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1. Introduction: maximum

likelihood estimation

Setting 1: dominated families Suppose

that X1, . . . , Xn are i.i.d. with density pθ0
with

respect to some dominating measure µ where

pθ0
∈ P = {pθ : θ ∈ Θ} for Θ ⊂ Rd.

The likelihood is

Ln(θ) =
n∏

i=1

pθ(Xi) .

Definition: A Maximum Likelihood Estimator

(or MLE) of θ0 is any value θ ∈ Θ satisfying

Ln(θ) = sup
θ∈Θ

Ln(θ) .



Equivalently, the MLE θ maximizes the

log-likelihood

logLn(θ) =
n∑

i=1

log pθ(Xi) .

Example 1. Exponential (θ). If X1, . . . , Xn

are i.i.d. pθ0
where

pθ(x) = θ exp(−θx)1[0,∞)(x)

Then

Ln(θ) = θn exp(−θ
n∑
1

Xi)

so

logLn(θ) = n log(θ) − θ
n∑
1

Xi

and θn = 1/Xn.



Example 2. Monotone decreasing densities

on [0,∞). If X1, . . . , Xn are i.i.d. p0 ∈ P where

P = all nonincreasing densities on [0,∞)

Then

Ln(p) =
n∏

i=1

p(Xi)

is maximized by the Grenander estimator:

pn(x) = left derivative at x of the

Least Concave Majorant

Cn of Fn

where Fn(x) = n−1 ∑n
i=1 1{Xi ≤ x}.

(contributions by Birgé!)



Setting 2: non-dominated families

Suppose that X1, . . . , Xn are i.i.d. P0 ∈ P
where P is some collection of probability

measures on a measurable space (X ,A). If

P{x} denotes the measure under P of the

one-point set {x}, the empirical likelihood of

X1, . . . , Xn is defined to be

Ln(P ) =
n∏

i=1

P{Xi} .

Then a Maximum Likelihood Estimator (or

MLE) of P0 can be defined as a measure

Pn ∈ P that maximizes Ln(P ); thus

Ln(P ) = sup
P∈P

Ln(P )

if it exists.

Example 3. If P =all probability measures

on (X ,A), then

Pn = Pn =
1

n

n∑
i=1

δXi

where δx(A) = 1A(x).



Consistency of the MLE:

Wald (1949)

Kiefer and Wolfowitz (1956)

Huber (1967)

Perlman (1972)

Wang (1985)

van de Geer (1993)

Counterexamples:

• Neyman and Scott (1948)

• Bahadur (1958)

• Ferguson (1982)

• LeCam (1975), (1990)

• Barlow et al. (4B s) (1972)

• Boyles, Marshall, and Proschan (1985)

• bivariate right censoring

Tsai, van der Laan, Pruitt

• left truncation and interval censoring

Chappell and Pan (1999)



2. Counterexamples: MLE s are

not always consistent

Counterexample 1. (Ferguson, 1982).

Suppose that X1, . . . , Xn are i.i.d. with

density pθ0
where

pθ(x) = (1 − θ)
1

δ(θ)
f0

(
x − θ

δ(θ)

)
+ θf1(x)

for θ ∈ [0,1] where

f1(x) =
1

2
1[−1,1](x) Uniform[−1,1],

f0(x) = (1 − |x|)1[−1,1](x) Triangular[−1,1]

and δ(θ) satisfies:

• δ(0) = 1

• 0 < δ(θ) ≤ 1 − θ

• δ(θ) → 0 as θ → 1.



Ferguson (1982) shows that θn →a.s. 1

no matter what θ0 is true if δ(θ) → 0 ``fast

enough . In fact, the assertion is true if

δ(θ) = (1 − θ) exp(−(1 − θ)−c + 1)

with c > 2. (Ferguson shows that c = 4

works.) If c = 2, Ferguson s argument shows

that

sup
0≤θ≤1

n−1 logLn(θ)

≥ n − 1

n
log(Mn/2) +

1

n
log

1 − Mn

δ(Mn)
→d D

where

P (D ≤ y) = exp

(
− 1

2(y − log 2)

)
, y ≥ log(2) .

