong dependence studied by Hall and Jin
(2007).
Higher criticism improved on by maximum statistic.
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6. Further problems and challenges

• Exact contiguity results for HCn and the phi-diverence
statistics under (some renement of ) the exact optimal
boundary

• Do all the phi-divergence statistics achieve the optimal
detection regions for the Generalized Gaussian (Subbotin)
sparse mixture model?

• Can the phi-divergence test statistics be used to estimate εn
(efciently)?

• Estimation of the null hypothesis (Efron, Jin and Cai
(2007))? Alternatives to the empirical characteristic function
methods of Jin and Cai?

• Dependence? Strong dependence studied by Hall and Jin
(2007).
Higher criticism improved on by maximum statistic.

• Weak dependence models?
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