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PROBABILITY AND STATISTICAL INFERENCE

Probability vs. Statistical Inference — Standard Viewpoint:

“Probability” postulates a probability model and uses this to predict the
behavior of observed data.

“Statistical inference” uses observed data to infer the probability model (=
distribution) from which the data was generated.

1. Probability Distributions and Random Variables.

1.1. The components (2, P) of a probability model (= random
experiment): '

) := sample space = set of all possible outcomes of the random experiment.
() either discrete (finite or countable) or continuous (= open subset of R™).

Example 1.1. Toss a coin n times: = all sequences HHTH ... TH of
length n (H = Heads, T' = Tails). Thus |Q| = 2™ (finite), so  is discrete.

Example 1.2. Toss a coin repeatedly until Heads appears and record the
number of tosses needed: 2 = {1,2,...} (countable) so 2 is again discrete.

Example 1.3. Spin a pointer and record the angle where the pointer comes
to rest: Q = [0,27) C R!, an entire interval, so § is continuous.

Example 1.4. Toss a dart at a circular board of radius d and record
the impact point: Q = {(z,y) | %2 + v < d?} C R?, a solid disk; Q is
continuous.

Example 1.5. Toss a coin infinitely many times: Q = all infinite sequences
HHTH .... Here Q =5 [0,1] € R! [why?], so Q is continuous.

Example 1.6. (Brownian motion) Observe the path of a particle sus-
pended in a liquid or gaseous medium: € is the set of all continuous paths
(functions), so 2 is continuous but not finite-dimensional.

Note: Examples 1.5 and 1.6 are examples of discrete-time and continuous-
time stochastic processes, respectively.



P := a probability measure: P(A) = probability that A occurs. Require:
(a) 0 < P(A) <1lforal AC,
(b) P(0) =0, P(Q) = 1.
(c) {As} disjoint, = P(UR,A4;) = > ooy P(A;). (countable additivity)
Three consequences of (c) [Verlfy!].
Inclusion: A C B = P(A) < P(B).
Complementation: P(A®) =1 — P(A).

Momnotone continuity:

{A}T = P(U2,A,) =1 lim P(A,),

N0

{An}l« :?P< n=1 n) ‘“l #L%P<An>

In the discrete case where Q = {wi,ws,...}, P is completely determined
by the elementary probabilities py = P({wk}), k =1,2,.... This is because
countable additivity implies that

(1.1) P(A) = Z%A P(w}) VAe2%

Conversely, given any set of numbers p1,pa, ... that satisty
(a) Pk > O)
(b> lec—):l Pk = 1,

we can define a probability measure P on 2 via (1.1). Here, {p1,p2,...}
is called a probability mass function (pmf).

Example 1.7. The following {px} are pmfs [verify (a) and (b)]:

(1.2) pr =(3)p*(1 — )k, k=0,1,...,n (0<p<1) [Binomial(n,p)l;
(13) pe =(1—=p)*'p, k=1,2,... (0<p<1) [Geometric(p)];
(1.4) pp =e*NF/EL, k=0,1,... (A>0) [Poisson()].



The binomial distribution occurs in Example 1.1; the geometric distri-
bution occurs in Example 1.2; the Poisson distribution arises as the limit
of the binomial distributions Bln(n p) when n — co and p — 0 such that
np — X\ (Law of Rare Events). N

In the continuous case where = R™, let f(*) be a function on R™ that
satisfies

(a’) f(mla"'amn) > 0 v(wla-"awn) ERﬂ)

b) [ [gaf(@1, ., @p)dey .. dz, = 1.
Then f(:) defines a probability measure P on R™ by

(15) P(A):/.../A f@1,. . on)doy .. dz, VA CR™

The function f(-) is called a probability density function (pdf) on R™. Note
that in the continuous case, unlike the discrete case, it follows from (1.5)
that singleton events {z} have probability 0.

Example 1.8. The following f(z) are pdfs on R! or R™ [verify all]:

(1.6) Ae Mg 0)(x) (A >0) [Exponential(A)];
(1.7) \/_21__ e (@=1)* /207 (0 > 0) [Normal(p, 0%); see Example 6.6];
o
1 1
(18) ;—E 1+ (ZB — u)2/0_2 (U > O) [CaUChY(/%Oj)];
)\O&
(1.9) f-(()l—)ma‘le“’\mf(o,oo)(az) (o, A > 0) [Gamma(a, A)];



F(CE + ﬁ) a—1

(110) o (=) (@) (o> 0) Beta(a, 8)):
(1) 5 :;)2 = :;x)Q [standard Logistic];
(1.12) bia.r(a,m(m) ((a,b) C RY) [Uniform(a, b)),
(1.13) mfc(x) (z = (21,...,2,),C C R?) [Uniform(C)).

Here, I4 is the indicator function of the set A: I4(z) = 1(0) if z € (¢)A.
For the Uniform(C) pdf in (1.13), it follows from (1.5) that for any A C C,

(1.14) P(A) = %ﬁ%g%%‘

'The exponential distribution appears as the distribution of waiting times
between events in a Poisson process — cf. §3.6. According to the Central
Limit Theorem (cf. §3.5), the normal = Gaussian distribution occurs as the
limiting distribution of sample averages (suitably standarized).

1.2. Random variables, pmfs, cdfs, and pdfs.

Often it is convenient to represent a feature of the outcome of a random
experiment by a random variable (rv), usually denoted by a capital letter
X,Y, Z, etc. Thus in Example 1.1, X = the total number of Heads in the
n trials and Y = the length of the longest run of Tails in the same n trials
are both random variables. This shows already that two or more random
variables may arise from the same random experiment. Additional random
variables may be constructed by arithmetic operations, e.g., Z = X +Y
and W = XY? are also random variables arising in Example 1.1.

