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1 Examples and Empirical Process Basics

1.1 Basic Notation and History

Empirical process theory began in the 1930’s and 1940’s with the study of the empirical
distribution function Fn and the corresponding empirical process. If X1, . . . , Xn are i.i.d.
real-valued random variables with distribution funtion F (and corresponding probability
measure P on R), then the empirical distribution function is

Fn(x) =
1
n

n∑
i=1

1(−∞,x](Xi), x ∈ R ,

and the corresponding empirical process is

Zn(x) =
√

n(Fn(x) − F (x)) ,

Two of the basic results concerning Fn and Zn are the Glivenko-Cantelli theorem and the
Donsker theorem:

Theorem 1. (Glivenko-Cantelli, 1933).

‖Fn − F‖∞ = sup
−∞<x<∞

|Fn(x) − F (x)| →a.s. 0 .

Theorem 2. (Donsker, 1952).

Zn ⇒ Z ≡ U(F ) in D(R, ‖ · ‖∞)

where U is a standard Brownian bridge process on [0, 1]. Thus U is a zero-mean Gaussian
process with covariance function

E(U(s)U(t)) = s ∧ t − st , s, t ∈ [0, 1] .

This means that we have
Eg(Zn) → Eg(Z)

for any bounded, continuous function g : D(R, ‖ · ‖∞) → R, and

g(Zn) →d g(Z)

for any continuous function g : D(R, ‖ · ‖∞) → R.

Remark: In the statement of Donsker’s theorem I have ignored measurability difficulties
related to the fact that D(R, ‖ · ‖∞) is a nonseparable Banach space. I will continue to
ignore these difficulties throughout these lecture notes. For a complete treatment of the
necessary weak convergence theory, see Van der Vaart and Wellner (1996), part 1 -
Stochastic Convergence. The occasional stars as superscripts on P ’s and functions refer to
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outer measures in the first case, and minimal measureable envelopes in the second case. I
recommend ignoring the ∗’s on a first reading.

The need for generalizations of Theorems 1 and 2 became apparent in the 1950’s and
1960’s. In particular, it became apparent that when the observations are in a more general
sample space X (such as Rd, or a Riemannian manifold, or some space of functions, or ... ),
then the empirical distribution function is not as natural. It becomes much more natural to
consider the empirical measure Pn indexed by some class of subsets C of the sample space
X , or, more generally yet, Pn indexed by some class of real-valued functions F defined on
X .

Suppose now that X1, . . . , Xn are i.i.d. P on X . Then the empirical measure Pn is
defined by

Pn =
1
n

n∑
i=1

δXi ;

thus for any Borel set A ⊂ R

Pn(A) =
1
n

n∑
i=1

1A(Xi) =
#{i ≤ n : Xi ∈ A}

n
.

For a real valued function f on X , we write

Pn(f) =
∫

f d Pn =
1
n

n∑
i=1

f(Xi) .

If C is a collection of subsets of X , then

{Pn(C) : C ∈ C}

is the empirical measure indexed by C. If F is a collection of real-valued functions defined
on X , then

{Pn(f) : f ∈ F}
is the empirical measure indexed by F . The empirical process Gn is defined by

Gn =
√

n(Pn − P ) ;

thus {Gn(C) : C ∈ C} is the empirical process indexed by C, while {Gn(f) : f ∈ F} is the
empirical process indexed by G. (Of course the case of sets is a special case of indexing by
functions by taking F = {1C : C ∈ C}.)

Note that the classical empirical distribution function for real-valued random variables
can be viewed as the special case of the general theory for which X = R, C = {(−∞, x] :
x ∈ R}, or F = {1(−∞,x] : x ∈ R}.

Two central questions for the general theory are:

(i) For what classes of sets C or functions F does a natural generalization of the Glivenko-
Cantelli Theorem 1 hold?
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(ii) For what classes of sets C or functions F does a natural generalization of the Donsker
Theorem 2 hold?

If F is a class of functions for which

‖Pn − P‖F = sup
f∈F

|Pn(f) − P (f)| →a.s. 0

then we say that F is a P−Glivenko-Cantelli class of functions. If F is a class of functions
for which

Gn =
√

n(Pn − P ) ⇒ G in �∞(F) ,

where G is a mean-zero P−Brownian bridge process with (uniformly-) continuous sample
paths with respect to the semi-metric ρP (f, g) defined by

ρ2
P (f, g) = V arP (f(X) − g(X)) ,

then we say that F is a P−Donsker class of functions. Here

�∞(F) =

{
x : F �→ R

∣∣∣ ‖x‖F = sup
f∈F

|x(f)| < ∞
}

,

and G is a P−Brownian bridge process on F if it is a mean-zero Gaussian process with
covariance function

E{G(f)G(g)} = P (fg) − P (f)P (g) .

Answers to these questions began to emerge during the 1970’s, especially in the work
of Vapnik and Chervonenkis (Vapnik and Chervonenkis (1971), ) and Dudley (Dudley

(1978)), with notable contributions by many others in the late 1970’s and early 1980’s
including Pollard, Giné and Zinn, and Gaenssler. We will give statements of some of our
favorite generalizations of Theorems 1 and 2 later in this lecture. Our main focus in these
lectures will be on applications of these results to problems in statistics. Thus our first
goal is to briefly present several examples in which the usefullness of the generality of the
modern set-up becomes apparent.

1.2 Some Examples

Example 1. (Lp deviations about the sample mean). Let X, X1, X2, . . . , Xn be i.i.d. P on
R and let Pn denote the empirical measure of the Xi’s:

Let Xn = n−1
∑n

i=1 Xi, and, for p ≥ 1 consider the Lp deviations about Xn:

An(p) =
1
n

n∑
i=1

|Xi − X|p = Pn|X − Xn|p .
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Questions:
(i) Does An(p) →p E|X − E(X)|p ≡ a(p)?
(ii) Does

√
n(An(p) − a(p)) →d N(0, V 2(p))? And what is V 2(p)?

As will become clear, to answer question (i) we will proceed by showing that the class of
functions Gδ ≡ {x �→ |x − t|p : |t − µ| ≤ δ} is a P−Glivenko-Cantelli class, and to answer
question (ii) we will show that Gδ is a P−Donsker class.

Example 1p. (Lp−deviations about the sample mean considered as a process in p. Suppose
we want to study An(p) as a stochastic process indexed by p ∈ [a, b] for some 0 < a ≤ 1 ≤
b < ∞. Can we prove that

sup
a≤p≤b

|An(p) − a(p)| →a.s. 0 ?

Can we prove that √
n(An − a) ⇒ A in D[a, b]

as a process in p ∈ [a, b]? This will require study of the empirical measure Pn and empirical
process Gn indexed by the class of functions

Fδ = {ft,p : |t − µ| ≤ δ, a ≤ p ≤ b}

where ft,p(x) = |x − t|p for x ∈ R, t ∈ R, p > 0.

Example 1d. (p−th power of Lq deviations about the sample mean). Let
X, X1, X2, . . . , Xn be i.i.d. P on Rd and let Pn denote the empirical measure of the Xi’s:

Let Xn = n−1
∑n

i=1 Xi, and, for p, q ≥ 1 consider the deviations about Xn measured in
the Lq−metric on Rd:

An(p, q) =
1
n

n∑
i=1

‖Xi − X‖p
q = Pn‖X − Xn‖p

q

where
‖x‖q = (|x1|q + · · · + |xd|q)1/q .

Questions:
(i) Does An(p) →p E‖X − E(X)‖p

q ≡ a(p, q)?
(ii) Does

√
n(An(p, q) − a(p, q)) →d N(0, V 2(p, q))? And what is V 2(p, q)?

Example 2. Least Lp−estimates of location. Now suppose that we want to consider the
measure of location corresponding to mimimum Lp-deviation:

µ̂n(p) ≡ argmint Pn|X − t|p

for 1 ≤ p < ∞. Of course µ̂n(2) = Xn while µ̂n(1) = any median of X1, . . . , Xn. The
asymptotic behavior of µ̂n(p) is well-known for p = 1 or p = 2, but for p �= 1, 2 it is
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perhaps not so well-known. Consistency and asymptotic normality for any fixed p can be
treated as a special case of the argmax (or argmin) continuous mapping theorem – which
we will introduce as an important tool in chapter/lecture 2. The analysis in this case will
again depend on various (Glivenko-Cantelli, Donsker) properties of the class of functions
F = {ft(x) : t ∈ R} with ft(x) = |x − t|p.

