Maximum likelihood:

counterexamples, examples, and open problems

Jon A. Wellner

University of Washington

- Talk at University of Idaho , Department of Mathematics, September 15, 2005
- Email: jaw@stat.washington.edu http: //www.stat.washington.edu/jaw/jaw.research.html

Outline

- Introduction: maximum likelihood estimation

Outline

- Introduction: maximum likelihood estimation
- Counterexamples

Outline

- Introduction: maximum likelihood estimation
- Counterexamples
- Beyond consistency: rates and distributions

Outline

- Introduction: maximum likelihood estimation
- Counterexamples
- Beyond consistency: rates and distributions
- Positive examples

Outline

- Introduction: maximum likelihood estimation
- Counterexamples
- Beyond consistency: rates and distributions
- Positive examples
- Problems and challenges

1. Introduction: maximum likelihood estimation

- Setting 1: dominated families

1. Introduction: maximum likelihood estimation

- Setting 1: dominated families
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. with density $p_{\theta_{0}}$ with respect to some dominating measure μ where $p_{\theta_{0}} \in \mathcal{P}=\left\{p_{\theta}: \theta \in \Theta\right\}$ for $\Theta \subset \mathbb{R}^{d}$.

1. Introduction: maximum likelihood estimation

- Setting 1: dominated families
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. with density $p_{\theta_{0}}$ with respect to some dominating measure μ where $p_{\theta_{0}} \in \mathcal{P}=\left\{p_{\theta}: \theta \in \Theta\right\}$ for $\Theta \subset \mathbb{R}^{d}$.
- The likelihood is

$$
L_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(X_{i}\right) .
$$

1. Introduction: maximum likelihood estimation

- Setting 1: dominated families
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. with density $p_{\theta_{0}}$ with respect to some dominating measure μ where $p_{\theta_{0}} \in \mathcal{P}=\left\{p_{\theta}: \theta \in \Theta\right\}$ for $\Theta \subset \mathbb{R}^{d}$.
- The likelihood is

$$
L_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(X_{i}\right) .
$$

- Definition: A Maximum Likelihood Estimator (or MLE) of θ_{0} is any value $\hat{\theta} \in \Theta$ satisfying

$$
L_{n}(\hat{\theta})=\sup _{\theta \in \Theta} L_{n}(\theta)
$$

- Equivalently, the MLE $\hat{\theta}$ maximizes the log-likelihood

$$
\log L_{n}(\theta)=\sum_{i=1}^{n} \log p_{\theta}\left(X_{i}\right)
$$

- Example 1. Exponential $(\theta) . X_{1}, \ldots, X_{n}$ are i.i.d. $p_{\theta_{0}}$ where

$$
p_{\theta}(x)=\theta \exp (-\theta x) 1_{[0, \infty)}(x) .
$$

- Example 1. Exponential $(\theta) . X_{1}, \ldots, X_{n}$ are i.i.d. $p_{\theta_{0}}$ where

$$
p_{\theta}(x)=\theta \exp (-\theta x) 1_{[0, \infty)}(x) .
$$

- Then the likelihood is

$$
L_{n}(\theta)=\theta^{n} \exp \left(-\theta \sum_{1}^{n} X_{i}\right)
$$

- Example 1. Exponential $(\theta) . X_{1}, \ldots, X_{n}$ are i.i.d. $p_{\theta_{0}}$ where

$$
p_{\theta}(x)=\theta \exp (-\theta x) 1_{[0, \infty)}(x) .
$$

- Then the likelihood is

$$
L_{n}(\theta)=\theta^{n} \exp \left(-\theta \sum_{1}^{n} X_{i}\right)
$$

- so the log-likelihood is

$$
\log L_{n}(\theta)=n \log (\theta)-\theta \sum_{1}^{n} X_{i}
$$

- Example 1. Exponential $(\theta) . X_{1}, \ldots, X_{n}$ are i.i.d. $p_{\theta_{0}}$ where

$$
p_{\theta}(x)=\theta \exp (-\theta x) 1_{[0, \infty)}(x) .
$$

- Then the likelihood is

$$
L_{n}(\theta)=\theta^{n} \exp \left(-\theta \sum_{1}^{n} X_{i}\right)
$$

- so the log-likelihood is

$$
\log L_{n}(\theta)=n \log (\theta)-\theta \sum_{1}^{n} X_{i}
$$

- and $\hat{\theta}_{n}=1 / \bar{X}_{n}$.

1/n times log-likelihood, $n=50$

$\operatorname{MLE} p_{\hat{\theta}}(x)$ and true density $p_{\theta_{0}}(x)$

- Example 2. Monotone decreasing densities on ($0, \infty$). X_{1}, \ldots, X_{n} are i.i.d. $p_{0} \in \mathcal{P}$ where
$\mathcal{P}=$ all nonincreasing densities on $(0, \infty)$.
- Example 2. Monotone decreasing densities on ($0, \infty$). X_{1}, \ldots, X_{n} are i.i.d. $p_{0} \in \mathcal{P}$ where

$$
\mathcal{P}=\text { all nonincreasing densities on }(0, \infty) .
$$

- Then the likelihood is $L_{n}(p)=\prod_{i=1}^{n} p\left(X_{i}\right)$;
- Example 2. Monotone decreasing densities on ($0, \infty$). X_{1}, \ldots, X_{n} are i.i.d. $p_{0} \in \mathcal{P}$ where

$$
\mathcal{P}=\text { all nonincreasing densities on }(0, \infty) .
$$

- Then the likelihood is $L_{n}(p)=\prod_{i=1}^{n} p\left(X_{i}\right)$;
- $L_{n}(p)$ is maximized by the Grenander estimator:
$\hat{p}_{n}(x)=$ left derivative at \mathbf{x} of the Least Concave Majorant