Formally, a random variable X = X(w) arising from a probability
model (2, P) is simply a function defined on . Each random variable X
determines its own induced probability model (2x, Px), where Qx is the
range of possible values of X and Px is the probability distribution induced
on 2x from P by X: for any B C €,

(1.16)  Px(B)=P[X € B] := P[X"'(B)] = P[{w € Q| X(w) € B}].

4



If in Example 1.2 we define X := the number of trials needed to obtain
the first Head, then the induced probability model for X is the geometric
distribution in (1.3).

A multivariate rv (X1,...,X,,) is called a random vector (rvtr). Tt is
important to realize that the individual rvs X1,...,X, are related in that
they must arise from the same random experiment. Thus they may (or may
not) be correlated. [Example: (X,Y) = (height, weight); other examples?]
One goal of statistical analysis is to study the relationship among correlated
rvs for purposes of prediction.

The random variable (or random vector) X is called discrete if its
range {2y is discrete, and continuous if Qx is continuous. As in (1.1),
the probability distribution Px of a discrete random variable is completely
determined by its pmf |

- (1.16) Ix(z) = P[X = 2], z € Qx.

The probability distribution Px of a univariate continuous random
variable is deternﬁned by a pdf fx on RY. It is useful to define the cumu-
lative distribution function (cdf) Fx as follows:

(1.17) | Fx(z):=P[X < x| = /f fX'(t)df, z € RY,

The pdf fx can be recovered from the cdf Fx as follows:

(1.18) fx(z) = gx—FX(_zr), r € R



Clearly F'x directly determines the probabilities of all intervals in R!:
(1.19) Px|(a,8]] = Pr[X € (a,b]] = Fx(b) — Fx(a).

In fact, F'xy completely determines! the probability distribution Px on R!.

Note: The cdf F'x is also defined for univariate discrete random variables
by (1.17). Now Fx determines the pmf fx not by (1.18) but by

(1.20) fx(z) = P[X =x] = Fx(z) — Fx(z—), z€R' [verify].

1

I ,______j:l?z)(”]

X
Basic properties of a cdf F' on R*:
(i) F(—00) =0< F(z) < 1= F(+00).
(ii) F(-) is non-decreasing and right-continuous: F(x) = F(z+).
For a continuous multivariate rvtr (X 1,-..,Xn) the joint cdf is
(1.21) Fx,, . . x.(@1,...,2n) == P[Xy <uz1,..., X, <z,
from which the joint pdf f is recovered as follows:

an

(122) le,__.’Xn (.’,Ul, e ,.CUn) WFXL---;Xn (56'1, e ,mn).

Exercise 1.1. Extend (1.19) to show that for n = 2, the cdf F directly
determines the probabilities of all rectangles in R2. U

1 Since any Borel set B C R can be approximated by finite disjoint unions of
intervals.



For a discrete multivariate rvtr (Xy,. .., X,,), the joint cdf Fx, . .x, is
again defined by (1.21). The joint pmfis given by

(123)  Fxaroxa (@10 s @0) 1= PIX) = a1, , Xn = 2],
from which all joint probabilities can be determined as in (1.1).

The marginal pmf or pdf of any X; can be recovered from the joint pmf
or pdf by summing or integrating over the other variables. The marginal
cdf can also be recovered from the joint cdf. In the bivariate case (n = 2),
for example, if the rvtr (X,Y") has joint pmf Jx,y or joint pdf fxy, and
joint cdf Fx vy, then, respectively,

(1.24) fx( Z Ixv(z,v); [verify via countable additivity]
(1.25 (x) /ny (z,y)d [verify via (1.18) and (1.17)]
(1.26) (z) = Fx y(z,00). [verify via (1.21)]

The joint distribution contains information about X and Y beyond their
marginal distributions, i.e., information about the nature of any depen-
dence between them. Thus, the joint distribution determines all marginal

distributions but not conversely (except under independence — cf. (1.32),
(1.33).)

1..3. Conditional probab‘ility.

Consider a probability model (2, P). Let B C § be an event such that
P(B) > 0. If we are told that B has occurred but given no other infor-
mation, then the original probability model is reduced to the conditional

probability model (€2, P[- | B]), where for any event A C , 4 3
(1.27) PlA| B] = f%%@
. «./?AB i

Then P[- | B] is also a probability measure [verify] and P[B | B] = 1, i.e.,
P[- | B] assigns probability 1 to B. Thus Q is reduced to B and, by (1 27)
events within B retain the same relative probabilities.
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Example 1.9. Consider the Uniform(C) probability model (R™, P) de-
termined by (1.13). If B € C and volume(B) > 0, then the conditional
distribution Pc[|B] = Pg, the Uniform(B) distribution [verify via (1.14)].

Example 1.10. Let X be a random variable whose distribution on [0, 00)
is determined by the exponential pdf Ae=** in (1.6). Then for x,y > 0,

P[X >z + ]
PX >z X >yl =
[ x+y| Y] PIX >3] [
o —)t A
_ fm—f—y Ae di _ (& Az +y) _ 6——)«16
fyoo et dt e~ ) 'J Xn;

Because e~ = P[X > z], this can be interpreted as follows: the exponen-
~ tial distribution is memory-free; i.e., given that we have waited at least Y
time units, the probability of having to wait an additional z time units is
the same as the unconditional probability of waiting at least z units from

the start. L

Exercise 1.2. Show that the exponential distribution is the only contin-
uous distribution on (0, c0) with this memory-free property. That is, show
that if X is a continuous rv on (0, 00) such that P[X >z +y | X > y] =
P[X > z] for every z,y > 0, then fx (x) = Ae™** for some A > 0.

