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1. Introduction: maximum

likelihood estimation

Setting 1: dominated families Suppose

that Xq,..., Xy are i.i.d. with density Po, with
respect to some dominating measure u where
pg, € P ={py: 0 € O} for © C R%

The likelihood is

Ln(0) = ] po(Xy).
1=1

Definition: A Maximum Likelihood Estimator

(or MLE) of 64 is any value 6 € © satisfying

Ln(0) = sup L, (6).
e



Equivalently, the MLE 6 maximizes the
log-likelihood

log Ln(0) = i log pg(X;) -

i=1
Example 1. Exponential (8). If Xq,..., Xy
are i.i.d. e, where
po(x) = Hexp(—é’x)l[opo) (z)

Then

n
Ln(0) = 0" exp(—6)_ X;)
1
SO

log Ly (0) = nlog(h) — an:Xz-
1



Example 2. Monotone decreasing densities
on [0,00). If Xq,..., Xy are i.i.d. pg € P where

P = all nonincreasing densities on [0, co)

T hen

n

Ln(p) = ]] p(X3)
i=1

IS maximized by the Grenander estimator:

pn(x) = left derivative at x of the
Least Concave Majorant
C, of F,

where Fp(z) = n~1 > H{X; <=z}

(contributions by Birge!)



Setting 2: non-dominated families
Suppose that Xq,..., Xy arei.iid. P eP

where P is some collection of probability
measures on a measurable space (X, A). If
P{x} denotes the measure under P of the
one-point set {x}, the empirical likelihood of
Xq,...,Xpn is defined to be

Ln(P) = [n[ P{X;}.
1=1

Then a Maximum Likelihood Estimator (or
MLE) of P, can be defined as a measure

P, € P that maximizes L,(P); thus

Lp(P) = sup Ln,(P)
PePp

if it exists.

Example 3. If P =all probability measures
on (X,A), then

1 n
"i=1

where §,;(A) = 1 4(x).



Consistency of the MLE:

Wald (1949)

Kiefer and Wolfowitz (1956)
Huber (1967)

Perlman (1972)

Wang (1985)

van de Geer (1993)

Counterexamples:

Neyman and Scott (1948)

Bahadur (1958)

Ferguson (1982)

LeCam (1975), (1990)

Barlow et al. (4B s) (1972)

Boyles, Marshall, and Proschan (1985)

e Divariate right censoring
Tsai, van der Laan, Pruitt

e |left truncation and interval censoring
Chappell and Pan (1999)



2. Counterexamples: MLE s are

not always consistent

Counterexample 1. (Ferguson, 1982).
Suppose that Xq,..., X, are i.i.d. with
density o, where

m@) = (=00 fo (55 ) +0R )
for 0 € [0, 1] where
fi(z) = —1[ 1.11(z) Uniform[—1, 1],

folz) = (1 — |:c|)1[_171](5c) Triangular[—1, 1]

and §(0) satisfies:
e /(0)=1
e 0<d(B)<1-46
e /() -0 as H — 1.



Ferguson (1982) shows that 0, —a.s. 1
no matter what 6 is true if §(f) — O ~ " fast
enough . In fact, the assertion is true if

6(0) =(1—-0)exp(—(1—-6)"“+1)

with ¢ > 2. (Ferguson shows that ¢ =4
works.) If ¢ = 2, Ferguson s argument shows
that

sup n Tlog L,(0)

0<0<1
n—1 1 1 - M,
> log( M, /2 —log ————
= a( n/ )_I_n g5(Mn)
where
P(D <y) =-exp 1 > log(2)

That is

d 1
D=log?2+ o5
where E is an Exponential(1) random
variable.



Counterexample 2. (4 B s, 1972). A
distribution F on [0,b) is star-shaped if F'(x)/x
is non-decreasing on [0,b). Thus if ' has a
density f which is increasing on [0,b) then F
iIs star-shaped. Let Fsiq e the class of all
star-shaped distributions on [0,b) for some b.
Suppose that Xq,..., X, are i.i.d. F' € Fsar.

It is shown by Barlow, Bartholomew,
Bremner, and Brunk (1972) that the MLE of
a star-shaped distribution function F' is

( 0, x <X(1)
Fn(aj):< n;gén)’ X(Z)SCE<X(Z_|_1), i=1,...,n—1,
\ 1, T ZX(n)

Moreover, BBBB (1972) show that if
F(x) =z for 0 <z <1, then

Fn(af;) —a.s. $2 75 xX
for 0 <z < 1.



d
Note 1. Since X(;) = S;/5,, 41 where

S; = zj.zlEj with E; i.i.d. Exponential(1)
rv s, the total mass at order statistics equals

) 1-/01(1—t)dt=1/2.

