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Outline

* |ntroduction: shape constraints, nonparametric estimation
and testing

* Problems 1-4 from Gothenburg meeting: rearrangements
versus maximum likelihood

* Problems 5-6 from Gothenburg meeting: how big is the
Grenander estimator at zero

* Four more problems involving shape constraints ... very
briefly
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1. Introduction: shape constraints

Types of shape restrictions for functions on R:
* Monotone
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Types of functions to be estimated on R:
 Density function f, or mass function {p, : z € Z}
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What kind of theory?

* Local (pointwise), or
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What kind of theory?

* Local (pointwise), or
* Global (with some global measure of deviations):

° Hellinger distance (densities or intensities)?
© [ or Lo—distances?
© supremum metrics?

* (Minimax) lower bounds for estimation?

* (Minimax) upper bounds for estimation?

* Comparison of Estimators

* Testing (within a shape constrained family)

* Confidence sets?
© Assuming shape constraint?
© Testing to see if a shape constraint is true?
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What type of estimator?

* Maximum likelihood?
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2. Problems 1-4 from Gothenburg meeting

Monotone rearrangements estimator
versus
maximum likelihood?

Continuous setting
X1,..., X, ii.d. with density f on |0, 00) where f \, 0.

The Maximum Likelihood Estimator is

P

fn = argmax;c, {Zlog f(XZ-)} = the MLE
i=1

— Grenander estimator of f.

Estimation and Testing with Shape Constraints — p. 8/30



From Grenander (1956), the MLE is characterized by the
Fenchel conditions:

Fp(z) < ﬁn(x) — /Ox fn(t)dt for all x € [0,00), and

F,(z) = F,(x) ifand only if fn(a:—) > Fo(z4).

The geometric interpretation of these two conditions is

f (x) the left-derivative of the slope at = of the
n\L — . -~
least concave majorant F,, of F,

07, (F,,)
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Monotone rearrangement estimator

~

* Monotone rearrangement, continuous case: " = R( f,)
where

Zi(s) =Mz : f(x) =s},  R(f)(z)=Z;'(2),
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Monotone rearrangement estimator

~

* Monotone rearrangement, continuous case: " = R( f,)
where

Zi(s) =Mz : f(x) =s},  R(f)(z)=Z;'(2),

* Monotone rearrangement, discrete case: p°“" = R(py)
where

Zp(s) =#{i e NT: p(i) > s},  R(p)() = Z,'(4).
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* {p; : x € N}, a non-increasing mass function on N
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* {pz : = € N}, a non-increasing mass function on N
o ﬁn7x — n_l#{i S n XZ — ZC} forﬂf - N
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* {p; : x € N}, a non-increasing mass function on N
o ﬁn7x5n_1#{i§nl XZZZE} fOrQZ'EN.
. Yn,x — \/ﬁ(ﬁn,x — paz) for x € N.
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{p: : = € N}, a non-increasing mass function on N
®* Dnr=n"1#{i<n: X; =z} forzeN.
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Yool = Vn(Dhy — pa)
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{p: : = € N}, a non-increasing mass function on N
®* Dnr=n"1#{i<n: X; =z} forzeN.

®* Yoo =vn(Pns —ps) forz e N.

Yool = Vn(Dhy — pa)
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{p: : = € N}, a non-increasing mass function on N

® Ppe=n"t#{i<n: X;=zx}forzeN.
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{p: : = € N}, a non-increasing mass function on N
®* Dnr=n"1#{i<n: X; =z} forzeN.

®* Yoo =vn(Pns —ps) forz e N.

Yooo =By — pa)

Yn%ren - \/ﬁ(AGren

pn,x o pa:)

Y, a Gaussian process on N with £Y,, = 0,

COU(Yxa Ya:’) — pxdx,a:’ — PxPx’ -

Define processes Y and Y& in terms of Y as follows:
© Decompose N as a disjoint union, N = Up>1{rk, . .. sk},

Tk < Sk,

prk:...

:pxz...:pSk andpsk >prk+11k21'
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{p: : = € N}, a non-increasing mass function on N
* Dhe=n1#{i<n: X;=2x}forzeN.
y Ynax = \/ﬁ(ﬁn,a} - p:c) for x € N.

Y20 = Vi(Bny — pe)

y,Gren = mparen _y, )

Y, a Gaussian process on N with £Y,, = 0,

COU(Yxa Ya:’) — pxdzv,a:’ — PxPx’ -

Define processes Y and Y& in terms of Y as follows:

© Decompose N as a disjoint union, N
T < Sk,

= UkZl{Tka - Sk},

Pry =+ =Ppg =" =Dps andps, >pr.,, k=>1.

° For each ry, s, pair, say r, s define Y

T = (Wi o0 5 )
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{p: : = € N}, a non-increasing mass function on N

* Dhe=n1#{i<n: X;=2x}forzeN.
y Ynax = \/ﬁ(ﬁn,a} - p:c) for x € N.