That is

D
d
= log2 +

1

2E

where E is an Exponential(1) random

variable.



Counterexample 2. (4 B s, 1972). A

distribution F on [0, b) is star-shaped if F (x)/x

is non-decreasing on [0, b). Thus if F has a

density f which is increasing on [0, b) then F

is star-shaped. Let Fstar be the class of all

star-shaped distributions on [0, b) for some b.

Suppose that X1, . . . , Xn are i.i.d. F ∈ Fstar.

It is shown by Barlow, Bartholomew,

Bremner, and Brunk (1972) that the MLE of

a star-shaped distribution function F is

Fn(x) =


0, x < X(1)

ix
nX(n)

, X(i) ≤ x < X(i+1), i = 1, . . . , n − 1,

1, x ≥ X(n) .

Moreover, BBBB (1972) show that if

F (x) = x for 0 ≤ x ≤ 1, then

Fn(x) →a.s. x2 �= x

for 0 ≤ x ≤ 1.



Note 1. Since X(i)

d
= Sj/Sn+1 where

Si =
∑i

j=1 Ej with Ej i.i.d. Exponential(1)

rv s, the total mass at order statistics equals

1

nX(n)

n∑
i=1

X(i)

d
=

1

Sn

n∑
i=1

Si,

=
n

Sn

1

n

n∑
j=1

(
1 − j − 1

n

)
Ej

→p 1 ·
∫ 1

0
(1 − t)dt = 1/2 .

Note 2. BBBB (1972) present consistent

estimators of F star-shaped via isotonization

due to Barlow and Scheurer (1971) and van

Zwet.



Counterexample 3. (Boyles, Marshall,
Proschan (1985). A distribution F on [0,∞)
is Increasing Failure Rate Average if

1

x
{− log(1 − F (x))} ≡ 1

x
Λ(x)

is non-decreasing; that is, if Λ is star-shaped.
Let FIFRA be the class of all IFRA-
distributions on [0,∞). Suppose that
X1, . . . , Xn are i.i.d. F ∈ FIFRA.
It is shown by Boyles, Marshall, and Proschan
(1985) that the MLE Fn of a
IFRA-distribution function F is given by

− log(1 − Fn(x)) =


λj, X(j) ≤ x < X(j+1),

j = 0, . . . , n − 1
∞, x > X(n)

where

λj =
j∑

i=1

X
−1
(i) log

 ∑n
k=i

X(k)∑n
k=i+1 X(k)

 .

Moreover, BMP (1985) show that if F is
exponential(1), then

1 − Fn(x) →a.s. (1 + x)−x �= exp(−x), so
1

x
Λn(x) →a.s. log(1 + x) �= 1 .



More counterexamples:

• bivariate right censoring

Tsai, van der Laan, Pruitt

• left truncation and interval censoring

Chappell and Pan (1999)

• Possible counterexample?

bivariate interval censoring

with a continuous mark

Hudgens, Maathuis, and Gilbert (2005)



3. Beyond consistency:

rates and distributions

Le Cam (1973); Birgé (1983): optimal rate
of convergence rn = r

opt
n determined by

nr
−2
n = logN[ ](1/rn,P) (1)

If

logN[ ](ε,P) 	 K

ε1/γ
(2)

(1) leads to the optimal rate of convergence

ropt
n = nγ/(2γ+1) .

On the other hand, the bounds (from Birgé
and Massart (1993)), yield achieved rates of
convergence for maximum likelihood
estimators (and other minimum contrast
estimators) rn = rach

n determined by

√
nr

−2
n =

∫ r
−1
n

cr
−2
n

√
logN[ ](ε,P)dε



and if (2) holds, this leads to the rate{
nγ/(2γ+1) if γ > 1/2

nγ/2 if γ < 1/2 .

Thus there is the possibility that maximum

likelihood is not (rate-)optimal when γ < 1/2.