$$
\mathbb{C}_{n} \text { of } \mathbb{F}_{n}
$$

where $\mathbb{F}_{n}(x)=n^{-1} \sum_{i=1}^{n} 1\left\{X_{i} \leq x\right\}$

Figure 5: Grenander Estimator, $n=10$

- Setting 2: non-dominated families
- Setting 2: non-dominated families
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. $P_{0} \in \mathcal{P}$ where \mathcal{P} is some collection of probability measures on a measurable space $(\mathcal{X}, \mathcal{A})$.
- Setting 2: non-dominated families
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. $P_{0} \in \mathcal{P}$ where \mathcal{P} is some collection of probability measures on a measurable space $(\mathcal{X}, \mathcal{A})$.
- If $P\{x\}$ denotes the measure under P of the one-point set $\{x\}$, the likelihood of X_{1}, \ldots, X_{n} is defined to be

$$
L_{n}(P)=\prod_{i=1}^{n} P\left\{X_{i}\right\}
$$

- Setting 2: non-dominated families
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. $P_{0} \in \mathcal{P}$ where \mathcal{P} is some collection of probability measures on a measurable space $(\mathcal{X}, \mathcal{A})$.
- If $P\{x\}$ denotes the measure under P of the one-point set $\{x\}$, the likelihood of X_{1}, \ldots, X_{n} is defined to be

$$
L_{n}(P)=\prod_{i=1}^{n} P\left\{X_{i}\right\}
$$

- Then a Maximum Likelihood Estimator (or MLE) of P_{0} can be defined as a measure $\hat{P}_{n} \in \mathcal{P}$ that maximizes $L_{n}(P)$; thus

$$
L_{n}(\hat{P})=\sup _{P \in \mathcal{P}} L_{n}(P)
$$

- Example 3. (Empirical measure)
- Example 3. (Empirical measure)
- If $\mathcal{P}=$ all probability measures on $(\mathcal{X}, \mathcal{A})$, then

$$
\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}} \equiv \mathbb{P}_{n}
$$

where $\delta_{x}(A)=1_{A}(x)$.

- Example 3. (Empirical measure)
- If $\mathcal{P}=$ all probability measures on $(\mathcal{X}, \mathcal{A})$, then

$$
\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}} \equiv \mathbb{P}_{n}
$$

where $\delta_{x}(A)=1_{A}(x)$.

- Thus

$$
\begin{aligned}
\hat{P}_{n}(A) & =\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}(A) \\
& =\frac{1}{n} \sum_{i=1}^{n} 1_{A}\left(X_{i}\right)=\frac{\#\left\{1 \leq i \leq n: X_{i} \in A\right\}}{n}
\end{aligned}
$$

Consistency of the MLE:

- Wald (1949)

Consistency of the MLE:

- Wald (1949)
- Kiefer and Wolfowitz (1956)

Consistency of the MLE:

- Wald (1949)
- Kiefer and Wolfowitz (1956)
- Huber (1967)

Consistency of the MLE:

- Wald (1949)
- Kiefer and Wolfowitz (1956)
- Huber (1967)
- Perlman (1972)

Consistency of the MLE:

- Wald (1949)
- Kiefer and Wolfowitz (1956)
- Huber (1967)
- Perlman (1972)
- Wang (1985)

Consistency of the MLE:

- Wald (1949)
- Kiefer and Wolfowitz (1956)
- Huber (1967)
- Perlman (1972)
- Wang (1985)
- van de Geer (1993)

Counterexamples:

- Neyman and Scott (1948)

Counterexamples:

- Neyman and Scott (1948)
- Bahadur (1958)

Counterexamples:

- Neyman and Scott (1948)
- Bahadur (1958)
- Ferguson (1982)

Counterexamples:

- Neyman and Scott (1948)
- Bahadur (1958)
- Ferguson (1982)
- LeCam (1975), (1990)

Counterexamples:

- Neyman and Scott (1948)
- Bahadur (1958)
- Ferguson (1982)
- LeCam (1975), (1990)
- Barlow, Bartholomew, Bremner, and Brunk (4B's) (1972)

Counterexamples:

- Neyman and Scott (1948)
- Bahadur (1958)
- Ferguson (1982)
- LeCam (1975), (1990)
- Barlow, Bartholomew, Bremner, and Brunk (4B's) (1972)
- Boyles, Marshall, and Proschan (1985)

Counterexamples:

- Neyman and Scott (1948)
- Bahadur (1958)
- Ferguson (1982)
- LeCam (1975), (1990)
- Barlow, Bartholomew, Bremner, and Brunk (4B’s) (1972)
- Boyles, Marshall, and Proschan (1985)
- bivariate right censoring

Tsai, van der Laan, Pruitt

Counterexamples:

- Neyman and Scott (1948)
- Bahadur (1958)
- Ferguson (1982)
- LeCam (1975), (1990)
- Barlow, Bartholomew, Bremner, and Brunk (4B’s) (1972)
- Boyles, Marshall, and Proschan (1985)
- bivariate right censoring

Tsai, van der Laan, Pruitt

- left truncation and interval censoring

Chappell and Pan (1999)

Counterexamples:

- Neyman and Scott (1948)
- Bahadur (1958)
- Ferguson (1982)
- LeCam (1975), (1990)
- Barlow, Bartholomew, Bremner, and Brunk (4B’s) (1972)
- Boyles, Marshall, and Proschan (1985)
- bivariate right censoring

Tsai, van der Laan, Pruitt

- left truncation and interval censoring Chappell and Pan (1999)
- Maathuis and Wellner (2005)

2. Counterexamples: MLE's are not always consistent

- Counterexample 1. (Ferguson, 1982). Suppose that X_{1}, \ldots, X_{n} are i.i.d. with density $f_{\theta_{0}}$ where

$$
f_{\theta}(x)=(1-\theta) \frac{1}{\delta(\theta)} f_{0}\left(\frac{x-\theta}{\delta(\theta)}\right)+\theta f_{1}(x)
$$

for $\theta \in[0,1]$ where

$$
\begin{array}{lr}
f_{1}(x)=\frac{1}{2} 1_{[-1,1]}(x) & \text { Uniform }[-1,1], \\
f_{0}(x)=(1-|x|) 1_{[-1,1]}(x) & \text { Triangular }[-1,1]
\end{array}
$$

and $\delta(\theta)$ satisfies:

- $\delta(0)=1$
- $0<\delta(\theta) \leq 1-\theta$
- $\delta(\theta) \rightarrow 0$ as $\theta \rightarrow 1$.

