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Outline

• Introduction: shape constraints, nonparametric estimation
and testing

• Problems 1-4 from Gothenburg meeting: rearrangements
versus maximum likelihood

• Problems 5-6 from Gothenburg meeting: how big is the
Grenander estimator at zero

• Four more problems involving shape constraints ... very
briefly
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1. Introduction: shape constraints

Types of shape restrictions for functions on R:
• Monotone
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Types of functions to be estimated on R:
• Density function f , or mass function {px : x ∈ Z}
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Types of functions to be estimated on R:
• Density function f , or mass function {px : x ∈ Z}
• Regression function, r(x) = E(Y |X = x)
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What kind of theory?

• Local (pointwise), or
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What kind of theory?

• Local (pointwise), or
• Global (with some global measure of deviations):

◦ Hellinger distance (densities or intensities)?
◦ L1 or L2−distances?
◦ supremum metrics?

• (Minimax) lower bounds for estimation?
• (Minimax) upper bounds for estimation?
• Comparison of Estimators
• Testing (within a shape constrained family)
• Confidence sets?

◦ Assuming shape constraint?
◦ Testing to see if a shape constraint is true?
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What type of estimator?

• Maximum likelihood?
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2. Problems 1-4 from Gothenburg meeting

Monotone rearrangements estimator
versus

maximum likelihood?

Continuous setting
X1, . . . ,Xn i.i.d. with density f on [0,∞) where f ↘ 0.
The Maximum Likelihood Estimator is

f̂n = argmaxf∈M1

{
n∑

i=1

log f(Xi)

}
= the MLE

= Grenander estimator of f.
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From Grenander (1956), the MLE is characterized by the
Fenchel conditions:

Fn(x) ≤ F̂n(x) ≡
∫ x

0
f̂n(t)dt for all x ∈ [0,∞), and

Fn(x) = F̂n(x) if and only if f̂n(x−) > f̂n(x+).

The geometric interpretation of these two conditions is

f̂n(x) =

{
the left-derivative of the slope at x of the
least concave majorant F̂n of Fn

}

≡ ∂I1(Fn)
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Monotone rearrangement estimator

• Monotone rearrangement, continuous case: f̂rearr ≡ R(f̃n)
where

Zf (s) = λ{x : f(x) ≥ s}, R(f)(x) = Z−1
f (x).
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Monotone rearrangement estimator

• Monotone rearrangement, continuous case: f̂rearr ≡ R(f̃n)
where

Zf (s) = λ{x : f(x) ≥ s}, R(f)(x) = Z−1
f (x).

• Monotone rearrangement, discrete case: p̂rearr
n ≡ R(p̂n)

where

Zp(s) = #{i ∈ N+ : p(i) ≥ s}, R(p)(i) = Z−1
p (i).
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• {px : x ∈ N}, a non-increasing mass function on N
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= · · · = px = · · · = psk
and psk

> prk+1 , k ≥ 1.
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Theorem. (Jankowski and Wellner, 2009)
(
Yn, Y R

n , Y G
n

)
⇒

(
Y, Y R, Y G

)

in $2 × $2 × $2 where $2 ≡ {{yx} :
∑

x≥0 y2
x < ∞}.

Corollary 1. If px+1 < px for all x ≥ 0, then
(
Yn, Y R

n , Y G
n

)
⇒ (Y, Y, Y )

in $2 × $2 × $2. In this case the three estimators are
asymptotically equivalent.

Corollary 2. If px = (y + 1)−11{0,...,y}(x), then
(
Yn, Y R

n , Y G
n

)
⇒ (Y, rear(Y ),Gren(Y )) ,

and ...
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E‖Yn‖2
2 = nE

{
y∑

x=0

(p̂n,x − px)2
}

→ E‖Yx‖2
2 = 1 − 1

y + 1
,

E‖Y R
n ‖2

2 = nE

{
y∑

x=0

(p̂rearn,x − px)2
}

→ E‖rear(Y )‖2
2 = 1 − 1

y + 1
,

E‖Y G
n ‖2

2 = nE

{
y∑

x=0

(p̂Grenn,x − px)2
}

→ E‖Gren(Y )‖2
2

=
1

y + 1

y+1∑

x=1

1
x
∼ log(y + 1)

y
.