Since typically

1

γ
=

d

α

where d is the dimension of the underlying

sample space and α is a measure of the

``smoothness of the functions in P,

α <
d

2

leads to γ < 1/2.

Many examples with γ > 1/2!



4. Positive Examples

(some still in progress!)

Further Examples:

• Interval censoring (Groeneboom)

case 1, current status data

case 2 (Groeneboom)

• panel count data

(Wellner and Zhang, 2000)

• k−monotone densities

(Balabdaoui and Wellner, 2004)

• competing risks current status data

(Jewell and van der Laan; Maathuis)

• monotone densities in Rd

(Polonik; Biau and Devroye)



Example 1. (interval censoring)

Case 1: (van de Geer, 1993).

Y ∼ F , T ∼ G independent

Observe X = (1{Y ≤ T}, T ) ≡ (∆, T ).

Goal: estimate F . MLE Fn exists

Global rate: d = 1, α = 1, γ = α/d = 1.

γ/(2γ + 1) = 1/3, so rn = n1/3:

n1/3h(p
Fn

, p0) = Op(1)

and this yields

n1/3
∫

|Fn − F0|dG = Op(1) .

Local rate: (Groeneboom, 1987)

n1/3(Fn(t0) − F (t0))

→d

F (t0)(1 − F (t0))f0(t0)

2g(t0)


1/3

2Z

where Z = argmin{W (t) + t2}



Case 2: Y ∼ F , (U, V ) ∼ H, U ≤ V

independent of Y

Observe i.i.d. copies of X = (∆, U, V ) where

∆ = (∆1,∆2,∆3)

= (1{Y ≤ U},1{U < Y ≤ V },1{V < Y })

Goal: estimate F . MLE Fn exists.

Global rate (separated case): If

P (V − U ≥ ε) = 1 d = 1, α = 1, γ = α/d = 1

γ/(2γ + 1) = 1/3, so rn = n1/3

n1/3h(p
Fn

, p0) = Op(1)

and this yields

n1/3
∫

|Fn − F0|dµ = Op(1)

where

µ(A) = P (U ∈ A) + P (V ∈ A), A ∈ B1



Global rate (nonseparated case): (van de

Geer, 1993).

n1/3

(logn)1/6
h(p

Fn
, p0) = Op(1) .

Although this looks ``worse in terms of the

rate, it is actually better because the

Hellinger metric is much stronger in this case.

Local rate (separated case):

(Groeneboom, 1996)

n1/3(Fn(t0) − F0(t0)) →d

f0(t0)

2a(t0)


1/3

2Z

where Z = argmin{W (t) + t2} and

a(t0) =
h1(t0)

F0(t0)
+ k1(t0)

+ k2(t0) +
h2(t0)

1 − F0(t0)



with

k1(u) =
∫ M

u

h(u, v)

F0(v) − F0(u)
dv

k2(v) =
∫ v

0

h(u, v)

F0(v) − F0(u)
du



Local rate (non-separated case):

(conjectured, G&W, 1992)

(n logn)1/3(Fn(t0) − F0(t0)) →d

3

4

f0(t0)
2

h(t0, t0)


1/3

2Z

where Z = argmin{W (t) + t2}

Monte-Carlo evidence in support:

Groeneboom and Ketelaars (2005)



Example 2. (k-monotone densities)

A density p on (0,∞) is k−monontone if it is

non-negative and nonincreasing when k = 1;

and if (−1)jp(j)(x) ≥ 0 for j = 0, . . . , k − 2 and

(−1)p(k−2) is convex for k ≥ 2. Let Dk the

collection of all k−monotone densities.