1.4. Conditional pmfs and pdfs.

Let (X,Y) be a discrete bivariate rvtr with joint pmf f xy. Forany z € Qx
such that P[X = z] > 0, the conditional pmfof Y given X = z is defined
by

L2 fx(ol) = PIY =y | X = o] = 22200,

where the second equality follows from (1.27). As in (1.1), the conditional
pmf completely determines the conditional distribution of YV given X = x:

(1.29) PYeB|X =a]=) fyx(yl) VB. [verify]

yEB



“Slicing”: discrete case:
U? ‘

v
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Next let (X,Y') be a continuous bivariate rvtr with joint pdf fx y. By
analogy with (1.28), for any x € Qx such that the marginal pdf fx(z) > 0,
the conditional pdf of Y given X = z might be defined by

fX,Y(xay)
fx(z)

As in (1.29), the conditional pdf (1.30) conipletely determines the condi-
tional distribution of Y given X = z:

(1.30) fygx(yll’) =

(1.31) PWGBLX:ﬂ:Agﬁﬂwm@ vB.

Note that P[Y € B | X = z| cannot be interpreted as a conditional proba-
bility for events via (1.27), since P[X = x| = 0 for every z in the continuous
case. Instead, (1.31) will be given a more accurate definition in §4.

1.5. Indepehdence.

Two events A, B C 1 are independent under the probability model (2, P),
denoted as A 1L B [P] or simply A Il B, if any of the following five
equivalent [verify!] conditions hold:

(1.32) P[AN B] = P[A]P|B];
(1.33) P[A| B] = P[A]; PlA| B] = P[A| B,
(1.34) P[B | A] = P[B]; P(B| Al = P[B | A9.

Intuitively, A 1L B means that information about the occurrence (or non-
occurrence!) of either event does not change the probability of occurrence
or non-occurrence for the other.



Exercise 1.3. Show that A Il B & A 1l B & A Il B & A°¢ 1l B¢,

, B B¢ Venn: /ﬂaB
A ANB AN B /fﬁ_:@ )

- { (’B //g‘ B
4 | acnb A° N B° X .)g,

A0 B°

Two rvs X and Y are independent under the model (2, P), denoted as
X U Y [Plorsimply X L Y,if{X € A} and {Y € B} are independent for
each pair of events A C Qx and B C Qy. It is straightforward to show that
for a jointly discrete or jointly continuous bivariate rvtr (X,Y), X 1L Y iff
any of the following four equivalent conditions hold [verify]:

(1.35) fxy(zy) = fx(@)fy(y) VY(z,y) € QUxy;
(1.36) fyixWlz) = fy(v) V(z,y) € Qxv;
(1.37) fxpv(zly) = fx(z) V(z,y) € Qx,v;
(1.38) Fxy(z,y) = Fx(z)Fy(y) VY(z,y) € Qxy.

Intuitively, it follows from (1.36) and (1.37) that independence of rvs
means that information about the values of one of the rvs does not change
the probability distribution of the other rv. It is important to note that
this requires that the joznt range of (X,Y) is the Cartesian product of the
marginal ranges:

(1.39) QX,Y = QX X Qy.

ALy

L L
-
- -~




Example 1.11. Let U,V be independent Uniform(0,1) rvs and set

X =min(U,V), Y =max(U, V). Then the range of (X,Y) is given by
(1.40) Qx,y:{(m,y)t0_<_a;§y§1}: "4’\7
' : Y=
(ot .7 % Q
o ; XY
[X( ../ a_&;_,\ J . X
| vu ; d 1 L

Because (1x,y is not a Cartesian produet set, X and Y cannot be indepen-
dent. [In fact, they are positively correlated — why?] L

Exercise 1.4. The condition {2xy = 0x X {0y is necessary for mutual
independence. Show by counterexample that it is not sufficient.

Example 1.12. Let (X,Y) ~ Uniform(D), where D = {z* +3? < 1}
denotes the unit disk in R?. (Recall Example 1.4.) By (1.13). the joint pdf

of X,Y is
(141)  fxy(z,y) = ;Tl-ID(fB,y) : r
P

{/7}”
=

In particular, the range of (X,Y) is D. However, the margmal ranges of X
and Y are both [—1,1], s0o Qx y # Qx X Qy, hence X L Y.
More precisely, it follows from (1.41) that the marginal pdf of X is

V1 mz

142 fx@=7 [ VITEIn@): g

1— :r2

>R

and similarly fy (y \/1—~ 2I—1,)(y). Thus f(z,y) # f(z)f(y) by
(1.41) and (1.41), hence X and Y are not independent. [But they are

uncorrelated: no linear trend — verify.|
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The dependence of X and Y can also be seen from the conditional pdf
frix (vecall (1.36)). From (1.30), (1.41), and (1.42),

1
(1.43) fyix(ylz) = mf(_m,M) (W) # fr (),

so (1.36) fails and X and Y are not independent. Note that (1.43) is
equivalent to the statement that the conditional distribution of Y|X is
uniform on the interval ( — /1 — 22, /1 — 22}, ie.,

(1.44) Y X=z ~ Uniform( —V1—22,/1- xQ),

which is already obvious from this figure: /ﬁ

From (1.44), \71%47 | X ~ Unif(~1,1) , so ﬁ 1 X.

=l
Similarly, ﬁ ’ Y ~ Unif(-1,1) , so \/i)—(_)ﬁ 1y. k

Exercise 1.5%. Let § = X0, T = 2oz Is S AL T7?

- [Half credit: find f(s,¢); full credit: find F(s,t).] [

If we represent the rvtr (X,Y) in polar coordinates as (R, ©), then
R 1L ©. This is readily verified: clearly Qp o = Qp x Qg [verify], while by
* (1.41) (uniformity),

Fro(r,6)=P0<R<r 0<0O<g ‘
T (B

=12 [0)(2n)]
PO<R<r|P[0<© <]
(1.45) = FR(T) . F@(Q)

I

so R 1l ©. It follows too that

) . 2 ]
(1.46a) Fr(r) = 2rI 1 (r); /
1 e

(1.46b) fe(0) = -2-7;1[0,270(9);

the latter states that © ~ Uniform[0, 27). m ‘1
S &

12 27

[




Mutual independence. Events A, ..., A, (n > 3) are mutually independent
iff the following 2™ conditions hold:

(147)  P(AS M-+ N AS) = P(AD) - P(AS) Y(ey, .. ., &) € {0,1}7,

where A! := A and A% := A°. A finite family? of rvs X1,...,X,, are mutu-
ally independent iff {X1 € B1},...,{X, € B,} are mutually independent
events in () for every choice of events By,..., B, in R'. An infinite fam-
ily X1, Xo,... of rvs are mutually independent iff every finite subfamily is
mutually independent. Intuitively, mutual independence of rvs means that
information about the values of some of the rvs does not change the (joint)
probability distribution of the other rvs. (This extends directly to rvtrs.)