Note 2. BBBB (1972) present consistent
estimators of F' star-shaped via isotonization
due to Barlow and Scheurer (1971) and van
Zwet.



Counterexample 3. (Boyles, Marshall,
Proschan (1985). A distribution F' on [0, c0)
IS Increasing Failure Rate Average if

i{_ log(1 — F(x))} = %/\(w)

IS non-decreasing; that is, if A is star-shaped.
Let Frppa be the class of all IFRA-
distributions on [0,00). Suppose that
Xq1,...,Xp are iid. FF€ Frrpra.

It is shown by Boyles, Marshall, and Proschan
(1985) that the MLE F, of a
IFRA-distribution function F' is given by

2

Aj X(y><w<Xu+1>a
—log(1 — Fu(x)) =« i=0,...,n—1
| oo, > Xy

where

no X
k=i (k)
A_ZX()Iog(Zzi )

—i+1 X (k)

Moreover, BMP (1985) show that if F is
exponential(1), then

1—Fu(x) —as. (1 +2) % #exp(—x), so

é/\n(az) —a.s l0g(14+2) = 1.



More counterexamples:
e bivariate right censoring
Tsai, van der Laan, Pruitt
e |left truncation and interval censoring
Chappell and Pan (1999)
e Possible counterexample?
bivariate interval censoring
with a continuous mark
Hudgens, Maathuis, and Gilbert (2005)



3. Beyond consistency:
rates and distributions

Le Cam (1973); Birge (1983): optimal rate
of convergence r, = r°’! determined by

nrp © = log Ny (1/rn, P) (1)
If
K
log N[](E,P) = 61/7 (2)

(1) leads to the optimal rate of convergence

roPt = v/ (27 +1)

On the other hand, the bounds (from Birge
and Massart (1993)), vield achieved rates of
convergence for maximum likelihood
estimators (and other minimum contrast
estimators) r, = r%" determined by

~1
\/ﬁT?;Q — /CTZQ \/Iog N[](e, P)de



and if (2) holds, this leads to the rate

nY/?2 ifv<1/2.
Thus there is the possibility that maximum
likelihood is not (rate-)optimal when v < 1/2.
Since typically

where d is the dimension of the underlying
sample space and « is a measure of the
" “smoothness of the functions in P,

<d
a —_
2

leads to v < 1/2.

Many examples with v > 1/2!



4. Positive Examples

(some still in progress!)

Further Examples:
e Interval censoring (Groeneboom)
case 1, current status data
case 2 (Groeneboom)
e panel count data
(Wellner and Zhang, 2000)
e k—monotone densities
(Balabdaoui and Wellner, 2004)
e competing risks current status data
(Jewell and van der Laan; Maathuis)
e monotone densities in R4
(Polonik; Biau and Devroye)



Example 1. (interval censoring)

Case 1: (van de Geer, 1993).

Y ~F, T ~ G independent

Observe X = (1{Y < T}, T)=(A,T).
Goal: estimate F'. MLE Fj, exists
Global rate: d=1, a=1, y=a/d=1.
~/(2v 4+ 1) =1/3, so r, = nl/3:

n'/Zh(p,, ,po) = Op(1)
and this yields
n1/3/ Fy — FoldG = Op(1).
Local rate: (Groeneboom, 1987)
n13(Fn(to) — F(to))
N {F(toxl - F(t0))fo(to) }1/ .

2g(tg)

where Z = argmin{W (t) + t2}



Case 2: Y~F, (UV)~H, ULV
independent of Y
Observe i.i.d. copies of X = (A,U,V) where

A = (A17A27A3>
(1{Y <UHLIH{U<KY < VHI{V < Y})

Goal: estimate F'. MLE F), exists.

Global rate (separated case): If
PV-U>e¢)=1d=1,a=1,vy=a/d=1
~/(2v 4+ 1) =1/3, so r, = nl/3

n'/3h(p,, ,po) = Op(1)
and this yields
n1/3/ |Fyy — Fpldp = Op(1)
where

p(A) =PUecA)+P(VeA), AebB;



Global rate (nonseparated case): (van de
Geer, 1993).

nl/3
(logn)1/6
Although this looks = "worse in terms of the

rate, it is actually better because the
Hellinger metric is much stronger in this case.

h(p,, - po) = Op(1)

Local rate (separated case):
(Groeneboom, 1996)

folto) |
R 3(Fu(ty) — Fy(tg)) ’d{zz(t(;)} 27
where Z = argmin{W (t) + t?} and
_ hy(%p)
a(ty) = Fo (o) + k1 (to)
T ho(to) + ho(tp)