Example 2p. Least Lp estimates of location as a process in p. What can be said about the
estimators µ̂n(p) considered as a process in p, say for 1 ≤ p ≤ b for some finite b? (Probably
b = 2 would usually give the range of interest.)

Example 2d. Least p-th power of Lq− deviation estimates of location in Rd. Now supppose
that X1, . . . , Xn are i.i.d. P in Rd. Suppose that we want to consider the measure of location
corresponding to mimimum Lq-deviation raised to the p−th power:

µ̂n(p, q) ≡ argmint Pn‖X − t‖p
q

for 1 ≤ p, q < ∞.

Example 3. Projection pursuit. Suppose that X1, X2, . . . , Xn are i.i.d. P on Rd. For
t ∈ R and γ ∈ Sd−1, let

Fn(t, γ) = Pn(1(−∞,t](γ · X)) = Pn(γ · X ≤ t) ,

the empirical distribution of γ · X1, . . . , γ · Xn. Let

F (t, γ) = P (1(−∞,t](γ · X)) = P (γ · X ≤ t) .

Question: Under what condition on d = dn → ∞ as n → ∞ do we have

Dn ≡ sup
t∈R

sup
γ∈Sd−1

|Fn(t, γ) − F (t, γ)| →p 0 ? (1.1)

According to Diaconis and Freedman (1984), pages 794 and 812, this shows that (under the
condition for which (1.1) holds) “the least normal projection is close to normal”: Theorem
1.1 of Diaconis and Freedman (1984) shows that for non-random vectors x1, . . . , xn in Rd

and Γ ∼ Uniform(Sd−1), then the empirical distribution of Γ ·x1, . . . ,Γ ·xn converges weakly
to N(0, σ2) if

1
n

#{i ≤ n : |‖xi‖2 − σ2d| > εd} → 0 ,

and
1
n2

#{i, j ≤ n : |xi · xj | > εd} → 0

for every ε > 0.
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Example 4. Kernel density estimators as a process indexed by bandwith.
Let X1, X2, . . . , Xn be i.i.d. P on Rd. Suppose P has density p with respect to Lebesgue

measure λ on Rd, and ‖p‖∞ < ∞. Let k be a non-negative kernel which integrates to one:∫
Rd

k(y)dλ(y) =
∫

k(y)dy = 1 .

Then a kernel density estimator of p is given by

p̂n(y, h) =
1
hd

∫
k

(
y − x

h

)
d Pn(x) = h−d

Pnk

(
y − X

h

)
.

This estimator is naturally indexed by the bandwidth h, and it is natural to consider p̂n as
a process indexed by both x ∈ Rd and h > 0. Questions:
(i) Does p̂n(x, hn) converge to p(x) pointwise or in Lr for some choice of hn → 0?
(ii) How should we choose hn → 0? Can we let hn depend on x and (or) X1, . . . , Xn?

Here the class of functions F involved is

F = {x �→ k

(
y − x

h

)
: y ∈ Rd, h > 0} . (1.2)

Example 5. (Interval censoring in R and R2.) Suppose that X1, . . . , Xn are i.i.d. with
distribution function F on R+ = [0,∞), and Y1, . . . , Yn are i.i.d. with distribution function
G and independent of the Xi’s. Unfortunately we are only able to observe (1[Xi≤Yi], Yi) ≡
(∆i, Yi), i = 1, . . . , n, but our goal is to estimate the distribution function F . In this model
the conditional distribution of ∆ given Y is Bernoulli(F (Y )), and hence the density of
(∆, Y ) with respect to the dominating measure µ given by the product of counting measure
on {0, 1} and G is

pF (δ, y) = F (y)δ(1 − F (y))1−δ, δ ∈ {0, 1}, y ∈ R+ .

It turns out that the maximum likelihood estimator

F̂n = argmaxF

n∑
i=1

{∆i log F (Yi) + (1 − ∆i) log(1 − F (Yi))}

is well-defined and is given by the left-derivative of the greatest convex minorant of the
cumulative sum diagram

{(Pn1[Y ≤Y(j)], Pn(∆1[Y ≤Y(j)]) : j = 1, . . . , n}
where Y(1) ≤ . . . ≤ Y(n) are the order statistics of the Yi’s.
Questions:
(i) Can we show that F̂n is a consistent estimator of F?
(ii) What are the global and local rates of convergence of F̂n to F?

Example 6. Machine learning (Koltchinskii and Smale). See Koltchinskii and Panchenko

(2002).

Example 7. Profile likelihood and semiparametric models: two-phase sampling.
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1.3 Glivenko-Cantelli and Donsker Theorems

Our statements of Glivenko-Cantelli theorems will be phrased in terms of bracketing
numbers and covering numbers for a class F of functions f from X to R.

The covering number N(ε,F , ‖ · ‖) is the minimal number of balls {g : ‖g − f‖ < ε} of
radius ε needed to cover F . The centers of the balls need not belong to F , but they should
have finite norms.

Given two functions l and u, the bracket [l, u] is the set of all functions f satisfying
l ≤ f ≤ u. An ε−bracket is a bracket [l, u] with ‖u − l‖ < ε. The bracketing number
N[ ](ε,F , ‖ · ‖) is the minimum number of ε−brackets needed to cover F . The entropy with
bracketing is the logarithm of the bracketing number. Again the upper and lower bounds
u and l of the brackets need not belong to F themselves but are assumed to have finite
norms.

A related notion is that of packing numbers. Call a collection of points ε−separated
if the distance between each pair of points is strictly larger than ε. The packing number
D(ε, d) is the maximum number of ε−separated points. It is easily shown that

N(ε, d) ≤ D(ε, d) ≤ N(ε/2, d) .

Here is another bit of notation we will use frequently: if F is a class of functions from X to
R, then the envelope function F of the class is

F (x) = sup
f∈F

|f(x)| = ‖f(x)‖F .

With this preparation we are ready to state several useful Glivenko-Cantelli and Donsker
theorems.

Theorem 1.3.1. (Blum-DeHardt). If N[ ](ε,F , L1(P )) < ∞ for every ε > 0, then F is
P−Glivenko-Cantelli.

Theorem 1.3.2. (Vapnik-Chervonenkis; Pollard). Let F be a suitably measurable class of
real-valued functions on X satisfying supQ N(ε‖F‖Q,1,F , L1(Q)) < ∞ for every ε > 0. If
P ∗F < ∞, then F is P−Glivenko-Cantelli.

An important weakening of the main condition in Theorem 1.3.2 is given in the following
version of the Glivenko-Cantelli theorem. For a class of functions F with envelope function
F and a positive number M , let the truncated class FM = {f1[F≤M ] : f ∈ F}.
Theorem 1.3.3. (Vapnik-Chervonenkis; Giné and Zinn). Suppose that F is L1(P )
bounded and nearly linearly supremum measurable for P ; in particular this holds if F
is image admissible Suslin. Then the following are equivalent:
A. F is a P− Glivenko-Cantelli class.
B. F has an envelope function F ∈ L1(P ) and the truncated classes FM satisfy

1
n

E∗ log N(ε,FM , Lr(Pn)) → 0 for all ε > 0 and for all M ∈ (0,∞)
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for some (all) r ∈ (0,∞] where ‖f‖Lr(P ) = ‖f‖P,r = {P (|f |r)}r−1∧1.

Now we turn to Donsker theorems. The first order of business is the following theorem
characterizing the Donsker property.

Theorem 1.3.3. Let F be a class of measurable functions. Then the following are
equivalent:
(i) F is P−Donsker.
(ii) (F , ρP ) is totally bounded and Gn is asymptotically equicontinuous in probability with
respect to ρP : for every ε > 0

lim
δ↓0

lim sup
n→∞

P ∗( sup
ρP (f,g)<δ

|Gn(f) − Gn(g)| > ε) = 0 .