Exercise 1.6. (i) For n > 3 events Aj,..., A,, show that mutual inde-
pendence implies pairwise independence. (ii) Show by counterexample that
pairwise independence does not imply mutual independence. (iii) Show that

(1.48) P(ANnBNC)= P(A)P(B)P(C)
is not by itself sufficient for mutual independencevof A, B,C.

Example 1.13. In Example 1.1, suppose that the n trials are mutually
independent and that p : P(H) and ¢ = (1 — p) = P(T) do not vary from
trial to trial. Let X denote the total number of Heads in the n trials. Then
by independence, X ~ Binomial(n,p), i.e., the pmf px of X is given by
(1.2). [Verify!].

Example 1.14. In Example 1.2, suppose that the entire infinite sequence
of trials are mutually independent and that p := P(H) does not vary from
trial to trial. Let X denote the number of trials needed to obtain the first
Head. Then by independence, X ~ Geometric(p), i.e., the pmf px is given
by (1.3). [Verifyl] W

Mutual independence of rvs Xi,...,X,, can be expressed in terms of
their joint pmf (discrete case), joint pdf (continuous case), or joint cdf (both

2 Here X1,...,X, must have a joint distribution, i.e., must arise from the same

random experiment ‘(Q, P )

13



cases): X1,..., X, are mutually independent iff cither

(1.49) Sxix, (@1, m0) = fx (21) o fx, (@)
(1'50) Fle---;Xn (:U:l? e 73;71) - FXl ($1> e FX'rL (:Bn)'
Again, these conditions implicity require that the joint range of X1,...,Xn

is the Cartesian product of the marginal ranges:

(1.51) QXl,...,Xn = QXl X e X QX .

"

Example 1.15. Continuing Example 1.13, let X3,...,X,, be indicator
variables (= Bernoulli variables) that denote the outcomes of trials 1,. . . , T
-~ X; = 1 or 0 according to whether Heads or Tails occiirs on the ith trial. Here
X1,...,X, are mutually independent and identically distributed (i.i.d.) rvs,
and X can be represented as their sum: X = Xy + - + X,,. Therefore we
expect that X and X are not independent. In fact, the joint range

QX,Xl :{($,331) |:c=0,1,...,n, T :0,1, LBZCEl}

The final inequality implies that Qx x, # Qx x Q X,, 80 X and X7 cannot
be independent.

1.6. Composite events and total probability.

Equation (1.27) can be rewritten in the following useful form(s):
(1.52) P(ANB)=P[A| B|P(B) (= P[B | A] P(A) ).

By (1.28) and (1.30), similar formulas hold for joint pmfs and pdfs:

(1.53) fz,y) = F=ly)f(y) (= flz)f(z)).

Now suppose that the sample space § is partitioned into a finite or countable
set of disjoint events: = U2, B;. Then by the countable additivity of P
and (1.52), we have the law of total probability:
—81 'BZ /3}' B}f_

(1.54) = iP[AﬂBi] = iP[A | B;] P(B;). é/{é)

.,-&/

P(A)=P[An (U2, B)] = P[u®, (AN B;)]
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Example 1.16. Let X ~ Poisson(A), where A > 0 is unknown and is to be
estimated. (For example, A might be the decay rate of a radioactive process
and X the number of emitted particles recorded during a unit time interval.)
We shall later see that the expected value of X is given by E(X) = ), so if
X were observed then we would estimate \ by A= X.

Suppose, however, that we do not observe X but instead only observe
the value of Y, where

(1.55) Y|X =z ~ Binomial(n = z, p).
(This would occur if each particle emitted has probability p of being ob-

served, independently of the other emitted particles.) If p is known then we
may still obtain a reasonable estimate of A based on Y, namely \ = ;—)Y.

"To obtain the distribution of Y, apply (1.54) as follows (set ¢ = (1—p)):
PY=y|=PY =y, X=yy+1,..] [since X > Y]

=) PY=y|X=a] - P[X=a] [by (1.54)]

= i <m>pqu‘y L [by (1.2), (1.4)]

|
p— Y x! |
e MpA)Y = (g\)*
_ Y Z(qk,) lot b — o —y]
Y. 0 :
—pA J
- (1.56) - -e—y(']”\—)~.

This implies that ¥ ~ Poisson(p)), so

~ 1 1 1
E(A\) =E(-Y) =-E) = =(p\) = ),
(A) (p ) ; (Y) p( )
which shows that \ is an unbiased estimate of A basedon Y. L

[What if p is unknown? Knee-jerk Bayesian: “assume p ~ Uniform(0, 1).”
Then E(Y) = E[E(Y | p)] = E(pA) = 1), so E(2Y) = \. Use \ = 2Y?7]

15



1.7. Bayes formula.

If P(A) >0 and P(B) > 0, then (1.27) yields Bayes formula for events:

(1.57) P[A| B] = PE?(;)B] _ P[B]Lgf(fl)

Similarly, (1.28) and (1.30) yield Bayes formula for joint pmfs and pdfs:

_ Jfl2)f (=)
(1'58) f(aﬂy)'“ f(y)

[See §4 for extensions to the mized cases where X is discrete and Y is
continuous, or vice versa.|

if f(z), f(y) > 0.