Mixture representation: p ∈ Dk iff

p(x) =
∫ ∞

0

k

yk
(y − x)k−1

+ dF (y)

for some distribution function F on (0,∞).

k = 1: monotone decreasing densities on R+

k = 2: convex decreasing densities on R+

k ≥ 3: . . .

k = ∞: completely monotone densities

= scale mixtures of exponential



The MLE pn of p0 ∈ Dk exists and is

characterized by

∫ ∞

0

k

yk

(y − x)k
+

pn(x)
dPn(x){

≤ 1, for all y ≥ 0

= 1, if (−1)kp
(k−1)
n (y−) > p

(k−1)
n (y+) .

k = 1; Grenander estimator:

rn = n1/3

• Global rates and finite n minimax bounds:

Birgé (1986), (1987), (1989)

• Local rates:

Prakasa Rao (1969)

Groeneboom (1985), (1989)

Kim and Pollard (1990)

n1/3(pn(t0)−p0(t0)) →d

p0(t0)|p′0(t0)|
2


1/3

2Z



k = 2; convex decreasing density

d = 1, α = 2, γ = 2, γ/(2γ + 1) = 2/5, so

rn = n2/5 (forward problem)

• Global rates: nothing yet

• Local rates and distributions:

Groeneboom, Jongbloed, Wellner (2001)

k ≥ 3; k-monotone density

d = 1, α = k, γ = k, γ/(2γ + 1) = k/(2k + 1),

so rn = nk/(2k+1) (forward problem)?

• Global rates: nothing yet

• Local rates: should be rn = nk/(2k+1)

progress: Balabdaoui and Wellner (2004)

local rate is true if a certain conjecture

about Hermite interpolation holds



Example 3. (Competing risks with current

status data)

Variables of interest (X, Y );

X = failure time; Y = failure cause

X ∈ R+, Y ∈ {1, . . . , K}
T = an observation time,

independent of (X, Y )

Observe: (∆, T ), ∆ = (∆1, . . . ,∆K,∆K+1)

where

∆j = 1{X ≤ T, Y = j}, j = 1, . . . , K

∆K+1 = 1{X > T} .

Goal: estimate Fj(t) = P (X ≤ t, Y = j)

MLE Fn = (Fn,1, . . . , Fn,K) exists!

Characterization of Fn involves an interacting

system of slopes of convex minorants



• Global rates. Easy with present methods.

n1/3
K∑

k=1

∫
|Fn,k(t) − F0,k(t)|dG(t) = Op(1)

• Local rates? Conjecture rn = n1/3

Tricky. Maathuis (2006?)

• Limit distribution theory: will involve slopes

of an interacting system of greatest convex

minorants Defined in terms of a vector of

dependent two-sided Brownian motions



Example 4. (Monotone densities in Rd)

α = 1, d, γ = 1/d, so γ/(2γ + 1) = 1/(d + 2)

Proofs for entropy results?

Biau and Devroye (2003) using Assouad and

direct calculations:

ropt
n = n1/(2+d)

plus optimal constant of order Sd/(d+2) with

S ≡ log(1 + B) where PB is the family of all

coordinate-wise decreasing densities with

uniform bound B.

Rate achieved by the MLE:

Natural conjecture:

rach
n = n1/2d, d > 2

Biau and Devroye (2003) construct

generalizations of Birgé s (1987) histogram

estimators that achieve the optimal rate for

all d ≥ 2.



5. Problems and Challenges

• More tools for local rates and

distribution theory? Comparison

methods?

• Under what additional hypotheses

are MLE s globally rate optimal in the

case γ > 1/2?

• More counterexamples to clarify

when MLE s do not work?



• What is the limit distribution for

interval censoring, case 2? (Does the

G&W (1992) conjecture hold?)

• When the MLE is not rate optimal,

is it still preferable from some other

perspectives? For example, does the

MLE provide efficient estimators of

smooth functionals (while alternative

rate -optimal estimators fail to have

this property)? Compare with Bickel

and Ritov (2003).

• More rate and optimality theory for

Maximum Likelihood Estimators of

mixing distributions in mixture models



with smooth kernels: e.g. completely

monotone densities (scale mixtures of

exponential), normal location mixtures

(deconvolution problems)

• Stable and efficient algorithms for

computing MLE s in models where

they exist (e.g. mixture models,

missing data).
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