(iii) (F , ρP ) is totally bounded and Gn is asymptotically equicontinuous in mean with
respect to ρP :

lim
n→∞

E∗( sup
ρP (f,g)<δn

|Gn(f) − Gn(g)|) = 0

for every sequence δn → 0.

Proof. See Van der Vaart and Wellner (1996) pages 113 - 115. �

Typically the way that the Donsker property is verified is by showing that either (ii) or
(iii) holds. But it is important for many applications to remember that the Donsker property
always implies that (ii) and (iii) hold. Note that (iii) implies (ii) via Markov’s inequality,
but the fact that (ii) implies (iii) involves the use of symmetrization and the Hoffmann-
Jørgensen inequality and the fact that (i) implies that the class F has a (centered) envelope
function F ∗ satisfying the weak L2−condition: any P−Donsker class F satisfies

P (‖f − Pf‖∗F > x) = o(x−2) as x → ∞ .

Theorem 1.3.4. (Ossiander). Suppose that F is a class of measurable functions satisfying∫ 1

0

√
log N[](ε,F , L2(P )) dε < ∞ .

Then F is P−Donsker.

Theorem 1.3.5. (Pollard). Suppose that F is a suitably measurable class of real-valued
functions on X satisfying∫ 1

0

√
log sup

Q
N(ε‖F‖Q,2,F , L2(Q)) dε < ∞ .

If P ∗F 2 < ∞, then F is P−Donsker.
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The following theorem is a very useful consequence of Theorem 1.3.5.

Theorem 1.3.6. (Jain-Marcus). Let (T, d) be a compact metric space, and let C(T ) be
the space of continuous real functions on T with supremum norm. Let X1, . . . , Xn be i.i.d.
random variables in C(T ). Suppose that EX1(t) = 0 and EX2

1 (t) < ∞ for all t ∈ T .
Furthermore, supppose that for a random variable M with EM2 < ∞,

|X1(t) − X1(s)| ≤ Md(t, s) a.s. for all t, s ∈ T .

Suppose that ∫ 1

0

√
log N(ε, T, d) dε < ∞ .

Then the CLT holds in C(T ).

1.4 Preservation theorems: Glivenko-Cantelli and Donsker

As we will see in treating the examples, it is very useful to have results which show how the
Glivenko-Cantelli property or the Donsker property of a class of functions are preserved.
Here we give statements of several useful preservation theorems, beginning with a Glivenko-
Cantelli preservation theorem proved by Van der Vaart and Wellner (2000). Given
classes F1, . . . ,Fk of functions fi : X → R, and a function ϕ : Rk → R, let let ϕ(F1, . . . ,Fk)
be the class of functions x �→ ϕ(f1(x), . . . , fk(x)) where f = (f1, . . . , fk) ranges over F1 ×
. . . ×Fk.

Theorem 1.6.1. (Van der Vaart and Wellner). Suppose that F1, . . . ,Fk are P−Glivenko-
Cantelli classes of functions, and that ϕ : Rk → R is continuous. Then H ≡ ϕ(F1, . . . ,Fk)
is P−Glivenko-Cantelli provided that it has an integrable envelope function.

Proof. See Van der Vaart and Wellner (2000), pages 117-120. �

Now we state a corresponding preservation theorem for Donsker classes.

Theorem 1.6.2. (Van der Vaart and Wellner). Suppose that F1, . . . ,Fk are Donsker
classes with ‖P‖Fi < ∞ for each i. Suppose that ϕ : Rk → R satisfies

|ϕ(f(x)) − ϕ(g(x))|2 ≤
k∑

l=1

(fl(x) − gl(x))2

for every f, g ∈ F1 ×· · ·×Fk and x. Then the class ϕ(F1, . . . ,Fk) is Donsker provided that
ϕ(f1, . . . , fk) is square integrable for at least one (f1, . . . , fk).

Proof. See Van der Vaart and Wellner (1996), pages 192 - 198. �
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1.5 Bounds on Covering Numbers and Bracketing Numbers

For a collection of subsets C of a set X , and points x1, . . . , xn ∈ X ,

∆C
n(x1, . . . , xn) ≡ #{C ∩ {x1, . . . , xn} : C ∈ C};

so that ∆C
n(x1, . . . , xn) is the number of subsets of {x1, . . . , xn} picked out by the collection

C. Also we define
mC(n) ≡ max

x1,...,xn

∆C
n(x1, . . . , xn) .

Let
V (C) ≡ inf{n : mC(n) < 2n},

where the infimum over the empty set is taken to be infinity. Thus V (C) = ∞ if and only if
C shatters sets of arbitrarily large size. A collection C is called a VC - class if V (C) < ∞.

Lemma 1.5.1. (VC - Sauer - Shelah). For a VC - class of sets with VC index V (C), set
S ≡ S(C) ≡ V (C) − 1. Then for n ≥ S,

mC(n) ≤
S∑

j=0

(
n

j

)
≤

(ne

S

)S
. (1.3)

Proof. For the first inequality, see Van der Vaart and Wellner (1996), pages 135-136. To
see the second inequality, note that with Y ∼Binomial(n, 1/2),

S∑
j=0

(
n

j

)
= 2n

S∑
j=0

(
n

j

)
(1/2)n = 2nP (Y ≤ S)

≤ 2nErY −S for any r ≤ 1

= 2nr−S(
1
2

+
r

2
)n = r−S(1 + r)n

=
(n

S

)S
(1 +

S

n
)n by choosing r = S/n

≤
(n

S

)S
eS ,

and hence (1.3) holds. �

Theorem 1.5.2. There is a universal constant K such that for any probability measure
Q, any VC-class of sets C, and r ≥ 1, and 0 < ε ≤ 1,

N(ε, C, Lr(Q)) ≤
(

K log(K/εr)
εr

)V (C)−1

≤
(

K ′

ε

)r(V (C)−1)+δ

, δ > 0 ; (1.4)
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here K = 3e2/(e − 1) ≈ 12.9008... works.
Moreover,

N(ε, C, Lr(Q)) ≤ K̃V (C)(4e)V (C)

(
1
ε

)r(V (C)−1)

. (1.5)

where K̃ is universal.

The inequality (1.4) is due to Dudley (1978); the inequality (1.5) is due to Haussler
(1995). Here we will (re-)prove (1.4), but not (1.5). For the proof of (1.5), see Haussler
(1995) or van der Vaart and Wellner (1996), pages 136-140.

Proof. Fix 0 < ε ≤ 1. Let m = D(ε, C, L1(Q)), the L1(Q) packing number for the collection
C. Thus there exist sets C1, . . . , Cm ∈ C which satisfy

Q(Ci∆Cj) = EQ|1Ci − 1Cj | > ε for i �= j .

Let X1, . . . , Xn be i.i.d Q. Now Ci and Cj pick out the same subset of {X1, . . . , Xn} if and
only if no Xk ∈ Ci∆Cj . If every Ci∆Cj contains some Xk, then all Ci’s pick out different
subsets, and C picks out at least m subsets from {X1, . . . , Xn}. Thus we compute

Q([Xk ∈ Ci∆Cj for some k, for all i �= j]c)
= Q([Xk /∈ Ci∆Cj for all k ≤ n, for some i �= j])

≤
∑
i<j

Q([Xk /∈ Ci∆Cj for all k ≤ n])

≤
(

m

2

)
max[1 − Q(Ci∆Cj)]n

≤
(

m

2

)
(1 − ε)n < 1 for n large enough . (1.6)

In particular this holds if

n >
− log

(
m
2

)
log(1 − ε)

=
log(m(m − 1)/2)

− log(1 − ε)
.

Since − log(1 − ε) < ε, (1.6) holds if

n = �3 log m/ε� .

for this n,
Q([Xk ∈ Ci∆Cj for some k ≤ n, for all i �= j]) > 0 .

Hence there exist points X1(ω), . . . , Xn(ω) such that

m ≤ ∆C
n(X1(ω), . . . , Xn(ω))

≤ max
x1,...,xn

∆C
n(x1, . . . , xn)

≤
(en

S

)S
(1.7)
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where S ≡ S(C) ≡ V (C)−1 by the VC - Sauer - Shelah lemma. With n = �3 log m/ε�, (1.7)
implies that

m ≤
(

3e log m

Sε

)S

.

