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1. Introduction

In this report we discuss a theorem of Anderson’s and trace its central use in proving

inequalities for multivariate normal, and later elliptic, random variable that eventually lead

naturally to the recently proven Gaussian correlation conjecture (GCC). The solution to a

Cauchy problem using the Feynman-Kac formula for diffusions related to the GCC and is

used to prove Slepian’s inequality.

2. Anderson’s Theorem

A function f : Rn → R is symmetric if f(x) = f(−x) and is unimodal if f−1([c,∞)) =

{x : f(x) ≥ c} is convex for all c ∈ R. A set K ∈ Rn is symmetric if x ∈ K ⇐⇒ −x ∈ K.

In 1955, Anderson established an inequality showing the volume of a nonnegative symmetric

unimodel function above a symmetric set decreases as the convex set is shifted linearly [5].

More precisely, he showed the following theorem.

Theorem 2.1 (See [5]). Let K ⊂ Rn be symmetric and convex, and assume f : Rn → R is

nonnegative symmetric and unimodal. Then for every fixed y ∈ Rn, the function

h1(t) =

∫
K+ty

f(x)dx(1)

is a symmetric unimodal function of t ∈ R. This also implies h1 has its maximum at t = 0.

Proof Sketch. First notice symmetry of h1 follows from symmetry of f and K. To show

unimodality, begin with the case f = 1C where C is symmetric and convex. Pick 0 ≤ t0 ≤ t

and α = (t0 + t)/2t. Notice that C ∩ (K + t0y) ⊃ α[C ∩ (K + ty)] + (1− α)[C ∩ (K − ty)]
1
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because the right hand is a convex combination since α ∈ [.5, 1]. Apply the Brunn-Minkowski

inequality to see

µ1/n(C ∩ (K + t0y)) ≥ αµ1/n(C ∩ (K + ty)) + (1− α)µ1/n(C ∩ (K − ty))

The sets on the right hand side have the same measure due to symmetry of both C and K.

Hence

µ1/n(C ∩ (K + t0y)) ≥ µ1/n(C ∩ (K + ty)),

and so µ(C ∩ (K + t0y)) ≥ µ(C ∩ (K + ty)). This shows unimodality of
∫
K+ty

1C(x)dx. Now

extend this to the closure of
∑
ai1Ci

where ai > 0 and {Ci} is a finite collection of convex

symmetric sets in Rn. It is easily seen that any symmetric unimodal f lies in this closure,

proving the result. �

Fefferman, Jodeit Jr., and Perlman apply Anderson’s theorem to show any linear map

A : Rn → Rn with ‖A‖≤ 1 will shrink a closed symmetric convex sets’ intersection with

the unit sphere. In other words, if C ∈ Rn is symmetric and convex, and µ denote surface

measure on S = {x ∈ Rn : ‖x‖= 1}. Then

Theorem 2.2 (Theorem 1 in [1]). µ(AC ∩ S) ≤ µ(C ∩ S) for any closed, convex, and

symmetric set C.

We can express h1(t) defined in (1) as∫
f(x)χK+ty(x)dx =

∫
f(x)χK(x− ty)dx = f ∗ χK(ty).

By Anderson’s result f ∗ χK(ty) is nonincreasing function of t. One can extend this to

say f1 ∗ f2(ty) is nonincreasing as a function of t whenever f1, f2 are symmetric and uni-

modal. To prove the above theorem, the authors reduce the case to when A is replaced

with Dλ := diag(λ, 1, . . . , 1) and λ ∈ [0, 1]. Let fε be an approximation to the identity,

fε = (2πε)−n/2 exp(−|x|2/2ε) and φε = χC ∗ fε. Consequently φε → χC as ε→ 0 except per-

haps at the boundary of C. Set uε(λ) =

∫
S

φε(D
−1
λ x)dµ(x) so that uε →

∫
S

χC(D−1
λ x)dµ(x) =
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µ(DλC ∩ S) =: u(λ). Consider ψ(x) = φε(D
−1
λ x). One can show

u′ε(λ) = −λ−1

∫
S

x1
∂ψ

∂x1

dµ(x) = −λ−1

∫
B

∂2ψ

∂x2
1

dx

where x1 is the first coordinate of x and B is the unit ball. Applying the above mentioned

extension of Anderson’s result shows χB ∗ψ has its maximum at the origin, and consequently

0 ≥ d2

dt2
χB ∗ ψ(tz)|t=0=

∂2χB ∗ ψ
∂x2

1

∣∣∣
x=0

, where z = (1, 0, . . . , 0). Combining with the above

shows uε(λ) ≥ 0.