Density $f_{\theta}(x)$ for $c=2, \theta=.38$

$F_{\theta}(x)$ for $c=2, \theta=.38$

- Ferguson (1982) shows that $\hat{\theta}_{n} \rightarrow$ a.s. 1 no matter what θ_{0} is true if $\delta(\theta) \rightarrow 0$ "fast enough".
- Ferguson (1982) shows that $\hat{\theta}_{n} \rightarrow_{\text {a.s. }} 1$ no matter what θ_{0} is true if $\delta(\theta) \rightarrow 0$ "fast enough".
- In fact, the assertion is true if

$$
\delta(\theta)=(1-\theta) \exp \left(-(1-\theta)^{-c}+1\right)
$$

with $c>2$. (Ferguson shows that $c=4$ works.)

- Ferguson (1982) shows that $\hat{\theta}_{n} \rightarrow_{\text {a.s. }} 1$ no matter what θ_{0} is true if $\delta(\theta) \rightarrow 0$ "fast enough".
- In fact, the assertion is true if

$$
\delta(\theta)=(1-\theta) \exp \left(-(1-\theta)^{-c}+1\right)
$$

with $c>2$. (Ferguson shows that $c=4$ works.)

- If $c=2$, Ferguson's argument shows that

$$
\begin{aligned}
& \sup _{0 \leq \theta \leq 1} n^{-1} \log L_{n}(\theta) \\
& \quad \geq \frac{n-1}{n} \log \left(M_{n} / 2\right)+\frac{1}{n} \log \frac{1-M_{n}}{\delta\left(M_{n}\right)} \\
& \quad \rightarrow d \mathbb{D}
\end{aligned}
$$

- where

$$
P(\mathbb{D} \leq y)=\exp \left(-\frac{1}{2(y-\log 2)}\right), \quad y \geq \log (2)
$$

That is, with E an Exponential(1) random variable

$$
\mathbb{D} \stackrel{d}{=} \log 2+\frac{1}{2 E} .
$$

- Counterexample 2. (4 B's, 1972). A distribution F on $[0, b)$ is star-shaped if $F(x) / x$ is non-decreasing on $[0, b)$. Thus if F has a density f which is increasing on $[0, b)$ then F is star-shaped.
- Counterexample 2. (4 B's, 1972). A distribution F on $[0, b)$ is star-shaped if $F(x) / x$ is non-decreasing on $[0, b)$. Thus if F has a density f which is increasing on $[0, b)$ then F is star-shaped.
- Let $\mathcal{F}_{\text {star }}$ be the class of all star-shaped distributions on $[0, b)$ for some b.
- Counterexample 2. (4 B's, 1972). A distribution F on $[0, b)$ is star-shaped if $F(x) / x$ is non-decreasing on $[0, b)$. Thus if F has a density f which is increasing on $[0, b)$ then F is star-shaped.
- Let $\mathcal{F}_{\text {star }}$ be the class of all star-shaped distributions on $[0, b)$ for some b.
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. $F \in \mathcal{F}_{\text {star }}$.
- Counterexample 2. (4 B's, 1972). A distribution F on $[0, b)$ is star-shaped if $F(x) / x$ is non-decreasing on $[0, b)$. Thus if F has a density f which is increasing on $[0, b)$ then F is star-shaped.
- Let $\mathcal{F}_{\text {star }}$ be the class of all star-shaped distributions on $[0, b)$ for some b.
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. $F \in \mathcal{F}_{\text {star }}$.
- Barlow, Bartholomew, Bremner, and Brunk (1972) show that the MLE of a star-shaped distribution function F is

$$
\hat{F}_{n}(x)= \begin{cases}0, & x<X_{(1)} \\ \frac{i x}{n X_{(n)}}, & X_{(i)} \leq x<X_{(i+1)}, i=1, \ldots, n-1 \\ 1, & x \geq X_{(n)}\end{cases}
$$

- Moreover, BBBB (1972) show that if $F(x)=x$ for $0 \leq x \leq 1$, then

$$
\hat{F}_{n}(x) \rightarrow_{a . s .} x^{2} \neq x
$$

for $0 \leq x \leq 1$.

MLE $n=5$ and true d.f.

MLE $n=100$ and true d.f.

MLE $n=100$ and limit

- Note 1. Since $X_{(i)} \stackrel{d}{=} S_{j} / S_{n+1}$ where $S_{i}=\sum_{j=1}^{i} E_{j}$ with E_{j} i.i.d. Exponential(1) rv's, the total mass at order statistics equals

$$
\begin{aligned}
\frac{1}{n X_{(n)}} \sum_{i=1}^{n} X_{(i)} & \stackrel{d}{=} \sum_{i=1}^{n} \frac{S_{i}}{n S_{n}}=\frac{n}{S_{n}} \frac{1}{n} \sum_{j=1}^{n}\left(1-\frac{j-1}{n}\right) E_{j} \\
& \rightarrow p \quad 1 \cdot \int_{0}^{1}(1-t) d t=1 / 2 .
\end{aligned}
$$

- Note 1. Since $X_{(i)} \stackrel{d}{=} S_{j} / S_{n+1}$ where $S_{i}=\sum_{j=1}^{i} E_{j}$ with E_{j} i.i.d. Exponential(1) rv's, the total mass at order statistics equals

$$
\begin{aligned}
\frac{1}{n X_{(n)}} \sum_{i=1}^{n} X_{(i)} & \stackrel{d}{=} \sum_{i=1}^{n} \frac{S_{i}}{n S_{n}}=\frac{n}{S_{n}} \frac{1}{n} \sum_{j=1}^{n}\left(1-\frac{j-1}{n}\right) E_{j} \\
& \rightarrow_{p} \quad 1 \cdot \int_{0}^{1}(1-t) d t=1 / 2 .
\end{aligned}
$$

- Note 2. BBBB (1972) present consistent estimators of F star-shaped via isotonization due to Barlow and Scheurer (1971) and van Zwet.
- Counterexample 3. (Boyles, Marshall, Proschan (1985). A distribution F on $[0, \infty)$ is Increasing Failure Rate Average if

$$
\frac{1}{x}\{-\log (1-F(x))\} \equiv \frac{1}{x} \Lambda(x)
$$

is non-decreasing; that is, if Λ is star-shaped.