Equivalently,
m1/S

log m
≤ 3e

Sε
,

or, with g(x) ≡ x/ log x,

g(m1/S) ≤ 3e

ε
. (1.8)

This implies that

m1/S ≤ e

e − 1
3e

ε
log

(
3e

ε

)
, (1.9)

or

D(ε, C, L1(Q)) = m ≤
{

e

e − 1
3e

ε
log

(
3e

ε

)}S

. (1.10)

Since N(ε, C, L1(Q)) ≤ D(ε, C, L1(Q)), (1.4) holds for r = 1 with K = 3e2/(e − 1).
Here is the argument for (1.8) implies (1.9): note that the inequality

g(x) =
x

log x
≤ y

implies
x ≤ e

e − 1
y log y .

To see this, note that g(x) = x/ log x is minimized by x = e and is ↑. Furthermore y ≥ g(x)
for x ≥ e implies that

log y ≥ log x − log log x = log x

(
1 − log log x

log x

)
> log x

(
1 − 1

e

)
,

so
x ≤ y log x < y log y(1 − 1/e)−1 .

For Lr(Q) with r > 1, note that

‖1C − 1D‖L1(Q) = Q(C∆D) = ‖1C − 1D‖r
Lr(Q) ,

so that

N(ε, C, Lr(Q)) = N(εr, C, L1(Q)) ≤
(

Kε−r log
(

K

εr

))S

.

This completes the proof. �
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Definition 1.5.3. The subgraph of f : X × R is the subset of X × R given by {(x, t) ∈
X ×R : t < f(x)}. A collection of functions F from X to R is called a VC - subgraph class
if the collection of subgraphs in X × R is a VC -class of sets. For a VC - subgraph class,
let V (F) ≡ V (subgraph(F)).

Theorem 1.5.4. For a VC-subgraph class with envelope function F and r ≥ 1, and for
any probability measure Q with ‖F‖Lr(Q) > 0,

N(2ε‖F‖Q,r,F , Lr(Q)) ≤ KV (F)(16e)V (F)

(
1
ε

)r(V (F)−1)

for a universal constant K and 0 < ε ≤ 1.

Proof. Let C be the set of all subgraphs Cf of functions f ∈ F . By Fubini’s theorem,

Q|f − g| = (Q × λ)(Cf∆Cg)

where λ is Lebesgue measure on R. Renormalize Q × λ to be a probability measure on
{(x, t) : |t| ≤ F (x)} by defining P = (Q × λ)/2Q(F ). Then by the result for sets,

N(ε2Q(F ),F , L1(Q)) = N(ε, C, L1(P )) ≤ KV (F)
(

4e

ε

)V (F)−1

.

For r > 1, note that

Q|f − g|r ≤ Q|f − g|(2F )r−1 = 2r−1R|f − g|Q(F r−1)

for the probability measure R with density F r−1/Q(F r−1) with respect to Q. Thus
the Lr(Q) distance is bounded by the distance 2(Q(F r−1)1/r‖f − g‖1/r

R,1. Elementary
manipulations yield

N(ε2‖F‖Q,r,F , Lr(Q)) ≤ N(εrRF,F , L1(R)) ≤ KV (F)
(

8e

εr

)V F)−1

by the inequality (1.5). �

1.6 Convex Hulls and VC-hull classes

Definition 1.6.1. The convex hull, conv(F) of a class of functions F is defined as the set of
functions

∑m
i=1 αifi with

∑m
i=1 αi ≤ 1, αi ≥ 0 and each fi ∈ F . The symmetric convex hull,

denoted by sconv(F), of a class of functions F is defined as the set of functions
∑m

i=1 αifi

with
∑m

i=1 |αi| ≤ 1 and each fi ∈ F . A set of measurable functions F is a VC - hull class
if it is contained in the pointwise sequential closure of the symmetric convex hull of a VC
class of functions, F ⊂ sconv(G), for a VC-class G.

14



Theorem 1.6.2. (Dudley, Ball and Pajor). Let Q be a probability mesaure on (X ,A),
and let F be a class of measurable functions with measurable square- integrable envelope
F such that QF 2 < ∞. and

N(ε‖F‖Q,2,F , L2(Q)) ≤ C

(
1
ε

)V

, 0 < ε ≤ 1 .

Then there is a K depending on C and V only such that

log N(ε‖F‖Q,2, conv(F), L2(Q)) ≤ K

(
1
ε

)2V/(V +2)

.

Note that 2V/(V + 2) < 2 for V < ∞. Dudley (1987) proved that for any δ > 0

log N(ε‖F‖Q,2, conv(F), L2(Q)) ≤ K

(
1
ε

)2V/(V +2)+δ

.

Proof. See Ball and Pajor (1990) or van der Vaart and Wellner (1996), 142 - 145. See also
Carl (1997). �

Example 1.6.3. (Monotone functions on R). For F = {1[t,∞)(x) : t ∈ R}, F is VC, so by
Theorem 2, with F ≡ 1, V (F) = 2,

N(ε,F , L2(Q)) ≤ Kε−2, 0 < ε ≤ 1.

Now
G ≡ {g : R → [0, 1]

∣∣∣ g ↗} ⊂ conv(F) .

Hence by Theorem 1.6.2

log N(ε,G, L2(Q)) ≤ K

ε
, 0 < ε ≤ 1 .

In this case there is a similar bound on the bracketing numbers:

log N[ ](ε,G, Lr(Q)) ≤ Kr

ε
, 0 < ε ≤ 1 , (1.11)

for every probability measure Q, every r ≥ 1, where the constant Kr depends only on r;
see Van der Vaart and Wellner (1996), Theorem 2.7.5, page 159.

Example 1.6.4. (Distribution functions on Rd.) For F = {1[t,∞)(x) : t ∈ Rd}, F is VC
with V (F) = d + 1. By Theorem 2 with F ≡ 1,

N(ε,F , L2(Q)) ≤ Kε−2d, 0 < ε ≤ 1.

Now
G ≡ {g : Rd → [0, 1]| g is a d.f. on Rd} ⊂ conv(F) .
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Hence by Theorem 1.6.2

log N(ε,G, L2(Q)) ≤ Kε−2d/(d+1), 0 < ε ≤ 1 .

In particular, for d = 2,

log N(ε,G, L2(Q)) ≤ Kε−4/3, 0 < ε ≤ 1 .

1.7 Some Useful Inequalities

Bounds on Expectations: general classes F .

Exponential Bounds for bounded classes F .
One of the classical types of results for empirical processes are exponential bounds for the

supremum distance between the empirical distribution and the true distribution function.

A. Empirical df, X = R: Suppose that we consider the classical empirical d.f. of real
- valued random variables. Thus F = {1(−∞,t] : t ∈ R}. Then Dvoretzky, Kiefer, and
Wolfowitz (1956) showed that

P (‖
√

n(Fn − F )‖∞ ≥ λ) ≤ C exp(−2λ2)

for all n ≥ 1, λ ≥ 0 where C is an absolute constant. Massart (1990) shows that C = 2
works, confirming a long-standing conjecture of Z. W. Birnbaum. Method: reduce to the
uniform empirical process Un, start with the exact distribution of ‖U

+
n ‖∞.

B. Empirical df, X = Rd: Now consider the classical empirical d.f. of i.i.d. random
vectors: Thus F = {1(−∞,t] : t ∈ Rd}. Then Kiefer (1961) showed that for every ε > 0
there exists a Cε such that

PrF (‖
√

n(Fn − F )‖∞ ≥ λ) ≤ Cε exp(−(2 − ε)λ2)

for all n ≥ 1 and λ > 0.

C. Empirical measure, X general: F = {1C : C ∈ C} satisfying

sup
Q

N(ε,F , L1(Q)) ≤
(

K

ε

)V

,

e.g. when C is a VC-class, V = V (C) − 1. Then Talagrand (1994) proved that

Pr∗(‖
√

n(Pn − P )‖C ≥ λ) ≤ D

λ

(
DKλ2

V

)V

exp(−2λ2)

for all n ≥ 1 and λ > 0.
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D. Empirical measure, X general: F = {f : f : X → [0, 1]} satisfying

sup
Q

N(ε,F , L2(Q)) ≤
(

K

ε

)V

,

e.g. when F is a VC-class, V = 2(V (F) − 1). Then Talagrand (1994) showed that

Pr∗(‖
√

n(Pn − P )‖F ≥ λ) ≤
(

Dλ√
V

)V

exp(−2λ2)

for all n ≥ 1 and λ > 0.