In 1970, Jogdeo used Anderson’s theorem to show a two sided version of Slepian’s in-

equality for the multivariate normal distribution [3]. Slepian’s inequality states that if

X = (X1, . . . , Xn)
d
= N(0, R), where R = (ρi,j(λ)), then

d

dρi,j
P(Xl ≤ cl, l = 1, . . . , n) ≥ 0, cl ∈ R.

Intuitively, one expects P(|Xl|≤ cl, l = 1, . . . , n), cl > 0 to increase with the correlation of

the off-diagonals. This was shown by Jogdeo in the following theorem.

Theorem 2.3 ([3]). Let X = (X1, . . . , Xn)
d
= N(0, R), where R(λ) = {ρi,j(λ)}, ρ1,j(λ) =

λρ1,j, j > 1, λ ∈ [0, 1]. For cl > 0, l = 1, . . . , n, we have

d

dλ
P(|Xl|≤ cl, l = 1, . . . , n) ≥ 0.

Theorem 2.3 was extended to elliptically contoured distributions by Das Gupta, Eaton,

Olkin, Perlman, Savage, and Sobel (or DOPESS) [2]. Let

Σλ =

 Σ11 λΣ12

λΣ21 σpp

 ∈ Rp×p,

where Σ11 is (p − 1) × (p − 1) and λ ∈ [0, 1]. Let x = (x1, . . . , xp) be a random variable

with density |Σ|−1/2f(xΣ−1xT ) and

∫ ∞
0

rp−1f(r2)dr < ∞. This is what the authors call an

elliptically contoured distribution, where they mention y = xΣ−1/2 yields a density uniform

on spheres and so has also been called a spherical distribution.
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Theorem 2.4 (Theorem 2.1 in [2]).

Pλ((x1, . . . , xp−1) ∈ C, |xp|≤ h), λ ∈ [0, 1]

is nondecreasing in λ for every symmetric convex set C ⊂ Rp−1.

Theorem 2.4 motivates the GCC in the following way: suppose we consider a general block

decomposition of Σ with Σ12 being a k× p−k for any 1 ≤ k < p, as opposed to a (p− 1)× 1

matrix as in Theorem 2.4. Setting x = (x1, x2) where x1 ∈ Rk and x2 ∈ Rp−k, and letting

λ = 0 should minimize Pλ(x1 ∈ C1, x2 ∈ C2), where C1 ⊂ Rk, C2 ⊂ Rp−k are symmetric

convex sets. That is, one would expect

PΣ((x1, x2) ∈ (C1, C2)) ≥ PΣ((x1, x2) ∈ (C1, C2)),(2)

as a generalization of Theorem 2.4, where Σ has the same main diagonals as Σ but with

Σ12 = 0 = Σ21.

2.1. A Cauchy Problem with an Initial Condition. Let σ ∈ Rn with no zero coor-

dinates, and define σ2
i,j = (σσT )i,j. Denote Σ = (σ2

i,j). For a sufficiently smooth function

g : R→ R, consider the differential operator AΣ : C2(Rn,R)→ C2(R,R) which acts on g:

(AΣg)(x) =
1

2

∑
i,j

∂2g

∂xi∂xj
(x).(3)

For a bounded f one can consider the partial differential equation solving for u(t, x) : [0,∞)×

Rn → R satisfying

∂

∂t
u(t, x) = AΣu(t, x),

u(0, x) = f(x).

(4)

We will refer to (4) as the Cauchy problem with initial condition f. One can solve the Cauchy

problem by averaging f composed with a certain stochastic process.