- Counterexample 3. (Boyles, Marshall, Proschan (1985). A distribution F on $[0, \infty)$ is Increasing Failure Rate Average if

$$
\frac{1}{x}\{-\log (1-F(x))\} \equiv \frac{1}{x} \Lambda(x)
$$

is non-decreasing; that is, if Λ is star-shaped.

- Let $\mathcal{F}_{I F R A}$ be the class of all IFRA- distributions on $[0, \infty)$.
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. $F \in \mathcal{F}_{I F R A}$. Boyles, Marshall, and Proschan (1985) showed that the MLE \hat{F}_{n} of a IFRA-distribution function F is given by

$$
-\log \left(1-\hat{F}_{n}(x)\right)=\left\{\begin{array}{l}
\hat{\lambda}_{j}, \quad X_{(j)} \leq x<X_{(j+1)} \\
\quad j=0, \ldots, n-1 \\
\infty, \quad x>X_{(n)}
\end{array}\right.
$$

where

$$
\hat{\lambda}_{j}=\sum_{i=1}^{j} X_{(i)}^{-1} \log \left(\frac{\sum_{k=i}^{n} X_{(k)}}{\sum_{k=i+1}^{n} X_{(k)}}\right) .
$$

- Moreover, BMP (1985) show that if F is exponential(1), then

$$
\begin{aligned}
& 1-\hat{F}_{n}(x) \rightarrow_{\text {a.s. }}(1+x)^{-x} \neq \exp (-x), \text { so } \\
& \frac{1}{x} \hat{\Lambda}_{n}(x) \rightarrow_{\text {a.s. }} \log (1+x) \neq 1 .
\end{aligned}
$$

MLE $n=100$ and true d.f. $1-\exp (-x)$

MLE $n=100$ and limit d.f. $(1+x)^{-x}$

More counterexamples:

- bivariate right censoring: Tsai, van der Laan, Pruitt

More counterexamples:

- bivariate right censoring: Tsai, van der Laan, Pruitt
- left truncation and interval censoring:

Chappell and Pan (1999)

More counterexamples:

- bivariate right censoring: Tsai, van der Laan, Pruitt
- left truncation and interval censoring:

Chappell and Pan (1999)

- bivariate interval censoring with a continuous mark: Hudgens, Maathuis, and Gilbert (2005) Maathuis and Wellner (2005)

3. Beyond consistency: rates and distributions

- Le Cam (1973); Birgé (1983): optimal rate of convergence $r_{n}=r_{n}^{\text {opt }}$ determined by

$$
\begin{equation*}
n r_{n}^{-2}=\log N_{[]}\left(1 / r_{n}, \mathcal{P}\right) \tag{1}
\end{equation*}
$$

- If

$$
\begin{equation*}
\log N_{[]}(\epsilon, \mathcal{P}) \asymp \frac{K}{\epsilon^{1 / \gamma}} \tag{2}
\end{equation*}
$$

(1) leads to the optimal rate of convergence

$$
r_{n}^{o p t}=n^{\gamma /(2 \gamma+1)}
$$

- On the other hand, bounds (from Birgé and Massart (1993)), yield achieved rates of convergence for maximum likelihood estimators (and other minimum contrast estimators) $r_{n}=r_{n}^{a c h}$ determined by

$$
\sqrt{n} r_{n}^{-2}=\int_{c r_{n}^{-2}}^{r_{n}^{-1}} \sqrt{\log N_{[]}(\epsilon, \mathcal{P})} d \epsilon
$$

- If (2) holds, this leads to the rate

$$
\begin{cases}n^{\gamma /(2 \gamma+1)} & \text { if } \gamma>1 / 2 \\ n^{\gamma / 2} & \text { if } \gamma<1 / 2\end{cases}
$$

- Thus there is the possibility that maximum likelihood is not (rate-)optimal when $\gamma<1 / 2$.
- Typically

$$
\frac{1}{\gamma}=\frac{d}{\alpha}
$$

where d is the dimension of the underlying sample space and α is a measure of the "smoothness" of the functions in \mathcal{P}.

- Typically

$$
\frac{1}{\gamma}=\frac{d}{\alpha}
$$

where d is the dimension of the underlying sample space and α is a measure of the "smoothness" of the functions in \mathcal{P}.

- Hence

$$
\alpha<\frac{d}{2}
$$

leads to $\gamma<1 / 2$.

- Typically

$$
\frac{1}{\gamma}=\frac{d}{\alpha}
$$

where d is the dimension of the underlying sample space and α is a measure of the "smoothness" of the functions in \mathcal{P}.

- Hence

$$
\alpha<\frac{d}{2}
$$

leads to $\gamma<1 / 2$.

- But there are many examples/problem with $\gamma>1 / 2$!