Example 1.17. In Example 1.16, what is the conditional distribution of
X given that Y = y? By (1.58), the conditional pmf of X |Y =1y is

(;)pyq‘”‘y e AN /!

Flel) = e"PA(pA)Y /[yl
—qA \)Z—y
= C (Q)' : z=vy, y+1,....
(z —y)!
Thus, if we set Z = X — Y, then
—gA )%
(1.59) Pller|y =y = 0N o1

z!

so Z | Y=y ~ Poisson(¢\). Because this conditional distribution does not
depend on y, it follows from (1.36) that X — Y 1L Y. (In the radioactivity
scenario, this states that the number of uncounted particles is independent
of the number of counted particles.)

Note: this also shows that if U ~ Poisson(u) and V' ~ Poisson(v) with U
and V independent, then U + V' ~ Poisson(u + v). [Why?] L

16



Exercise 1.7. (i) Let X and Y be independent Bernoulli rvs with

P[X

l=p, PX=0=1-p
PlY =r,

1
1) Py =0]=1-r.

Let Z = X 4+ Y, a discrete rv with range {0,1,2}. Do there exist p,r such
that Z is uniformly distributed on its range, i.e., such that P[Z = k] = 1
for k =0,1,27 (Prove or disprove.)

(ii)* (unfair dice.) Let X and Y be independent discrete rvs, each having
range {1,2,3,4,5,6}, with pmfs

px (k) = px, py(k)=ry, k=1,...,6.
Let Z = X +Y, a discrete rv with range {2,3,4,5,6,7,8,9,10,11,12}.

First note that if X and Y are the outcomes of tossing two fair dice, i.e.
px (k) =py(k) = —é— for k=1,...,6, then the pmf of Z is given by
1 2 3 4 5 6 5 4 3 2 1

36736736’ 3636 36”36’ 36’ 36’ 36’ 36
which is not uniform over its range. Do there exist unfair dice such that
Z 1s uniformly distributed over its range, i.e., such that P[Z = k| = ﬁ for
k=2,3,...,127 (Prove or disprove.) O

1.8. Conditional independence.

Consider three events A, B,C with P(C) > 0. We say that A and B
are conditionally independent given C, written A 1L B | C, if any of the
following three equivalent conditions hold (recall (1.32) - (1.34)):

(1.60) P[ANB|C] = P[A]|C|P[B| C;
(1.61) P[A| B, C]=P[A| C};
(1.62) P[B| A, O] = P[B|C].

As with ordinary independence, A 1l B|C < A1l B°|C < A 1L B|C
& A° 1L B¢ | C (see Exercise 1.3). However [construct counterexamples]

AL B|C¢ Al B|C",
AL B|C,ALLB|C°% A1 B.

17



Let A and B be events and Z a random variable. Then A and B are
conditionally independent given Z, denoted as A 1L B | Z, if

(1.63) P[ANB|Z=2=Pl[A|Z=2PB|Z =2 V=

(If Z is continuous, P[- | Z = 2] must be defined as in (4.12)-(4.13).) The
rvs X and Y are conditionally independent given Z, written X 1L Y | Z, if

(1.64) (XeA L{YeB}|Z

for each pair of events A, B. It is straightforward to show that for a jointly
discrete or jointly continuous trivariate rvtr (X,Y,Z), X 1L Y | Z iff any
of the following four equivalent conditions hold [verify]:

) flx,ylz)=flz|2)fyl=2);
) flylz,2)=fy]2);

1.67) flx|y,2) = flz | 2);
) flz,y,2)f(2) = f(z,2)f(y,2).

Exercise 1.8. Conditional independence ¢ independence.
(i) Construct (X,Y,Z) such that X 1LY | Z but X A Y.
(ii) Constrﬁct (X,Y,Z) such that X L Y but X LY | Z.
(This is related to Simpson’s Paradox, see Example 3.3.) [l

The graphical Markov model representation of X 1LY | Z:
(1.69) X— 7 —Y.

This can be realized by the linear model X = Z 4+ ex, Y = Z + ey, where
Z,€x, ey are mutually independent rvs.

18



2. Transforming Continuous Distributions.

2.1. One function of one random variable.

Let X' be a continuous rv with pdf fx on the range Qx = (a,b)
(00 < a < b < o0). Define the new rv Y = g(X), where g is a strictly
increasing and smooth function on (a,b). Then the pdf fy is determined as
follows:

| | =g(x)
Theorem 2.1. A jgr )w/

0, otherwzse.

(2.1) fy(y) =

Proof.

(2.2) - = —Plg(X) < y]

[why?]

Example 2.1. Consider g(z) = z2. In order that this ¢ be strictly increas-
ing we must have 0 < a. Then ¢'(z) = 2z and g~ (y) = VY, so from (2.1)
with Y = X2,

2

bl .
\/_fX(\/_) a? <y < b2 i :

19 @

(2.3) fy(y) =

- .2 SR



¢ \b

In particular, if X ~ Uniform(0, 1) then Y = X2 has pdf 6K ,\
1 ' .]

(2.4) fy(y) = O<y <l [decreasing t |

mf_Z—_\/Ty_’

Example 2.2a. If X has cdf F then Y = F(X) ~ Uniform(0, 1). [cf.§18.11]

Example 2.2b. How to generate a rv' Y with a pre-specified pdf f:
Solution: Let F be the cdf corresponding to f. Use a computer to generate
X ~ Uniform(0,1) and set ¥ = F~1(X). Then Y has cdf F. [Verify] O

Note: If g is strictly decreasing then (2.1) remains true with 9 (g7 )
replaced by |g'(g7"(y))| [Verify].

Now suppose that g is not monotone. Still fy (y) = d—ng[g(X) < ],

but the region {z | g(z) < y} must be determined before proceeding.

Example 2.3. Again let Y = X2 but now suppose that the range of X is
(—00,00). Then for y > 0,

MW ot o oy - -

(25) = 5= IV + Ix(-v)].