2.2. Diffusion Solution to Cauchy Problem via Feynman-Kac Formula. Using the

same notation for σ, σ2
i,j,Σ, AΣ in the Cauchy problem above, let X(t) be an n dimensional
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diffusion defined by

dX(t) = σdB(t),

where σ ∈ Rn and B(t) is a standard n dimensional Brownian motion. At a fixed time t0,

X(t0)
d
= N(0, t0Σ).

Theorem 2.5 (See chapter 4.4 in [4]). Define

u(t, x) = E(f(X(t))|X(0) = x),

then u(t, x) solves the Cauchy problem (4).

Here E(f(X(t))|X(0) = x) is the expected value of f(X(t)) conditioned on X(0) = x.

That is, X begins at x. The Feynman-Kac formula is typically written by choosing a T > 0

and setting z(t, x) = E(f(X(T ))|X(t) = x), t ∈ [0, T ], which solves

∂

∂t
z(t, x) = −AΣz(t, x),

z(T, x) = f(x).

(5)

Somtimes this is called the Kolmogorov backward equation. In any case, a change of variable

u(t, x) := z(T − t, x) demonstrates u solves (4) for t ∈ [0, T ].

Let f(x1, . . . , xn) =
∏n

i=1 fi(xi) where fi : R→ R are defined to be smooth bump function.

For example, one may take

fi(t) = g(t/ci), ci 6= 0

where g : R → R is a smooth symmetric bump function, or fi(t) = g(t + ci). (We take

a particular form of g later for the corollary demonstrating Slepian’s inequality). In other

words, f(x1, . . . , xn) is approximately the indicator of an n dimensional centered rectangle.

Consider (σ2
i,j) = Σ and (σ2

i,j) = Σ, where σ2
i,j = 0 whenever 1 ≤ i ≤ k < j ≤ n (and extend

this symmetrically for σ2
j,i) for some given 1 ≤ k < n. Otherwise let σ2

i,j agree with σ2
i,j. We

further assume σ2
i,j ≥ 0 when 1 ≤ i ≤ k < j ≤ n.

In other words, we are decorrelating the coordinates of X(t) up to k from the coordinates

after k. Now A := AΣ, AΣ =: B both define a Cauchy problem with initial condition f .
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Denote u(t, x), v(t, x) as the Cauchy problem associated with A,B respectively. By taking a

sequence of bump functions converging to the indicator, equation (2) is morally equivalent

to

u(1, 0) ≥ v(1, 0)

when C1, C2 are k and n− k dimensional centered rectangles.

Recall the definition of the differential operators A and B in (3), and note that

C = A−B =
∑

1≤i≤k<j≤n

σ2
i,j

∂2

∂xi∂xj
,

where the 1/2 drops out because each partial shows up twice due to equivalence of mixed

partials. Define w(t, x) = u(t, x) − v(t, x). Because u, v are solutions to their respective

Cauchy problems, linearity of the operators A,B,C give

∂

∂t
w(t, x) =

∂

∂t
(u(t, x)− v(t, x))

= Au(t, x)−Bv(t, x)

= (B + C)u(t, x)−Bv(t, x)

= B(u(t, x)− v(t, x)) + Cu(t, x)

= Bw(t, x) + Cu(t, x),

while the initial condition is

w(0, x) = u(0, x)− v(0, x) = 0.

If we can show Cu(t, x) ≥ 0, then it follows immediately that

∂

∂t
w(t, x) ≥ Bw(t, x), w(0, x) = 0.

Consequently, w(t, x) would be dominated below from the solution to the Cauchy problem

with operator B and an initial condition of the zero function, yielding 0 ≤ w(1, 0) = u(1, 0)−

v(1, 0) in particular.
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Proposition 2.6. Let pt(x, y) be the transition density of X with Σ = (σ2
i,j) given as above,

and recall f(z) =
∏n

i=1 fi(zi). Then

Cxu(t, x) =

∫
(Cyf)(y)pt(x, y)dy =

∑
1≤i≤k<j

σ2
i,j

∫ ( ∏
i 6=l 6=j

fi(yi)

)
f ′i(yi)f

′
j(yj)pt(x, y)dy(6)

For clarity, Cy means the operator C acts on the variable y = (y1, . . . , yn).