Optimal rate and MLE rate as a function of γ

Difference of rates $\gamma /(2 \gamma+1)-\gamma / 2$

4. Positive Examples (some still in progress!)

- Interval censoring (Groeneboom)
case 1, current status data case 2 (Groeneboom)

4. Positive Examples (some still in progress!)

- Interval censoring (Groeneboom) case 1, current status data case 2 (Groeneboom)
- panel count data
(Wellner and Zhang, 2000)

4. Positive Examples (some still in progress!)

- Interval censoring (Groeneboom) case 1, current status data case 2 (Groeneboom)
- panel count data
(Wellner and Zhang, 2000)
- k-monotone densities
(Balabdaoui and Wellner, 2004)

4. Positive Examples (some still in progress!)

- Interval censoring (Groeneboom) case 1, current status data case 2 (Groeneboom)
- panel count data
(Wellner and Zhang, 2000)
- k-monotone densities
(Balabdaoui and Wellner, 2004)
- competing risks current status data
(Jewell and van der Laan; Maathuis)
- Example 1. (interval censoring, case 1)
- Example 1. (interval censoring, case 1)
- $X \sim F, Y \sim G$ independent Observe $(1\{X \leq Y\}, Y) \equiv(\Delta, Y)$. Goal: estimate F. MLE \hat{F}_{n} exists
- Example 1. (interval censoring, case 1)
- $X \sim F, Y \sim G$ independent Observe $(1\{X \leq Y\}, Y) \equiv(\Delta, Y)$. Goal: estimate F. MLE \hat{F}_{n} exists
- Global rate: $d=1, \alpha=1, \gamma=\alpha / d=1$. $\gamma /(2 \gamma+1)=1 / 3$, so $r_{n}=n^{1 / 3}$:

$$
n^{1 / 3} h\left(p_{\hat{F}_{n}}, p_{0}\right)=O_{p}(1)
$$

and this yields

$$
n^{1 / 3} \int\left|\hat{F}_{n}-F_{0}\right| d G=O_{p}(1)
$$

- Interval censoring case 1, continued:
- Interval censoring case 1, continued:
- Local rate: (Groeneboom, 1987)

$$
\begin{aligned}
& n^{1 / 3}\left(\hat{F}_{n}\left(t_{0}\right)-F\left(t_{0}\right)\right) \\
& \quad \rightarrow_{d}\left\{\frac{F\left(t_{0}\right)\left(1-F\left(t_{0}\right)\right) f_{0}\left(t_{0}\right)}{2 g\left(t_{0}\right)}\right\}^{1 / 3} 2 \mathbb{Z}
\end{aligned}
$$

where $\mathbb{Z}=\operatorname{argmin}\left\{W(t)+t^{2}\right\}$

- Example 2. (interval censoring, case 2)
- Example 2. (interval censoring, case 2)
- $X \sim F,(U, V) \sim H, U \leq V$ independent of X Observe i.i.d. copies of (Δ, U, V) where

$$
\begin{aligned}
\Delta & =\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right) \\
& =(1\{X \leq U\}, 1\{U<X \leq V\}, 1\{V<X\})
\end{aligned}
$$

- Example 2. (interval censoring, case 2)
- $X \sim F,(U, V) \sim H, U \leq V$ independent of X Observe i.i.d. copies of (Δ, U, V) where

$$
\begin{aligned}
\Delta & =\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right) \\
& =(1\{X \leq U\}, 1\{U<X \leq V\}, 1\{V<X\})
\end{aligned}
$$

- Goal: estimate F. MLE \hat{F}_{n} exists.
- (interval censoring, case 2, continued)
- (interval censoring, case 2, continued)
- Global rate (separated case): If $P(V-U \geq \epsilon)=1$, $d=1, \alpha=1, \gamma=\alpha / d=1$ $\gamma /(2 \gamma+1)=1 / 3$, so $r_{n}=n^{1 / 3}$

$$
n^{1 / 3} h\left(p_{\hat{F}_{n}}, p_{0}\right)=O_{p}(1)
$$

and this yields

$$
n^{1 / 3} \int\left|\hat{F}_{n}-F_{0}\right| d \mu=O_{p}(1)
$$

where

$$
\mu(A)=P(U \in A)+P(V \in A), \quad A \in \mathcal{B}_{1}
$$

- (interval censoring, case 2, continued)
- (interval censoring, case 2, continued)
- Global rate (nonseparated case): (van de Geer, 1993).

$$
\frac{n^{1 / 3}}{(\log n)^{1 / 6}} h\left(p_{\hat{F}_{n}}, p_{0}\right)=O_{p}(1) .
$$

Although this looks "worse" in terms of the rate, it is actually better because the Hellinger metric is much stronger in this case.

- (interval censoring, case 2, continued)
- Global rate (nonseparated case): (van de Geer, 1993).

$$
\frac{n^{1 / 3}}{(\log n)^{1 / 6}} h\left(p_{\hat{F}_{n}}, p_{0}\right)=O_{p}(1) .
$$

Although this looks "worse" in terms of the rate, it is actually better because the Hellinger metric is much stronger in this case.

(interval censoring, case 2, continued)

- Local rate (separated case): (Groeneboom, 1996)

$$
n^{1 / 3}\left(\hat{F}_{n}\left(t_{0}\right)-F_{0}\left(t_{0}\right)\right) \rightarrow_{d}\left\{\frac{f_{0}\left(t_{0}\right)}{2 a\left(t_{0}\right)}\right\}^{1 / 3} 2 \mathbb{Z}
$$

where $\mathbb{Z}=\operatorname{argmin}\left\{W(t)+t^{2}\right\} \quad$ and

$$
\begin{gathered}
a\left(t_{0}\right)=\frac{h_{1}\left(t_{0}\right)}{F_{0}\left(t_{0}\right)}+k_{1}\left(t_{0}\right)+k_{2}\left(t_{0}\right)+\frac{h_{2}\left(t_{0}\right)}{1-F_{0}\left(t_{0}\right)} \\
k_{1}(u)=\int_{u}^{M} \frac{h(u, v)}{F_{0}(v)-F_{0}(u)} d v \\
k_{2}(v)=\int_{0}^{v} \frac{h(u, v)}{F_{0}(v)-F_{0}(u)} d u
\end{gathered}
$$

(interval censoring, case 2, continued)

- Local rate (non-separated case): (conjectured, G\&W, 1992)

$$
(n \log n)^{1 / 3}\left(\hat{F}_{n}\left(t_{0}\right)-F_{0}\left(t_{0}\right)\right) \rightarrow_{d}\left\{\frac{3}{4} \frac{f_{0}\left(t_{0}\right)^{2}}{h\left(t_{0}, t_{0}\right)}\right\}^{1 / 3} 2 \mathbb{Z}
$$

where $\mathbb{Z}=\operatorname{argmin}\left\{W(t)+t^{2}\right\}$

(interval censoring, case 2, continued)