If in addition the distribution of X is symmetric about 0, ie., fx(z) =

fx(—z), then (2.5) reduces to
. L4192 4 (95)
— fx (V).

vy

20 -1{2’

(2.6) fr(y) =




Note that this is similar to (2.3) (where the range of X was restricted to
(0,00)) but without the factor % To understand this, consider
i

X1 ~ Uniform(0, 1), Xg ~ Uniform(—1,1).

|

Then 0 [ -l
le (m) = ](0’1)(513), sz (ZE) - %I(~1,1)(m)a
but Y; = X2 has pdf 2—%1(0,1) for i =1,2. [Verify — recall (2.4)]. N

Example 2.4. Let X ~ N(0,1), i.e., fx(z) = \/—12=7re’“m2/2 and Y = X2,
Then by (2.6), '

1
Vr

the Gamma(%—, —;—) pdf, which is also called the chi-square pdf with one degree
of freedom, denoted as x? (see Remark 6.3). Note that (2.7) shows that

(2.8) I3 =vm

Exercise 2.1. Let © ~ Uniform(0, 27), so we may think of © as a random

angle. Define X = cos®. Find the pdf fx.
/ CR
«(KA J(
Hint: Always begin by specifying the range of X, which is [~1, 1] here. On

this range, what shape do you expect fx to have, among the following three
~ possibilities? (Compare this fx to that in Example 1.12, p. 11.) [

(2.7) fry) = y 272 o o0y (y),

: 3

-t ! ~ ) L
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Exercise 2.1 suggests the following problem. A bivariate pdf fx y on
R? is called radial if it has the form cow Jouks
(A F

(2.9) Fxy(z,y) = g(z® + %) W

for some (non-negative) function g on (0, 00). Note that the condition

/A f(z,y)dzdy =1

requires that

* 1
(2.10) / rg(r¥)dr = —  [why?]

0 2T
Exercise 2.2%. (a) Does there exist a radial pdf fx y on the unit disk
in R? such that the marginal distribution of X is Uniform(—1,1)7 More
precisely, does there exist g on (0,1) that satisfies (2.10) and

g(@* +y*)dy = 31—1,1)(x)?

W
(2.11) fx () = /

—/1=z2

(b) What about R3? R*?

Note: if such a radial pdf fx y on the unit disk exists, it could be called a
bivariate uniform distribution, since both X and Y (by symmetry) have the
Uniform(—1, 1) distribution. Of course, there are simpler bivariate distri-
butions with these uniform marginal distributions but which are not radial

on the unit disk. (Can you think of two?) [Also see §26.] l
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2.2. One function of two or more random variables.

Let (X,Y) be a continuous bivariate rvtr with pdf fx v on a subset of R?.
Define a new rv

X 1+4+exp(X47Y)
U=g(X,Y), eg, U=X+Y, XV, =
9(XY), g + Y’ Tfexp(X V)

Then the pdf fi; can be determined via two methods:

Method One: Apply

219) fule) = - Fyl) = - PU <4) = - Plo(x,¥) <),

then determine the region {(X,Y) | ¢(X,Y) < u}.

Example 2.5. Let (X,Y) be uniformly distributed on the unit square.
[Note that this is equivalent to assuming that X and Y are independent
‘Uniform(0, 1) rvs — why?] To find the pdf fi; of U = X + Y, begin by noting
that the range of U is the interval [0, 2]. Then (see Figure)

1,2 1
: _ ) suf, O<u<1, 7 N\
P[X+YS’LL]*{1—%(2—U)2, I <u<2; W// ) //r( AN
. N /7
- 80 ‘ M‘*I
|, 0<u<l; .
(2.13) fU(u)~{2—u, I <u<2. ]/\
) ] 1

Next let U = max(X,Y). The range of U is (0,1). For 0 < u < 1,

Plmax(X,Y) <u]=P[X <u, Y < | 3&
= P[X < u]P[Y < 4] -~
- 'u,z ///
SO 7 uil
|
l-
(2.14) fo (u) = 2ulig 1) (u). W

]
w
LU



Finally, let V' = min(X,Y). Again the range of V is [0, 1], and for
0<v<l, ! 7
Pmin(X,Y) <v] =1- Plmin(X,Y) > v] q)“//‘/
=1-P[X >v, Y >1] s
=1— P[X > v]|P[Y > 9]
- (-

v

SO

(2.15) fv(w) = 2(1 — )01 (v).

Exercise 2.3%. Let X,Y, Z be independent, identically distributed (i.i.d.)
Uniform(0, 1) rvs. Find the pdf of U = X +Y + Z. [What is range(U)?]

Example 2.6. Let X,Y be i.i.d. Exponential(1) rvs and set U = X + Y.
Then for 0 < u < o0, _
N

\ ol o W

PIX+Y <] = // e " Vdxdy U / *d

sy<u

= /u e“a’[/u"m e—ydy] de WX
0 0

= /u e * [1 — e"(“"m)] dx |
0

= / e *dx — e"“/ dz
0 0
=1—e"—ue ", ‘
so U ~ Gamma(2,1), since \/\
(2.16) fo(u) = i[l —e ¥ —ue Y] =ue " A ~
du ! Y~

Next let V = min(X,Y). Then for 0 < v < oo,
Pmin(X,Y) <v]=1- Pmin(X,Y) > v]
=1-PX >0, Y >

=1- [/ﬂwe“wdm] [/Uooe“‘ydy}

/
=1-e %,
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(2.17) fv(v) = 2e™2,
that is, V' = min(X,Y") ~ Exponential(2).