Kiefer’s tool to prove B: If Y1, . . . , Yn are i.i.d. Bernoulli(p), and p < e−1, then

P (
√

n|Y n − p| ≥ λ) ≤ 2 exp(−[log(1/p) − 1]λ2)
≤ 2 exp(−11λ2) if p < e−12.

Talagrand’s tool to prove C and D: If F is as in D (all the f ’s have range in [0, 1]), if
σ2
F ≡ supf∈F P (f − Pf)2 = supf∈F V arP (f(X)) ≤ σ2

0, and if K0µn ≤ √
n, then

Pr∗(‖
√

n(Pn − P )‖F ≥ λ) ≤ D exp(−11λ2)

for every λ ≥ K0µn where µn ≡ E∗‖Gn‖F , µn = µn ∨ n−1/2.
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2 Empirical Process Methods for Statistics

2.1 The argmax (or argmin) continuous mapping theorem: M-estimators

Suppose that θ is a parameter with values in a metric space (Θ, d). Frequently we define
estimators in statistical applications in terms of optimization problems: given observations
X1, . . . , Xn, our estimator θ̂n of a parameter θ ∈ Θ is that value of θ maximizing (or
minimizing)

Mn(θ) =
1
n

n∑
i=1

mθ(Xi) = Pnmθ(X) .

We say that such an estimator θ̂n is an M-estimator. The estimators in examples 1.2.2 and
1.2.6 were of this type. Of course Maximum-Likelihood estimators are simply M-estimators
with mθ(x) = log pθ(x).

Here is a typical theorem giving consistency of a sequence of M-estimators:

Theorem 2.1.1. Let Mn be random functions of θ ∈ Θ, and let M be a fixed function of
θ such that

sup
θ∈Θ

|Mn(θ) − M(θ)| →p 0

and, for every ε > 0,
sup

θ:d(θ,θ0)≥ε
M(θ) < M(θ0) .

Then for any sequence of estimators θ̂n satisfying Mn(θ̂n) ≥ Mn(θ0) − op(1) it follows that
θ̂n →p θ0.

Note that for i.i.d. Xi’s the first hypothesis in the previous theorem boils down to a
Glivenko-Cantelli theorem for the class of functions F = {mθ : θ ∈ Θ}, while the second
hypothesis involves no randomness but simply the properties of the limit function M at its
point of maximum, θ0.

The difficulty in applying this theorem often resides in the fact that the supremum is
taken over all θ ∈ Θ.

2.2 M-estimates: rates of convergence

Once consistency of an estimator sequence θ̂n has been established, then interest turns to
the rate at which θ̂n converges to the true value: for what sequences rn ↗ ∞ does it hold
that

rn(θ̂n − θ0) = Op(1) ?

The following development is aimed at answering this question.
If θ0 is a maximizing point of a differentiable function M(θ), then the first derivative

Ṁ(θ) must vanish at θ0 and the second derivative should be negative definite. Hence it is
natural to assume that for θ in a neighborhood of θ0

M(θ) − M(θ0) ≤ −Cd2(θ, θ0) (2.1)
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for some positive constant C.
The main point of the following theorem is that an upper bound for the rate of

convergence of θ̂n can be obtained from the continuity modulus of the process Mn(θ)−M(θ)
for estimators θ̂n that maximize (or nearly maximize) the functions Mn(θ).

Theorem 2.2.1. (Rate of convergence). Let Mn be stochastic processes indexed by a
(semi-)metric space Θ and let M : Θ �→ R be a deterministic function such that (2.1) holds
for every θ in a neighborhood of θ0. Suppose that for every n and sufficiently small δ, the
centered process Mn − M satisfies

E∗ sup
d(θ,θ0)<δ

|(Mn − M)(θ) − (Mn − M)(θ0)| ≤ K
φn(δ)√

n
(2.2)

for a constant K and functions φn such that φn(δ)/δα is a decreasing function of δ for some
α < 2 (not dependent of n). Let rn satisfy

r2
nφn

(
1
rn

)
≤

√
n for every n .

If the sequence θ̂n satisfies Mn(θ̂n) ≥ Mn(θ0)−Op(r−2
n ) and converges in outer probability

to θ0, then rnd(θ̂n, θ0) = O∗
p(1).

Proof. See Van der Vaart and Wellner (1996), pages 290-291. �

The following corollary concerning the i.i.d. case is especially useful.

Corollary 2.2.2. In the i.i.d. case, suppose that for every θ in a neighborhood of θ0

P (mθ − mθ0) ≤ −Cd2(θ, θ0) .

Also assume that there exists a function φ such that φ(δ)/δα is decreasing for some α < 2
and, for every n,

E∗‖Gn‖Mδ
≤ Kφ(δ)

for some constant K where

Mδ = {mθ − mθ0 : d(θ, θ0) < δ} .

If the sequence θ̂n satisfies Pnm
θ̂n

≥ Pnmθ0 −Op(r−2
n ) and converges in outer probability to

θ0, then rnd(θ̂n, θ0) = O∗
p(1) for every sequence rn such that r2

nφ(1/rn) ≤ √
n for every n.

In dealing with Nonparametric Maximum Likelihood Estimators over convex classes of
densities, it is often useful to change reexpress the defining inequalities in terms functions
other than log pθ. Suppose that P is a convex family. In the following we will take the
density p itself to be the parameter. The following development is a special case of Section
3.4.1 of Van der Vaart and Wellner (1996).
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If p̂n maximizes the log-likelihood over p ∈ P, then

Pn log p̂n ≥ Pn log p0

for any fixed p0 ∈ P. Thus we have

Pn log
p̂n

p0
≥ 0 ,

and hence by concavity of log,

Pn log
(

p̂n + p0

2p0

)
≥ Pn

(
1
2

(
log

p̂n

p0
+ log 1

))
=

1
2

Pn log
p̂n

p0

≥ 0 = Pn log
(

p0 + p0

2p0

)
for all p0 ∈ P. Thus we can take

mp(x) = log
(

p(x) + p0(x)
2p0(x)

)
(2.3)

for any fixed p0 ∈ P. Here is a useful theorem connecting maximum likelihood with the
Hellinger distance metric between densities.

Theorem 2.2.3. Let h denote the Hellinger distance, and let mp be given by (2.3) with p0

corresponding to P0. Then

P0(mp − mp0) � −h2(p, p0)

for every p; here a � b means a ≤ Kb for some finite constant K. Furthermore, for

Mδ = {mp − mp0 : h(p, p0) < δ} ,

it follows that

E∗
P0
‖Gn‖Mδ

� J̃[ ](δ,P, h)

(
1 +

J̃[ ](δ,P, h)
δ2n

)
(2.4)

where

J̃[ ](δ,P, h) =
∫ δ

0

√
1 + log N[ ](ε,P, h) dε .

Theorem 2.2.3 follows from Theorem 3.4.4, page 327, of Van der Vaart and Wellner

(1996) by taking the sieve Pn = P and pn = p0 throughout.
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2.3 M-estimates: convergence in distribution

Here is a result which follows from the general argmax continuous mapping theorem; it is
from Van der Vaart (1998) Theorem 5.23, page 53.

Theorem 2.3.1. For each θ in an open subset of Rd suppose that x �→ mθ(x) is a
measurable function such that θ �→ mθ(x) is differentiable at θ0 for P−almost every x with
derivative ṁθ0(x) and such that, for every θ1, θ2 in a neighborhood of θ0 and a measurable
function ṁ with Pṁ2 < ∞

|mθ1(x) − mθ2(x)| ≤ ṁ(x)|θ1 − θ2| .

Moreover, suppose that θ �→ Pmθ admits a second-order Taylor expansion at a point of
maximum θ0 with nonsingular symmetric derivative matrix Vθ0 . If Pnm

θ̂n
≥ supθ Pnmθ −

op(n−1) and θ̂n →p θ0, then

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ṁθ0(Xi) + op(1) .