1 — Fy(tg)



with

M h(w,v)

k(W) = |, Fo(0) — Fo(u)™"
[ h(u,v)
2 () _/o Fo(0) — Fo(w)™



Local rate (non-separated case):
(conjectured, G&W, 1992)

5y 1/3
3 fo(tg) } 57

(nlogn)3(Fu(ty) — Fy(te)) —a {4h(to to)

where Z = argmin{W (t) + t2}

Monte-Carlo evidence in support:
Groeneboom and Ketelaars (2005)



Example 2. (k-monotone densities)

A density p on (0,00) is k—monontone if it is
non-negative and nonincreasing when k = 1;
and if (=1)7pU)(z) >0 for j=0,...,k—2 and
(—1)p*=2) is convex for k > 2. Let D;. the
collection of all k—monotone densities.

Mixture representation: p € D, iff

p@) = [F - arw)

for some distribution function F on (0, c0).

k= 1. monotone decreasing densities on R+
k = 2. convex decreasing densities on R+
k> 3.
k = oco: completely monotone densities

— scale mixtures of exponential



The MLE pn of pg € D exists and is
characterized by

/OO k (y—fﬂ)k

0 yk pn(x)
{gl, for all y>0

=1, if (~1D)RF V=) >pE V4.

k= 1; GQrenander estimator:

rnznl/s

e Global rates and finite n minimax bounds:
Birge (1986), (1987), (1989)
e Local rates:
Prakasa Rao (1969)
Groeneboom (1985), (1989)
Kim and Pollard (1990)

po(to)lpg (to)! }1/3

n1/3(pn(to) —po(tg)) —4 { 5

27



k = 2; convex decreasing density

d=1, a=2,vy=2, v/(2vy+1) =2/5, so

rn = n2/® (forward problem)

e Global rates: nothing yet

e Local rates and distributions:
Groeneboom, Jongbloed, Wellner (2001)

k > 3; k-monotone density

d=1,a=k y=k v/(2y+1) =k/(2k+ 1),

so rn, = nk/(2k+1) (forward problem)?

e Global rates: nothing yet

e Local rates: should be ry, = nk/(2k+1)
progress: Balabdaoui and Wellner (2004)
local rate is true if a certain conjecture
about Hermite interpolation holds



Example 3. (Competing risks with current
status data)

Variables of interest (X,Y);
X = failure time; Y = failure cause
XeRtT, Ye{l,. . K}
T = an observation time,
independent of (X,Y)
Observe: (A, T), A= (Ay,..., Ak, Ak 1q)
where

A =1{X<T,Y=3} j=1,. K
Ay = HX>T}.

Goal: estimate F;(t) = P(X <t,Y = j)
MLE Fn = (F,1,...,F, k) exists!

Characterization of Fj, involves an interacting
system of slopes of convex minorants



e Global rates. Easy with present methods.

K
2N [IF k() = Fo p(DIAG () = Op(1)
k=1

e Local rates? Conjecture r, = nl/3
Tricky. Maathuis (20067)

e Limit distribution theory: will involve slopes
of an interacting system of greatest convex
minorants Defined in terms of a vector of
dependent two-sided Brownian motions



Example 4. (Monotone densities in R%)
a=1,d v=1/d, s0v/(2y+1) = 1/(d+2)
Proofs for entropy results?

Biau and Devroye (2003) using Assouad and
direct calculations:

ropt — nl/(2+d)

plus optimal constant of order S4/(d+2) with
S =1log(1 + B) where Pg is the family of all
coordinate-wise decreasing densities with
uniform bound B.

Rate achieved by the MLE:
Natural conjecture:

ach __ n1/2d7 d> 2

Tn —

Biau and Devroye (2003) construct
generalizations of Birge s (1987) histogram
estimators that achieve the optimal rate for
all d > 2.



5. Problems and Challenges

e More tools for local rates and
distribution theory? Comparison

methods?

e Under what additional hypotheses
are MLE s globally rate optimal in the
case v > 1/27

e More counterexamples to clarify

when MLE s do not work?



e \What is the limit distribution for
interval censoring, case 27 (Does the
G&W (1992) conjecture hold?)

e When the MLE is not rate optimal,
is it still preferable from some other
perspectives? For example, does the
MLE provide efficient estimators of
smooth functionals (while alternative
rate -optimal estimators fail to have
this property)? Compare with Bickel
and Ritov (2003).

e More rate and optimality theory for
Maximum Likelihood Estimators of

Mmixing distributions in mixture models



with smooth kernels: e.g. completely
monotone densities (scale mixtures of
exponential), normal location mixtures

(deconvolution problems)

e Stable and efficient algorithms for
computing MLE s in models where
they exist (e.g. mixture models,

missing data).
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