» /ﬂv I =fy

More generally: If Xy,...,X,, are i.i.d. Exponential()\) rvs, then [verify!]
(2.18) min(Xy, ..., X,) ~ Exponential(n\).
However: it T' = max(X,Y’), then T is not an exponential rv [verifyl]:

(2.19) . fr(t) =2(e™* - e %),

Now let Z = [X — Y| = max(X,Y) — min(X,Y). The range of Z is
(0,00). For 0 < z < o0,

PIX ~¥] <4 | .
:1—P[Y2X“|‘Z]—P[Y§X—Z] :%’ | fﬂ <

=1 — 2/ e"x{/ e_ydy} dx
0 T+z

=], — 2/ e e (@+2) g,
0

=1 — 26_2/ e %% dx
0

z
Y

i)
=1 —=2P[Y > X + 2] [by symmetry] :
|
]

=1—e"
S0
(2.20) fz(z) =& %,
That is, Z = max(X,Y) —min(X,Y) ~ Exponential(1), the same as X and
Y themselves. -

Note: It will be shown in Example 6.2 that V 1. Z , SO we have another
“memory-free” property of the exponential distribution. It is stronger in
that it involves a random starting time, namely min(X,Y).
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Exercise 2.4. From the above,
Emax(X,Y)] = Emin(X,Y)] + E|X - Y| = 5 + 1.
Find E[max (X3, ..., X,)], where the X, are i.i.d. Exponential(1) rvs. U

Finally, let W = . The range of W is (0,1). For 0 < w < 1,

X
PlxTv Sw]
—P[X < w(X + V)]

ol (15%)x P

= / e Ydy|e Tdx
o Uy 7-(
:/ [e (1 w)z _mdajjl
0
= e wdx
0
:'LU,
S0
(2.21) fw(’w) :I(O,l)(w),
that is, W = X+Y ~ Uniform(0, 1). | O

Note: In Example 6.3 we shall show that X+Y 1 (X +Y). Then (2.21)
can be viewed as a “backward” memory-free property of the exponential

distribution: given X + Y, the location of X is uniformly distributed over
the interval (0, X + Y.

Method Two: Introduce a second rv V = h(X,Y), where h is chosen cleverly
so that it is relatively easy to find the joint pdf fy v via the “Jacobian
method”, then marginalize to find f. (This method appears in §6.2.)
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3. Expected Value of a RV: Mean, Variance, Covariance; Moment
Generating Function; Normal & Poisson Approximations.

3.1. The expected value (expectation, mean) of a rv X is defined by

(3.1) EX = Z cfx(x), [discrete case]
(3.2) EX = / zfx(x)dz, [continuous case]

provided that the sum or integral exists, that is, is not = co — co.

The Law of Large Numbers states that if EX exists (p0881b1y infinite),
then for i.i.d. copies X1, X3,. .., of X the sample averages X,, = Zz__ X;
converge to EX as n — oo. If the sum or integral does not ex1st then X,
will oscillate indefinitely [verify? what if asymmetric?]

If the probability distribution of X is thought of as a (discrete or con-
tinuous) mass distribution on R!, then EX is just the center of gravity of
the mass. With this interpretation, we can often use symmetry to find the
expected value without actually calculating the sum or integral; however,

absolute convergence still must be verified! [Eg. Cauchy distribution]

Example 3.1: [verify, including convergence; for Var see (3.9) and (3.10)]

X ~ Binomial(n,p) = EX = np, VarX = np(1l — p); [sum]
X ~ Geometric(p) = EX = 1/p, VarX = (1 —p)/p*; [sum)]
X ~ Poisson(A) = EX = A, VarX = ); [sum]
X ~ Exponential(A\) = EX = 1/, VarX = 1/)?; [integrate]
X ~ Normal N(0,1) = EX =0, VarX = 1; [symmetry, integrate]

X ~ Cauchy C(0,1) = EX and VarX do not exist;
X ~ Gamma(a, \) = EX = oz/)\ VarX = a/)\? [integrate]
X ~ Beta(a,B8) = EX = aqp VarX = e +ﬁ)2( 5D [integrate]

X ~ std. Logistic == EX =0 ' [symmetry]

)2
atb VarX = (b—a)

Uniform(a, b) = 5 1

; [symm., integ.]
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The expected value E[g(X)] of a function of a rv X is defined similarly:

(3.3) Elg(X)] = Zg(x)fx (x), [discrete case]

(3.4) E[g(X)] = / g(x) fx(x)dz, [continuous case]

In particular, the rth moment of X (if it exists) is defined as E(X M, reRL

Expectations of functions of random vectors are defined similarly. For
example in the bivariate case, '

(3.5) E[g(X,Y)] = Z Z g(z,y) fx,y(z,v), [discrete case]

(3.6) E[g(X,Y)]://g(a:,y)fx,y(a:,y)dwdy, [continuous case]

Linearity: It follows from (3.5) and (3.6) that expectation is linear:
(3.7) Elag(X,Y) +bh(X,Y)] = aE[g(X,Y)] + bE[R(X, Y)]. [verify]

Order-preserving: X > 0= EX >0 (and EX =0 iff X =0).

X>Y =EX>EY (andEX =EYif X =Y). [Pf: EX-EY = E(X-Y)]
Linearity (= additivity) simplifies many calculations:

Binomial mean: We can find the expected value of X ~ Binomial(n,p) eas-

ily as follows: Because X is the total number of successes in n independent

Bernoulli trials, i.e., trials with exactly two outcomes (H,T, or S,F, etc.),
we can represent X as

(3.8) X=X+ + Xn,

where X; = 1 (or 0) if S (or F) occurs on the ith trial. (Recall Example
1.15.) Thus by linearity,

EX=EBEX;+ - +X,)=EX;+---+EX,=p+---+p=np.
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Variance. The variance of X is defined to be
(3.9) VarX = E[(X - EX)?],

the average of the square of the deviation of X about its mean. The standard
deviation of X is

sd (X) = V/VarX.
Properties of Variance.

(a) Var X > 0; equality holds iff X is degeneréte (constant).

(b) location — scale : Var(aX +b) = a® VarX;
sd (aX +b) = |a| - sd (X).