2.4 Z-estimators

When Θ ⊂ Rd the maximizing value θ̂n is often found by differentiating the function Mn(θ)
with respect to (the coordinates of ) θ, and setting the resulting vector of derivatives equal
to zero. This results in the equations

Ṁn(θ) = Pnṁθ(X) = 0

where ṁθ(x) = ∇mθ(x) for each fixed x ∈ X . Since this way of defining estimators
often makes sense even when the functions ṁθ are replaced by a function ψθ which is not
necessarily the gradient of a function mθ, we will actually consider estimators θ̂n defined
simply as the solution of

Ψn(θ) =
1
n

n∑
i=1

ψθ(Xi) = Pnψθ(X) = 0 . (2.5)

Here is one possible result concerning the consistency of estimators satisfying (2.5).

Theorem 2.4.1. Suppose that Ψn are random vector-valued functions, and let Ψ be a
fixed vector-valued function of θ such that

sup
θ∈Θ

‖Ψn(θ) − Ψ(θ)‖ →p 0 ,

and, for every ε > 0,
inf

θ: d(θ,θ0)≥0
‖Ψ(θ)‖ > 0 = ‖Ψ(θ0)‖ .
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Then any sequence of estimators θ̂n satisfying Ψn(θ̂n) = op(1) converges in probability to
θ0.

Proof. This follows from Theorem 2.1.1 by taking Mn(θ) = −‖Ψn(θ)‖ and
M(θ) = −‖Ψ(θ)‖. �

We now give a statement of the infinite-dimensional Z−theorem of Van der Vaart

(1995). See also Van der Vaart and Wellner (1996), section 3.3, pages 309 - 320. It is
a natural extension of the classical Z−theorem due to Huber (1967) and Pollard (1985).
In the infinite-dimensional setting, the parameter space Θ is taken to be a Banach space.
A sufficiently general Banach space is the space

l∞(H) ≡ {z : H → R
∣∣∣ ||z|| = sup

h∈H
|z(h)| < ∞}

where H is a collection of functions. We suppose that

Ψn : Θ → L ≡ l∞(H ′) , n = 1, 2, ...

are random, and that
Ψ : Θ → L ≡ l∞(H ′) ,

is deterministic. Suppose that either

Ψn(θ̂n) = 0 in L;

(i.e. Ψn(θ̂n)(h′) = 0 for all h′ ∈ H ′), or

Ψn(θ̂n) = op(n−1/2) in L;

(i.e. ||Ψn(θ̂n)||H′ = op(n−1/2)).
Here are the four basic conditions needed for the infinite-dimensional version of Huber’s
theorem:

B1. √
n(Ψn − Ψ)(θ0) ⇒ Z0 in l∞(H ′) .

B2.

sup
‖θ−θ0‖≤δn

‖√n(Ψn − Ψ)(θ) −√
n(Ψn − Ψ)(θ0)‖

1 +
√

n‖θ − θ0‖
= o∗p(1)

for every sequence δn → 0.

B3. The function Ψ is (Fréchet-)differentiable at θ0 with derivative Ψ̇(θ0) ≡ Ψ̇0 having a
bounded (continuous) inverse:

‖Ψ(θ) − Ψ(θ0) − Ψ̇0(θ − θ0)‖ = o(‖θ − θ0‖) .
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B4. Ψn(θ̂n) = o∗p(n
−1/2) in l∞(H ′) and Ψ(θ0) = 0 in l∞(H ′).

Theorem 2.4.2. (Van der Vaart (1995)). Suppose that B.1 - B.4 hold. Let θ̂n be random
maps into Θ ⊂ l∞(H ′) satisfying θ̂n →p θ0. Then

√
n(θ̂n − θ0) ⇒ −Ψ̇−1

0 (Z0) in l∞(H) .

Proof. See Van der Vaart (1995) or Van der Vaart and Wellner (1996), page 310. �

2.5 Back to the Examples

Example 1.2.1, continued. To answer the first question, we will assume that E|X|p < ∞.
We need to show that the class of functions

Gδ = {|x − t|p : |t − µ| ≤ δ} .

is a Glivenko-Cantelli class for P . We can view this class as follows:

Gδ = φ(Fδ) = {φ(ft) : ft ∈ Fδ}

where φ(y) = |y|p is a continuous function from R to R and

Fδ = {x − t : |t − µ| ≤ δ} .

Now Fδ is a VC-subgraph collection of functions with VC index 2 (since the subgraphs are
linearly ordered by inclusion) and P−integrable envelope function Fδ(x) = |x − µ| + δ. It
follows by the VC-Pollard-Giné Zinn theorem 1.3.2 that Fδ is a P−Glivenko-Cantelli class
of functions. Since φ is a continuous function and Gδ has P−integrable envelope function
Gδ(x) = |x − (µ − δ)|p ∨ |x − (µ + δ)|p, Gδ is a P−Glivenko-Cantelli class by the Glivenko-
Cantelli preservation theorem of Van der Vaart and Wellner (2000). Thus with

Hn(t) = Pn|X − t|p and H(t) = P |X − t|p ,

it follows that
sup

|t−µ|≤δ
|Hn(t) − H(t)| = ‖Pn − P‖Gδ

→a.s. 0 . (2.6)

Now

An(p) − a(p) = Hn(Xn) − H(µ)
= Hn(Xn) − H(Xn) + H(Xn) − H(µ)
≡ In + IIn .
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By the strong law of large numbers we know that |Xn − µ| ≤ δ for all n ≥ N(δ, ω) for all ω
in a set with probability one. Hence it follows that for n large we have

|In| = |Hn(Xn) − H(Xn)| ≤ sup
|t−µ|≤δ

|Hn(t) − H(t)| →a.s. 0

by (2.6). Furthermore

|IIn| = |H(Xn) − H(µ)| ≤ P{||X − Xn|p − |X − µ|p|} →a.s. 0

by the dominated convergence theorem (since Xn →a.s. 0 and E|X|p < ∞). Thus the
answer to our first question (i) is positive: if E|X|p < ∞, then An(p) →a.s. a(p).

To answer the second question, we first note that Gδ is a P−Donsker class of functions
for each δ > 0 if we now assume in addition that E|X|2p < ∞. This follows from the fact
that Fδ is a VC-subgraph class of functions with P−square integrable envelope function
Fδ, and then applying the P−Donsker preservation theorem (Theorem 2.10.6, Van der

Vaart and Wellner (1996), page 192 and Corollary 2.10.13, page 193) upon noting that
φ(y) = |y|p satisfies

|φ(x − t) − φ(x − s)|2 = ||x − t|p − |x − s|p|2 ≤ L2(x)|t − s|2

for all s, t ∈ [µ − δ, µ + δ] and all x ∈ R where

L(x) = sup
t:|t−µ|≤δ

p|x − t|p−1 = p|x − (µ − δ)|p−1 ∨ p|x − (µ + δ)|p−1

satisfies PL2(X) =
∫

L2(x)dP (x) < ∞. (Note that the P−Donsker property of the class
Gδ also follows from the Jain-Marcus CLT 1.3.6.) Hence it follows that

√
n(An(p) − a(p)) =

√
n(Hn(Xn) − H(µ))

=
√

n(PnfXn
− Pfµ)

=
√

n(PnfXn
− PfXn

) −
√

n(Pnfµ − Pfµ)

+
√

n(Pnfµ − Pfµ) +
√

n(PfXn
− Pfµ)

= Gn(fXn
) − Gn(fµ)

+ Gn(fµ) +
√

n(H(Xn) − H(µ))
= Gn(fXn

) − Gn(fµ)
+ Gn(fµ + H ′(µ)(X − µ)) + op(1)

= Gn(fµ + H ′(µ)(X − µ)) + op(1)

if H is differentiable at µ. The last equality in the last display follows since the class Gδ is
P−Donsker, and hence for large n with high probability we have, for some sequence δn → 0,

|Gn(fXn
) − Gn(fµ)| ≤ sup

|t−µ|≤δn

|Gn(ft) − Gn(fµ)| = sup
|t−µ|≤δn

|Gn(ft − fµ)| →p 0 .
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Thus it follows that
√

n(An(p) − a(p)) = Gn(fµ + H ′(µ)(X − µ)) + op(1)
→d G(fµ + H ′(µ)(X − µ)) ∼ N(0, V 2(p))

where

V 2(p) = V ar(fµ(X) + H ′(µ)(X − µ)) = V ar(|X − µ|p + H ′(µ)(X − µ)) .