Sketch. By definition of the transition density pt(x, y), u(t, x) = E(f(X(t))|X(0) = x) =∫
f(y)pt(x, y)dy. Consequently

Cxu(t, x) = Cx

∫
f(y)pt(x, y)dy =

∫
f(y)Cxpt(x, y)dy.

However, transitioning from x to y in a time of t is the same as transitioning from the origin

to y− x in a time of t. So pt(x, y) = pt(0, y− x). Because the operator C is a sum of mixed

partials ∂2/∂xi∂xj with i 6= j, and because pt(0, y−x) = |tΣ|−n/2exp(− 1
2t

(y−x)Σ−1(y−x)T ),

the quadratic nature of the exponent allows one to show ∂2pt(0, y− x)/∂xi∂xj = ∂2pt(0, y−

x)/∂yi∂yj. Therefore,

Cxu(t, x) =

∫
f(y)Cypt(x, y)dy.

Now apply an integration by parts for each mixed partial in Cy to move this operator from

pt(0, y − x) to f(y), giving

Cxu(t, x) =

∫
(Cyf)(y)pt(x, y)dy.

This reduces to the right hand side of (6) in the case f(z) =
∏n

i=1 f(zi). �

The above proposition yields Slepian’s Inequality as a corollary

Corollary 2.7 (Slepian’s Inequality). In the notation Σ = (σ2
i,j) and Σ = (σ2

i,j) defined

above, PΣ(X1 ≤ c1, . . . , Xn ≤ cn) ≥ PΣ(X1 ≤ l1, . . . , Xn ≤ ln).

Proof. Let fi(z) = g(z − li) be smooth, increasing (thinking of this function as approxi-

mating 1(−∞,li]). This follows by taking the g to approximate 1(−∞,0]. Then f ′i , fi are both

nonnegative, and consequently the right hand side of (6) is nonnegative when adding our
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assumption that σ2
i,j ≥ 0 for 1 ≤ i ≤ k < j ≤ n. Using argument preceeding the proposition,

w(t, x) ≥ 0. �

Remark 2.8 (Some Rambling Thoughts). I have the feeling that I’m not constructing a new

argument. And it’s possible the proposition is not quite correct. But if it is, this is where the

Brascamp-Lieb inequality, or some theorem showing the right hand side of (6) is nonnegative

for all x (or just x = 0?), would come into play. This right hand side can be written as a

convolution of
(∏

i 6=l 6=j fi(yi)
)
f ′i(yi)f

′
j(yj) with pt(0, y) since pt(0, y − x) = pt(x, y).

It seems to me that we only need the RHS of (6) to be nonnegative at x = 0. (Perhaps

this is not the case.)

However, the reason I doubt the validity of the above proposition is because I obtain zero

for the right hand side when fi is a smooth and symmetric bump function “approximating”

the indicator 1[−ci,ci] when x = 0. This occurs because f ′i(yi)f
′
j(yj) is symmetric but negative

in the orthant with ei and −ej “pointing inside” or −ei and ej pointing inside, (with e1, e2

this would be the second and fourth quadrant). Consequently, setting x = 0 would say

the right hand side of (6) is zero (at x = 0). This would say that w(t, 0) = 0 if we

look carefully at the inequalities: One would have w(t, 0) solve ∂tw(t, 0) = Bw(t, 0) with

w(0, 0) = 0. In other words, u(t, 0) = v(t, 0) which must not always be true? I think there

is something fishy with either (1) the proposition above, (2) the argument with needing

Bw(t, x) + Cu(t, x) ≥ Bw(t, x) implying w(t, x) ≥ 0 or (3) I’m mistaken about the RHS of

(6) being zero when fi, fj are symmetric bump functions estimating the 1[−ci,ci]. Or we really

do need the inequality for all x.

If the above proposition is false, then we could simply let C act on pt(0, y − x), which is

not too bad either. But we would eventually we need to this is nonnegative.
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