- Local rate (non-separated case): (conjectured, G\&W, 1992)

$$
(n \log n)^{1 / 3}\left(\hat{F}_{n}\left(t_{0}\right)-F_{0}\left(t_{0}\right)\right) \rightarrow_{d}\left\{\frac{3}{4} \frac{f_{0}\left(t_{0}\right)^{2}}{h\left(t_{0}, t_{0}\right)}\right\}^{1 / 3} 2 \mathbb{Z}
$$

where $\mathbb{Z}=\operatorname{argmin}\left\{W(t)+t^{2}\right\}$

- Monte-Carlo evidence in support: Groeneboom and Ketelaars (2005)

MSE histogram / MSE of MLE $f_{0}(t)=1$

MSE histogram / MSE of MLE $f_{0}(t)=4(1-t)^{3}$

MSE histogram / MSE of MLE $f_{0}(t)=1$

MSE histogram / MSE of MLE $f_{0}(t)=4(1-t)^{3}$

- Example 3. (k-monotone densities)
- Example 3. (k-monotone densities)
- A density p on $(0, \infty)$ is k-monontone $\left(p \in \mathcal{D}_{k}\right)$ if it is non-negative and nonincreasing when $k=1$; and if $(-1)^{j} p^{(j)}(x) \geq 0$ for $j=0, \ldots, k-2$ and $(-1)^{k-2} p^{(k-2)}$ is convex for $k \geq 2$.
- Example 3. (k-monotone densities)
- A density p on $(0, \infty)$ is k-monontone $\left(p \in \mathcal{D}_{k}\right)$ if it is non-negative and nonincreasing when $k=1$; and if $(-1)^{j} p^{(j)}(x) \geq 0$ for $j=0, \ldots, k-2$ and $(-1)^{k-2} p^{(k-2)}$ is convex for $k \geq 2$.
- Mixture representation: $p \in \mathcal{D}_{k}$ iff

$$
p(x)=\int_{0}^{\infty} \frac{k}{y^{k}}(y-x)_{+}^{k-1} d F(y)
$$

for some distribution function F on $(0, \infty)$.
$\square k=1$: monotone decreasing densities on \mathbb{R}^{+}
$\square k=2$: convex decreasing densities on \mathbb{R}^{+}
$\square k \geq 3$:
$\square k=\infty$: completely monotone densities
= scale mixtures of exponential

(k-monotone densities, continued)

- The MLE \hat{p}_{n} of $p_{0} \in \mathcal{D}_{k}$ exists and is characterized by

$$
\int_{0}^{\infty} \frac{k}{y^{k}} \frac{(y-x)_{+}^{k}}{\hat{p}_{n}(x)} d \mathbb{P}_{n}(x) \begin{cases}\leq 1, & \text { for all } y \geq 0 \\ =1, & \text { if }(-1)^{k} \hat{p}_{n}^{(k-1)}(y-)>\hat{p}_{n}^{(k-1)}(y+)\end{cases}
$$

(k -monotone densities, continued)

- The MLE \hat{p}_{n} of $p_{0} \in \mathcal{D}_{k}$ exists and is characterized by

$$
\int_{0}^{\infty} \frac{k}{y^{k}} \frac{(y-x)_{+}^{k}}{\hat{p}_{n}(x)} d \mathbb{P}_{n}(x) \begin{cases}\leq 1, & \text { for all } y \geq 0 \\ =1, & \text { if }(-1)^{k} \hat{p}_{n}^{(k-1)}(y-)>\hat{p}_{n}^{(k-1)}(y+)\end{cases}
$$

- $k=1$ Grenander estimator: $r_{n}=n^{1 / 3}$

(k-monotone densities, continued)

- The MLE \hat{p}_{n} of $p_{0} \in \mathcal{D}_{k}$ exists and is characterized by

$$
\int_{0}^{\infty} \frac{k}{y^{k}} \frac{(y-x)_{+}^{k}}{\hat{p}_{n}(x)} d \mathbb{P}_{n}(x) \begin{cases}\leq 1, & \text { for all } y \geq 0 \\ =1, & \text { if }(-1)^{k} \hat{p}_{n}^{(k-1)}(y-)>\hat{p}_{n}^{(k-1)}(y+)\end{cases}
$$

- $k=1$ Grenander estimator: $r_{n}=n^{1 / 3}$
- Global rates and finite n minimax bounds: Birgé (1986), (1987), (1989)

(k-monotone densities, continued)

- The MLE \hat{p}_{n} of $p_{0} \in \mathcal{D}_{k}$ exists and is characterized by

$$
\int_{0}^{\infty} \frac{k}{y^{k}} \frac{(y-x)_{+}^{k}}{\hat{p}_{n}(x)} d \mathbb{P}_{n}(x) \begin{cases}\leq 1, & \text { for all } y \geq 0 \\ =1, & \text { if }(-1)^{k} \hat{p}_{n}^{(k-1)}(y-)>\hat{p}_{n}^{(k-1)}(y+)\end{cases}
$$

- $k=1$ Grenander estimator: $r_{n}=n^{1 / 3}$
- Global rates and finite n minimax bounds: Birgé (1986), (1987), (1989)
- Local rates: Prakasa Rao (1969), Groeneboom (1985), (1989)

Kim and Pollard (1990)

$$
n^{1 / 3}\left(\hat{p}_{n}\left(t_{0}\right)-p_{0}\left(t_{0}\right)\right) \rightarrow_{d}\left\{\frac{p_{0}\left(t_{0}\right)\left|p_{0}^{\prime}\left(t_{0}\right)\right|}{2}\right\}^{1 / 3} 2 \mathbb{Z}
$$

(k-monotone densities, continued)