Hence p̂rearn is (asymptotically) inadmissible!
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What is the problem?
Proposition. {px} is monotone decreasing if and only if it is a
mixture of uniform mass functions (y + 1)−11{0,...,y}(x):

px =
∞∑

y=0

(y + 1)−11{0,...,y}(x)qy

for some probability mass function {qy}. The inversion formula is
given by

qy = −(y + 1)∆py ≡ −(y + 1)(py+1 − py).

Thus we can define two estimators of q:

q̂rearn,y ≡ −(y + 1)(p̂rearn,y+1 − p̂rearn,y ),

q̂Grenn,y ≡ −(y + 1)(p̂Grenn,y+1 − p̂Grenn,y ).
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Define processes Zn, ZR
n , ZG

n by

Zn,x ≡
√

n(q̂n,x − qx),

ZR
n,x ≡

√
n(q̂rearrn,x − qx),

ZG
n,x ≡

√
n(q̂Grenn,x − qx).

We know that if
∑

x≥0 x2px = E(X2) < ∞, then

Zn ⇒ Z ≡ {−(x + 1)∆Yx} in $2.

• Problem 1. If
∑

x≥0 x2px < ∞, does it hold that

ZR
n ⇒ ZR ≡ {−(x + 1)∆Y R

x } in $2;

ZG
n ⇒ ZG ≡ {−(x + 1)∆Y G

x } in $2?
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• Problem 2. If {px} is strictly decreasing, for what sequences
an, bn (with an/

√
n → ∞, bn/

√
n → ∞) does it hold that

an‖p̂rearrn − p̂n‖2 →p,a.s. 0,

bn‖p̂Grenn − p̂n‖2 →p,a.s. 0?
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• Problem 3. When (or in exactly what senses) does q̂Grenn
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• Problem 2. If {px} is strictly decreasing, for what sequences
an, bn (with an/

√
n → ∞, bn/

√
n → ∞) does it hold that

an‖p̂rearrn − p̂n‖2 →p,a.s. 0,

bn‖p̂Grenn − p̂n‖2 →p,a.s. 0?

• Problem 3. When (or in exactly what senses) does q̂Grenn

beat q̂rearrn ?
• Problem 4. What are the analogues of these results when
{ps} is k−monotone; i.e. when

px =
∞∑

y=0

(y − x)k−1
+∑y

x′=0(y − x′)k−1
qy

for some probability mass function {qy}?
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3. Problems 5-6 from Gothenburg meeting

Known from Woodroofe and Sun (1993): in the continuous case,
the Grenander estimator f̂n of a decreasing density is not
consistent at zero:

f̂n(0) →d f0(0)Y1 ≡ f0(0) sup
t>0

N(t)
t

d= f0(0)U−1

where U ∼ Uniform(0, 1).
Question: If f0 is not bounded at zero, what is the behavior of
f̂n(0)?
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Theorem. (Balabdaoui, Jankowski, Pavlides, Seregin and W,
2009): Suppose that F0 is regularly varying at 0 with exponent
γ ∈ (0, 1]. Then with an satisfying nF0(an) → 1 as n → ∞,

nanf̂n(tan) ⇒ ĥγ(t) in D[0,∞)

where ĥγ is the right derivative of the least concave majorant of
N(tγ) and N is a standard Poisson process.
Now suppose that f0 is k−monotone on (0,∞) with k ≥ 2; i.e.

f(x) =
∫ ∞

0

1
yk

(y − x)k−1
+ dG(y)

for some probability distribution G.

Problem 5. If f0 is k−monotone, what is the behavior of f̂n(0)?
Problem 6. If f0 is completely monotone (i.e. representable as a
scale mixture of exponentials), what is the behavior of f̂n(0)?
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4. Four more problems involving shape constraints ...

very briefly
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