When P is symmetric about µ, then H ′(µ) = 0 and the expression for the variance simplifies
to

E|X − µ|2p − (E|X − µ|p)2 .

It is easily seen that H is indeed differentiable at µ if P ({µ}) = 0, and

H ′(µ) = P{p|X − µ|p−1(1[X≤µ] − 1[X>µ])} .

Example 1.2.1d, continued. One difference now is that the class of functions

Fδ = {x − t : ‖t − µ‖q ≤ δ}

is no longer real-valued. There are several ways to proceed here, but one way is as follows:
consider the classes of functions

Fi,δ = {x �→ xi − ti : ‖t − µ‖q ≤ δ} .

These are clearly again VC-subgraph classes of functions since their subgraphs are again
ordered by inclusion. Moreover, these classes each have an integrable envelope functions
Fi(x) = |xi−µi−δ|∨|xi−µi+δ|. Thus each of these classes Fi, i = 1, . . . , d, is P−Glivenko-
Cantelli. Since the map ϕ from Rd defined by

ϕ(y1, . . . , yd) =
{
yq
1 + · · · + yq

d

}p/q

is continuous, and the resulting class ϕ(F) = ϕ(F1, . . . ,Fd) has an integrable evelope
F assuming that P‖X1‖p

q < ∞. Thus it follows from the Glivenko-Cantelli preservation
Theorem 1.6.1 that ϕ(F) is a P−Glivenko-Cantelli class.

Example 1.2.2, continued. Our treatment of this example will use the argmax continuous
mapping theorem in the form of Van der Vaart (1998) Theorem 5.23, page 53. In that
theorem we will take mθ(x) = |x − θ|p. Then

ṁθ(x) = p|x − θ|p−1{1[x≤θ] − 1[x>θ]}

Thus
µ(p) = argminθP |X − θ|p , µ̂n(p) = argminθ Pn|X − θ|p ,
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and,

Vµ(p) =
{

p(p − 1)P |X − µ(p)|p−2, p > 1
2f(t), p = 1 .

Since the function mθ(x) satisfies

|mt(x) − ms(x)| ≤ ṁ(x)|t − s|

where Pṁ2(X) < ∞ (as we saw in Example 1.2.1), it follows from Theorem 2.3.1 that

√
n(µ̂n(p) − µ(p)) = −V −1

µ(p)

1√
n

n∑
i=1

ṁµ(p)(Xi) + op(1) →d N(0, P (ṁ2
µ(p))/V 2

µ(p)) .

Note that when p = 2, µ(2) = P (X), the usual sample mean,

ṁθ(x) = 2|x − θ|{1[x≤θ] − 1[x>θ]} = −2(x − θ)

so P (ṁ2
µ(2)(X)) = 4VarP (X), Vµ(2) = 2, and we recover the usual asymptotic normality

result for the sample mean.

Example 1.2.3, continued. First note that the sets in question in this example are half-
spaces Ht,γ = {x ∈ Rd : γ · x ≤ t}. Note that

Dn = sup
t∈R

sup
γ∈Sd−1

|Pn(Ht,γ) − P (Ht,γ)| = ‖Pn − P‖H .

The key to answering the question raised in this example is one of the exponential bounds
from section 1.6 applied to the collection H = {Hγ,t : t ∈ R, γ ∈ Sd−1}, the half-spaces
in Rd. The collection H is a VC-collection of sets with V (H) = d + 2. By Talagrand’s
exponential bound,

Pr(‖
√

n(Pn − P )‖H ≥ λ) ≤ D

λ

(
DKλ2

d + 1

)d+1

exp(−2λ2)

for all n ≥ 1 and λ > 0. Taking λ = ε
√

n yields

Pr(‖Pn − P‖H ≥ ε) ≤ D

ε
√

n

(
DKε2n

d + 1

)d+1

exp(−2ε2n)

=
D

ε
√

n
exp

(
(d + 1) log

(
DKε2n

d + 1

))
exp(−2ε2n)

→ 0 as n → ∞

if d/n → 0. This is exactly the result obtained by Diaconis and Freedman (1984) by
using an inequality of Vapnik and Chervonenkis. Question: What happens if d/n → c > 0?
(Good values for the constants D and K start mattering!)

26



Example 1.2.4, continued. It is fairly easy to give conditions on the kernel k so that the
class F defined in (1.2) satisfies

N(ε,F , L1(Q)) ≤
(

K

ε

)V

(2.7)

or

N[ ](ε,F , L1(Q)) ≤
(

K

ε

)V

(2.8)

for some constants K and V : see e.g. Lemma 22, page 797, Nolan and Pollard (1987).
For example, if k(t) = ρ(|t|) for a function ρ : R+ → R+ of bounded variation, then (2.7)
holds.

As usual, it is natural to write the difference p̂n(y, h) − p(y) as the sum of a random
term and a deterministic term:

p̂n(y, h) − p(y) = p̂n(y, h) − p(y, h) + p(y, h) − p(y)

where

p(y, h) = h−dPk

(
y − X

h

)
=

1
hd

∫
k

(
y − x

h

)
p(x)dx

is a smoothed version of p. Convergence to zero of the second term can be argued based on
smoothness assumptions on p: if p is uniformly continuous, then it is easily seen that

sup
h≤bn

sup
y∈Rd

|p(y, h) − p(y)| → 0

for any sequence bn → 0. On the other hand, the first term is just

h−d (Pn − P )
(

k

(
y − X

h

))
. (2.9)

While it follows immediately from (2.7) and Theorem 1.3.2 (or (2.8) and Theorem 1.3.1)
that

sup
h>0,y∈Rd

∣∣∣(Pn − P )
(

k

(
y − X

h

)) ∣∣∣ →a.s. 0 ,

this does not suffice in view of the factor of h−d in (2.9). In fact, we need a rate of
convergence for

sup
h≥bn,y∈Rd

∣∣∣(Pn − P )
(

k

(
y − X

h

)) ∣∣∣ →a.s. 0 .

The following theorem is due to Nolan and Marron (1989) with preparatory work in
Pollard (1987); see also Pollard (1995).

Proposition 2.5.1. (Marron and Nolan, Pollard). Suppose that:
(i) nad

n/ log n → ∞.
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(ii) suph>0,y∈Rd h−dPk
(

y−X
h

)
≡ K1 < ∞.

(iii) The kernel k is bounded.
(iv) Either (2.7) or (2.8) holds.
Then

sup
an≤h≤bn,y∈Rd

|p̂n(y, h) − pn(y, h)| →a.s. 0 . (2.10)

If we relax (i) to nad
n → ∞, then (2.10) continues to hold with →a.s. replaced by →p 0.

The following corollary of Proposition 2.5.1 allows the bandwith parameter h to depend
on n, x, and the data X1, . . . , Xn.

Corollary. Suppose that p is a uniformly continuous bounded density on Rd. Suppose
that ĥn = ĥn(y) is a random bandwidth parameter satisfying an ≤ ĥn(y) ≤ bn eventually
a.s. for all x where bn → 0. Suppose that the conditions of Proposition 2.5.1 hold. Then

sup
y∈Rd

|p̂n(y, ĥn(y)) − p(y)| →a.s. 0 .