- $k=2$; convex decreasing density
$d=1, \alpha=2, \gamma=2, \gamma /(2 \gamma+1)=2 / 5$, so $r_{n}=n^{2 / 5}$ (forward problem)
\square Global rates: nothing yet
\square Local rates and distributions:
Groeneboom, Jongbloed, Wellner (2001)

(k-monotone densities, continued)

- $k=2$; convex decreasing density
$d=1, \alpha=2, \gamma=2, \gamma /(2 \gamma+1)=2 / 5$, so $r_{n}=n^{2 / 5}$
(forward problem)
\square Global rates: nothing yet
\square Local rates and distributions: Groeneboom, Jongbloed, Wellner (2001)
- $k \geq 3$; k - monotone density
$d=1, \alpha=k, \gamma=k, \gamma /(2 \gamma+1)=k /(2 k+1)$, so
$r_{n}=n^{k /(2 k+1)}$ (forward problem)?
\square Global rates: nothing yet
\square Local rates: should be $r_{n}=n^{k /(2 k+1)}$
progress: Balabdaoui and Wellner (2004) local rate is true if a certain conjecture about Hermite interpolation holds

Direct and Inverse estimators $k=3, n=100$

Direct and Inverse estimators $k=3, n=1000$

Direct and Inverse estimators $k=6, n=100$

Direct and Inverse estimators $k=6, n=1000$

- Example 4. (Competing risks with current status data)
- Example 4. (Competing risks with current status data)
- Variables of interest (X, Y);

$$
\begin{aligned}
& X=\text { failure time } ; Y=\text { failure cause } \\
& X \in \mathbb{R}^{+}, Y \in\{1, \ldots, K\} \\
& T=\text { an observation time, independent of }(X, Y)
\end{aligned}
$$

- Example 4. (Competing risks with current status data)
- Variables of interest (X, Y);

$$
\begin{aligned}
& X=\text { failure time } ; Y=\text { failure cause } \\
& X \in \mathbb{R}^{+}, Y \in\{1, \ldots, K\}
\end{aligned}
$$

$$
T=\text { an observation time, independent of }(X, Y)
$$

- Observe: $(\Delta, T), \Delta=\left(\Delta_{1}, \ldots, \Delta_{K}, \Delta_{K+1}\right)$ where

$$
\begin{aligned}
& \Delta_{j}=1\{X \leq T, Y=j\}, \quad j=1, \ldots, K \\
& \Delta_{K+1}=1\{X>T\}
\end{aligned}
$$

- Example 4. (Competing risks with current status data)
- Variables of interest (X, Y);

$$
\begin{aligned}
& X=\text { failure time } ; Y=\text { failure cause } \\
& X \in \mathbb{R}^{+}, Y \in\{1, \ldots, K\}
\end{aligned}
$$

$$
T=\text { an observation time, independent of }(X, Y)
$$

- Observe: $(\Delta, T), \Delta=\left(\Delta_{1}, \ldots, \Delta_{K}, \Delta_{K+1}\right)$ where

$$
\begin{aligned}
& \Delta_{j}=1\{X \leq T, Y=j\}, \quad j=1, \ldots, K \\
& \Delta_{K+1}=1\{X>T\} .
\end{aligned}
$$

- Goal: estimate $F_{j}(t)=P(X \leq t, Y=j)$ for $j=1, \ldots, K$
- Example 4. (Competing risks with current status data)
- Variables of interest (X, Y);

$$
\begin{aligned}
& X=\text { failure time } ; Y=\text { failure cause } \\
& X \in \mathbb{R}^{+}, Y \in\{1, \ldots, K\}
\end{aligned}
$$

$$
T=\text { an observation time, independent of }(X, Y)
$$

- Observe: $(\Delta, T), \Delta=\left(\Delta_{1}, \ldots, \Delta_{K}, \Delta_{K+1}\right)$ where

$$
\begin{aligned}
& \Delta_{j}=1\{X \leq T, Y=j\}, \quad j=1, \ldots, K \\
& \Delta_{K+1}=1\{X>T\} .
\end{aligned}
$$

- Goal: estimate $F_{j}(t)=P(X \leq t, Y=j)$ for $j=1, \ldots, K$
- MLE $\hat{F}_{n}=\left(\hat{F}_{n, 1}, \ldots, \hat{F}_{n, K}\right)$ exists!

Characterization of \hat{F}_{n} involves an interacting system of slopes of convex minorants

(competing risks with current status data, continued)

- Global rates. Easy with present methods.

$$
n^{1 / 3} \sum_{k=1}^{K} \int\left|\hat{F}_{n, k}(t)-F_{0, k}(t)\right| d G(t)=O_{p}(1)
$$

(competing risks with current status data, continued)

- Global rates. Easy with present methods.

$$
n^{1 / 3} \sum_{k=1}^{K} \int\left|\hat{F}_{n, k}(t)-F_{0, k}(t)\right| d G(t)=O_{p}(1)
$$

- Local rates? Conjecture $r_{n}=n^{1 / 3}$. New methods needed. Tricky. Maathuis (2006)?

(competing risks with current status data, continued)

- Global rates. Easy with present methods.

$$
n^{1 / 3} \sum_{k=1}^{K} \int\left|\hat{F}_{n, k}(t)-F_{0, k}(t)\right| d G(t)=O_{p}(1)
$$

- Local rates? Conjecture $r_{n}=n^{1 / 3}$. New methods needed. Tricky. Maathuis (2006)?
- Limit distribution theory: will involve slopes of an interacting system of greatest convex minorants defined in terms of a vector of dependent two-sided Brownian motions