Y20 = Vi(Bny — pe)

y,Gren = mparen _y, )

Y, a Gaussian process on N with £Y,, = 0,
COU(Yxa Ya:’) — pxdzv,a:’ — PxPx’ -

Define processes Y and Y& in terms of Y as follows:
© Decompose N as a disjoint union, N = Up>1{rk, . .. sk},

e < Sk,
p,r.k = 5 0 o :px: o o o :pSk andpsk >p7ak:—|—1’ k‘z 1.
° For each ry, sj, pair, say r, s define Y("9) = (Y,.,...,Y,).

o Y =rear(Y (")), and Y¢ = Gren(Y ("),
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Theorem. (Jankowski and Wellner, 2009)
(Yo, VEY,S) = (Y, YE, YY)
in 0y x £y x Ly where lo = {{y.} : Y ~qys < o0}
Corollary 1. If p.11 < p, forall x > 0, then
(Yo, V,EY,S) = (YV,Y,Y)

In /5 x £5 X 5. In this case the three estimators are
asymptotically equivalent.

Corollary 2. If p, = (y + 1) 1y, (x), then
(Yo, VB, Y,E) = (Y, rear(Y),Gren(Y)),

and ...
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Yy

N 1
E|Y,|3 =nE {Z(pn,az —px)Q} — E|Yzll5=1- 7
=0 y_+
& —rear 2 1
E|lY,F 3 =nE Y (Pra —p2)’ ¢ — Elrear(Y)||3 =1 - .
=0
4 y AG
EIlY,E13 =nE Q) (e —px>2} — E||Gren(Y)|l3
\3320
1 1 logly+1)
ytlew J

Hence p'€@l is (asymptotically) inadmissible!
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What is the problem?
Proposition. {p, } is monotone decreasing if and only if it is a

mixture of uniform mass functions (y +1)"'15 1 (2):

oo

pe = (y+1) g (z)g

y=0
for some probability mass function {g,}. The inversion formula is
given by
@y = =W+ 1)Apy = —(y + 1)(Py+1 — py).-

Thus we can define two estimators of g¢:

~ealr __ ~ear ~ear
qn,y — _(y + 1)(pn,y—|—1 o pn,y )7

~Gren _ ~Gren ~Gren
qn,y — _(y + 1)(pn,y—i—1 o pn,y )
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Define processes 7, Zt, Z% by

Zng = V(Gng — Gz),
ZE = VG — ),
7G  — \/ﬁ@ggen Y
We know that if 3~ - 2°p, = E(X?) < oo, then
L = Z ={—(x+1)AY,} in /.
* Problem 1. 1f 3 - 2p, < 0o, does it hold that

78 = ZB = {—(z + 1)AY}  in 4y;
78 = ZC = {—(z + )AYS}  in £4y?
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* Problem 2. If {p, } is strictly decreasing, for what sequences
an, b, (With a,, /+/n — o0, b, /+/n — o) does it hold that

~rearr
Pn

an” _ﬁn||2 —p.a.s. 07

anﬁT(Laren — ﬁnHQ —Dp.a.s. 07
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* Problem 2. If {p, } is strictly decreasing, for what sequences
an, b, (With a,, /+/n — o0, b, /+/n — o) does it hold that

anHArearr

’AGren

- ﬁn“2 —p.a.s. 0,

ﬁnHQ —Dp.a.s. 07

bn|

* Problem 3. When (or in exactly what senses) does g »Gren
beat fearrs

Estimation and Testing with Shape Constraints — p. 27/30



* Problem 2. If {p, } is strictly decreasing, for what sequences
an, b, (With a,, /+/n — o0, b, /+/n — o) does it hold that

|Arearr

’AGren

an’ — ﬁnHQ —p.a.s. 0,

ﬁnH2 —Dp.a.s. 07

bn |
* Problem 3. When (or in exactly what senses) does g »Gren
beat fearrs

* Problem 4. What are the analogues of these results when
{ps} is k—monotone; i.e. when

)kl

Z Zy/— o) 14y

for some probability mass function {g, }?
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3. Problems 5-6 from Gothenburg meeting

Known from Woodroofe and Sun (1993): in the continuous case,

the Grenander estimator fn of a decreasing density is not
consistent at zero:

F2(0) =4 fo(0)Y1 = fo(0) igg @ 4 fo(0) U

where U ~ Uniform(0,1).

Question: If f; is not bounded at zero, what is the behavior of

fn(0)?
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Theorem. (Balabdaoui, Jankowski, Pavlides, Seregin and W,
2009): Suppose that Fj is regularly varying at 0 with exponent
v € (0, 1]. Then with a,, satisfying nFy(a,) — 1 as n — oo,

AN

nan fn(tan) = hy(t)  in D[0,00)
where ﬁ,y IS the right derivative of the least concave majorant of
N(¢7) and N is a standard Poisson process.
Now suppose that f; is k—monotone on (0, c0) with & > 2; i.e.
-1 k-1
flz) = i y—k(y — )} dG(y)

for some probability distribution G.

Problem 5. If f; is k—monotone, what is the behavior of f,(0)?

Problem 6. If f; is completely monotone (i.e. representable as a
scale mixture of exponentials), what is the behavior of f,,(0)?
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4. Four more problems involving shape constraints ...

very briefly
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