Proof of the Proposition. Set fy,h(x) = k((y − x)/h) for x, y ∈ Rd and h > 0, so that

F = {fy,h ∈ F : y ∈ Rd, h > 0} ,

and let Fn = {fy,h ∈ F : h ≥ an}. Suppose we can show that

Pr

(
sup

f∈Fn

|Pnf − f |
γ + Pnf + Pf

> Aε

)
≤ BN(εγ) exp(−Cnε2γ) (2.11)

for every ε > 0 and n ≥ 1 for constants A, B, and C and where N(ε) is either
supQ N(ε,F , L1(Q)) or N[ ](ε,F , L1(P )). Then by taking γ = ad

n, it would follow that the
probability of the event An(ε) on the left side of (2.11) is arbitrarily small for n sufficiently
large if we assume that nad

n → ∞. Then we have, on Ac
n(ε),

|Pnfy,h − Pfy,h| ≤ Aε(Pnfy,h + Pfy,h + ad
n)

for all h ≥ an and all y ∈ Rd, and this implies that

|p̂n(y, h) − p(y, h)| ≤ Aε(p̂n(y, h) + p(y, h)) + Aε

for all h ≥ an and all y ∈ Rd. This in turn yields

− ε

1 + ε
(A + 2p(y, h)) ≤ p̂n(y, h) − p(y, h) ≤ ε

1 − ε
(A + 2p(y, h))

for all h ≥ an and all y ∈ Rd. In view of the hypothesis (ii) we find that

− ε

1 + ε
(A + 2K1) ≤ p̂n(y, h) − p(y, h) ≤ ε

1 − ε
(A + 2K1) ,
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and this yields the convergence in probability conclusion. The almost sure part of the
Proposition follows similarly by taking γ = ad

n/ log n and applying the Borel-Cantelli lemma.
Thus it remains only to prove (2.11).
These results are connected to the nice results for convergence in L1(λ) of Devroye

(1983), Devroye (1987), and Giné, Mason, and Zaitsev (2001). The latter paper treats
the L1(λ) distance between p̂n(·, hn, k) and p as a process indexed by the kernel function
k. The results for this example also have many connections in the current literature on
nonparametric estimation via “multi-scale analysis”; see e.g. Duembgen and Spokoiny

(2001), Chaudhuri and Marron (2000), and Walther (2001).

Example 1.2.5, continued. The Hellinger distance h(P, Q) between two probability
measures P and Q on a measurable space (X ,A) is given by

h2(P, Q) =
∫

|√p −√
q|2dµ

where p = dP/dµ and q = dQ/dµ for any common dominating measure µ (e.g. P +Q). The
following inequalities are key tools in dealing with consistency and rates of convergence of
the MLE F̂n in this problem. The first inequality is valid generally for maximum likelihood
estimation:

h2(P
F̂n

, PF0) ≤ (Pn − P )

((√
p

F̂n

pF0

− 1

)
1[pF0

>0]

)
. (2.12)

The second inequality is valid for the MLE in an arbitrary convex family P:

h2(P
F̂n

, PF0) ≤ (Pn − P )
(

ϕ

(
p

F̂n

pF0

))
(2.13)

where ϕ(t) = (t− 1)/(t + 1). For proofs of these inequalities see Van de Geer (1993), Van

de Geer (1996), or Van der Vaart and Wellner (2000).
Now the right side of (2.13) is bounded by ‖Pn − P‖H where

H = {ϕ (pF /pF0) : F a distribution function on R+} .

Thus if H is a P−Glivenko-Cantelli class, Hellinger consistency of p
F̂n

follows. To show that
H is indeed a P−Glivenko-Cantelli class we appeal first to the convex-hull result, and then
to the Glivenko-Cantelli preservation theorem (twice) as follows. First, the collection of
functions {pF : F ∈ F} is a Glivenko-Cantelli class of functions since the functions F and
1−F are both (universal) Glivenko-Cantelli classes in view of the bound on uniform entropy
for convex hulls given by Theorem 1.6.2 (and the corollary given by Example 1.6.3). The
one fixed function pF0 is trivially a Glivenko-Cantelli class since it is uniformly bounded,
and 1/pF0 is also a P0 Glivenko-Cantelli class since P0(1/pF0) < ∞. Thus by the Glivenko-
Cantelli preservation Theorem 1.4.1 with the function ϕ(u, v) = uv, F1 = {1/pF0}, and
F2 = {pF : F ∈ F}, it follows that the collection G′ = {pF /pF0 : F ∈ F} is P0−Glivenko-
Cantelli (with the P0-integrable envelope function 1/pF0). Finally, yet another application
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of the Glivenko-Cantelli preservation Theorem 1.4.1 with the function ϕ(t) = (t−1)/(t+1)
(which is continuous and uniformly bounded in absolute value by 1 on t ≥ 0) and the class
G′ shows that the class H is indeed P0−Glivenko-Cantelli.

Thus it follows that h2(P
F̂n

, PF0) →a.s. 0. Since dTV (P
F̂n

, PF0) ≤
√

2h2(P
F̂n

, PF0), we
find that

dTV (P
F̂n

, PF0) →a.s. 0 .

But it easy to compute that

dTV (P
F̂n

, PF0) = 2
∫

|F̂n − F0|dG .

and hence the upshot is that F̂n is consistent for F0 in L1(G). For generalizations of this
argument to “mixed case interval censoring” and to higher dimensions, see Van der Vaart

and Wellner (2000), Section 4.
To answer the question about the rate of (global) convergence in this problem, we will use

Theorems 2.2.1 and 2.2.3. We take the metric d in Theorem 2.2.1 to be the Hellinger metric h
on P = {pF : F ∈ F}. Now the functions pF (1, y) = F (y) and pF (0, y) = 1−F (y) are both
monotone and bounded by 1, and so are p

1/2
F (1, y) = (F (y))1/2 and p

1/2
F (0, y) = (1−F (y))1/2,

and hence it follows from (1.11) that the class of functions P1/2 = {p1/2
F : F ∈ F} satisfies,

for µ = G × # where # is counting measure on {0, 1},

log N[ ](ε,P1/2, L2(µ)) ≤ K

ε
,

or, equivalently,

log N[ ](ε,P, h) ≤ K

ε
.

This yields

J̃[ ](δ,P, h) =
∫ δ

0

√
1 + log N[ ](ε,P, h) dε ≤

∫ δ

0

√
1 + K/ε dε � δ1/2 .

Hence the right side of (2.4) is bounded by a constant times

φn(δ) ≡ δ1/2

(
1 +

δ1/2

δ2
√

n

)
= δ1/2

(
1 +

1
δ3/2

√
n

)
.

Now by Theorem 2.3.1 (or its Corollary 2.3.2) the rate of convergence rn satisfies
r2
nφ(1/rn) ≤ √

n: but with rn = n1/3 we have

r2
nφn

(
1
rn

)
= n2/3n−1/6

(
1 +

n1/2

√
n

)
= 2n1/2 .

Hence it follows from Theorem 2.2.1 that

n1/3h(p
F̂n

, pF ) = Op(1) .
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3 Extensions and Further Problems

3.1 Extensions

The basic theory presented in Lecture 1 has already been extended and improved in several
directions including:
A. Results for random entropies: See Giné and Zinn (1984), Giné and Zinn (1986),
and Ledoux and Talagrand (1989).
B. Dependent data: For some of the many results in this direction, see Andrews and

Pollard (1994) and Doukhan, Massart, and Rio (1995).
C. U- processes: See Nolan and Pollard (1987), Nolan and Pollard (1988), and de

la Pena, V. H., and Giné, E. (1999).
D. Better inequalities via isoperimetric methods: see Talagrand (1996), Massart

(2000), and Massart (2000).

3.2 Further Problems

Problem 1. Calculate VC dimension for classes A � B (see Dudley (1999), section 4.5)?
VC dimensions for the VC classes of Stengle and Yukich (1989) and Laskowski (1992)?
Problem 2. Bracketing number bounds for distribution functions on Rd?
Problem 2M. Bracketing number bounds for Gaussian mixtures on Rd (generalizing the
results of Ghosal and van der Vaart (2001) for d = 1).
Problem 3. Preservation theorems for a class of transforming functions {φt : t ∈ T}?
Glivenko-Cantelli? Donsker? Preservation theorems for F ◦ G = {f(g(x)) : f ∈ F , g ∈ G}.
Problem 4. Better bounds for convex hulls in particular cases? Lower bounds for entropies
of convex hulls? Preservation of bracketing numbers for convex hulls?
Problem 5. Better methods for convergence rates?
Problem 6. Better bounds and convergence theorems for ratios, perhaps improving on the
bound in the proof of Proposition 2.5.1?

Acknowledgements: Much of the material presented here has resulted from discussions
and joint work with A. W. van der Vaart. I also wish to thank Evarist Giné for many
helpful discussions.
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