$n^{2 / 3} \times$ MSE of MLE and naive estimators of F_{1}

$n=2500$
$n=25000$

$n^{2 / 3} \times$ MSE of MLE and naive estimators of F_{2}

- Example 5. (Monotone densities in \mathbb{R}^{d})
- Example 5. (Monotone densities in \mathbb{R}^{d})
- Entropy bounds? Natural conjectures:

$$
\alpha=1, d, \gamma=1 / d \text {, so } \gamma /(2 \gamma+1)=1 /(d+2)
$$

- Example 5. (Monotone densities in \mathbb{R}^{d})
- Entropy bounds? Natural conjectures:

$$
\alpha=1, d, \gamma=1 / d \text {, so } \gamma /(2 \gamma+1)=1 /(d+2)
$$

- Biau and Devroye (2003) show via Assouad's lemma and direct calculations:

$$
r_{n}^{o p t}=n^{1 /(d+2)}
$$

- Example 5. (Monotone densities in \mathbb{R}^{d})
- Entropy bounds? Natural conjectures:

$$
\alpha=1, d, \gamma=1 / d \text {, so } \gamma /(2 \gamma+1)=1 /(d+2)
$$

- Biau and Devroye (2003) show via Assouad's lemma and direct calculations:

$$
r_{n}^{o p t}=n^{1 /(d+2)}
$$

- Rate achieved by the MLE: Natural conjecture:

$$
r_{n}^{a c h}=n^{1 / 2 d}, \quad d>2
$$

- Example 5. (Monotone densities in \mathbb{R}^{d})
- Entropy bounds? Natural conjectures:

$$
\alpha=1, d, \gamma=1 / d \text {, so } \gamma /(2 \gamma+1)=1 /(d+2)
$$

- Biau and Devroye (2003) show via Assouad's lemma and direct calculations:

$$
r_{n}^{o p t}=n^{1 /(d+2)}
$$

- Rate achieved by the MLE: Natural conjecture:

$$
r_{n}^{a c h}=n^{1 / 2 d}, \quad d>2
$$

- Biau and Devroye (2003) construct generalizations of Birgé's (1987) histogram estimators that achieve the optimal rate for all $d \geq 2$.

5. Problems and Challenges

- More tools for local rates and distribution theory?

5. Problems and Challenges

- More tools for local rates and distribution theory?
- Under what additional hypotheses are MLE's globally rate optimal in the case $\gamma>1 / 2$?

5. Problems and Challenges

- More tools for local rates and distribution theory?
- Under what additional hypotheses are MLE's globally rate optimal in the case $\gamma>1 / 2$?
- More counterexamples to clarify when MLE's do not work?

5. Problems and Challenges

- More tools for local rates and distribution theory?
- Under what additional hypotheses are MLE's globally rate optimal in the case $\gamma>1 / 2$?
- More counterexamples to clarify when MLE's do not work?
- What is the limit distribution for interval censoring, case 2? (Does the G\&W (1992) conjecture hold?)

5. Problems and Challenges

- More tools for local rates and distribution theory?
- Under what additional hypotheses are MLE's globally rate optimal in the case $\gamma>1 / 2$?
- More counterexamples to clarify when MLE's do not work?
- What is the limit distribution for interval censoring, case 2? (Does the G\&W (1992) conjecture hold?)
- When the MLE is not rate optimal, is it still preferable from some other perspectives? For example, does the MLE provide efficient estimators of smooth functionals (while alternative rate -optimal estimators fail to have this property)? Compare with Bickel and Ritov (2003).

Problems and challenges, continued

- More rate and optimality theory for Maximum Likelihood Estimators of mixing distributions in mixture models with smooth kernels: e.g. completely monotone densities (scale mixtures of exponential), normal location mixtures (deconvolution problems)

Problems and challenges, continued

- More rate and optimality theory for Maximum Likelihood Estimators of mixing distributions in mixture models with smooth kernels: e.g. completely monotone densities (scale mixtures of exponential), normal location mixtures (deconvolution problems)
- Stable and efficient algorithms for computing MLE's in models where they exist (e.g. mixture models, missing data).

Problems and challenges, continued

- More rate and optimality theory for Maximum Likelihood Estimators of mixing distributions in mixture models with smooth kernels: e.g. completely monotone densities (scale mixtures of exponential), normal location mixtures (deconvolution problems)
- Stable and efficient algorithms for computing MLE's in models where they exist (e.g. mixture models, missing data).
- Results for monotone densities in \mathbb{R}^{d} ?

Selected References

- Bahadur, R. R. (1958). Examples of inconsistency of maximum likelihood estimates. Sankhya, Ser. A 20, 207-210.
- Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972). Statistical Inference under Order Restrictions. Wiley, New York.
- Barlow, R. E. and Scheurer, E. M (1971). Estimation from accelerated life tests. Technometrics 13, 145-159.
- Biau, G. and Devroye, L. (2003). On the risk of estimates for block decreasing densities. J. Mult. Anal. 86, 143-165.
- Bickel, P. J. and Ritov, Y. (2003). Nonparametric estimators which can be "plugged-in". Ann. Statist. 31, 1033-1053.
- Birgé, L. (1987). On the risk of histograms for estimating decreasing densities. Ann. Statist. 15, 1013-1022.
- Birgé, L. (1989). The Grenander estimator: a nonasymptotic approach. Ann. Statist. 17, 1532-1549.
- Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Relat. Fields 97, 113-150.
- Boyles, R. A., Marshall, A. W., Proschan, F. (1985). Inconsistency of the maximum likelihood estimator of a distribution having increasing failure rate average. Ann. Statist. 13, 413-417.
- Ferguson, T. S. (1982). An inconsistent maximum likelihood estimate. J. Amer. Statist. Assoc. 77, 831-834.
- Ghosh, M. (1995). Inconsistent maximum likelihood estimators for the Rasch model. Statist. Probab. Lett. 23, 165-170.
- Hudgens, M., Maathuis, M., and Gilbert, P. (2005). Nonparametric estimation of the joint distribution of a survival time subject to interval censoring and a continuous mark variable. Submitted to Biometrics.
- Le Cam, L. (1990). Maximum likelihood: an introduction. Internat. Statist. Rev. 58, 153-171.
- Maathuis, M. and Wellner, J. A. (2005). Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks. Submitted to Biometrika.
- Pan, W. and Chappell, R. (1999). A note on inconsistency of NPMLE of the distribution function from left truncated and case I interval censored data. Lifetime Data Anal. 5, 281-291.