() VarX = B[(X - EX)’] = E[X? — 2XEX + (EX)?]
=E(X?) - 2(EX)(EX) + (EX)?
(3.10) = E(X?) - (EX)2.

The standard deviation is a measure of the spread = dispersion of the
distribution of X about its mean value. An alternative measure of spread
is E[|X = EX]|]. Another measure of spread is the difference between the
75th and 25th percentiles of the distribution of X.

* IVMTERWUMRIILE

i !

‘ // ? REONVGE ; /

X

Covariance: The covariance between X and Y indicates the nature of the
linear dependence (if any) between X and Y

(3.11) Cov(X,Y) =E[(X — EX)(Y — EY)]. [interpret; also see §4]
e’
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Properties of covariance:
(a) Cov(X,Y) = Cov(Y, X).
(b) Cov(X,Y) =E[XY — XEY — YEX + (EX)(EY)]
= E(XY) - 2(EX)(EY) + (EX)(EY)
(3.12) = E(XY) - (EX)(EY).
(c) Cov(X, X) = VarX.
(d) If X or Y is a degenerate rv (a constant), then Cov(X, Y) = 0.
(e) Bilinearity: Cov(aX, bY + cZ) = ab Cov(X, Y) + ac Cov(X, Z).
Cov(aX +bY, ¢Z) = ac Cov(X, Z) + bc Cov(Y, Z).
(f) Variance of a sum or difference:

(3.13) Var(X £Y) = VarX + VarY = 2Cov(X,Y). [verify]

(g) Product rule. If X and Y are independent it follows from (1.35), (3.5)
and (3.6) that

(3.14)  E[g(X)h(Y)] = E[g(X)] - E[A(Y)]. [verify]
Thus, by (3.12) and (3.13), |

(3.15) X 1Y = Cov(X,Y) =0,

(3.16) X 1LY = Var(X £ Y) = VarX + VarY.

Exercise 3.1. Show by counterexample that the converse of (3.15) is not
true. [Example 1.12 provides one counterexample: Suppose that (X,Y")
is uniformly distributed over the unit disk D. Then by the symmetry of
D, (X,Y) ~ (X,-Y). Thus Cov(X,Y) = Cov(X,-Y) = —Cov(X,Y), so
Cov(X,Y) = 0. But we have already seen that X/ Y] O

Binomial variance: We can find the variance of X ~ Binomial(n,p) easily
as follows (recall Example 1.12):

VarX = Var(X; + - + X5p) [by (3.8)]
= VarX; + .- + VarX, [by (3.16)]
=p(l—p)+ - +p(l-p) [by (3.10)]
(3.17) = np(l — p).
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Variance of a sample average = sample mean: Let Xi,..., Xy be iid. rvs,
each with mean p and variance o2 < oo and set X,, = %(Xl +o 4+ X)),
Then by linearity and independence,

Var(Xy 4+ Xn) no®  o?

(3.18) E(X,)=up, Var(X,)= 5 = — =

n 0 n
Theorem 3.1. The Weak Law of Large Numbers (WLLIN).
Let Xi,...,X, beiid. rvs, each with mean u and variance 0? < 0o. Then

X,, converges to u in probability (X, 2, 1), that is, for each ¢ > 0,
P[| X, —pl<e—1 asn— oo,

Proof. By Chebyshev’s Inequality (below) and (3.18),

< Var(X,,) _ o2

Pl X, — u| > € — 0 asn — 00.

€2 ne?
Lemma 3.1. Chebyshev’s Inequality. Let EY = v, VarY = 7% Then

7.2

(3.19) PIY —v2d< T
Proof. Let X =Y — v, so E(X) = 0. Assume that X is continuous with
pdf f. (The discrete case is similar, with sums replacing integrals.) Then

P =B(X?) = /

|z|>e

22 f(z)dz + / 22 f(x)dz

|z|<e

> / e f(x)dz = EP[|X| > €.
|z|>e

Example 3.2. Sampling without replacement - the hypergeometric
distribution.

Suppose an urn contains r red balls and w white balls. Draw n balls at
random from the urn and let X denote the number of red balls obtained.
If the balls are sampled with replacement, then clearly X ~ Binomial(n, p),
where p = r/(r +w), so EX = np, VarX = np(1 —p).
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Suppose, however, that the balls are sampled without replacement.
Note that we now require that n < r 4+ w. The probability distribution
of X is described as follows: its range is max(0,n — w) < z < min(r,n)
[why?], and its pmf is given by

T w
(3.20) PX =z] = ﬁf();ﬁg—)‘:”—)—, max (0,7 — w) < z < min(r,n).
n

[Verify the range and verify the pmf. This probability distribution is called
hypergeometric because these ratios of binomial coefficients occurs as the
coefficients in the expansion of hypergeometric functions.

To determine EX and VarX, rather than using (3.20) it is easier again
to use the representation

X=Xy ++ X,

where, as in the binominal case, X; = 1 (or 0) if a red (or white) ball

is obtained on the ith trial. Here, however, clearly X;,...,X,, are not
mutually independent. [Why?] Nevertheless, the joint distribution of X =
(X1,...,X,) is exchangeable = symmetric = permutation-invariant:

Definition 3.1. A random vector Y = (Y1,...,Y,,) is exchangeable if
(Y1,...,.Y) ~(Yy,...,Y:)
for every permutation (i1,...,%,) of (1,...,n). Equivalently,

Fioyn) = FWins -5 ¥ia) V(1,0 in). L

It suffices to show that (Xi,...,X,,) is exchangeable when n = r + w
[why?]. Here, if 1 + -+ + x, = r with each z; = 0 or 1 then

P[(Xl,...,Xn>i($1,.. L

o) =y = oy

which is obviously invariant under all permutations of z1, ..., z,.

It follows from exchangeability that X; ~ --- ~ X,,. In particular,

P[X; =1] = P[Xy = 1|X; = 1|P[X1 = 1] + P[X; = 1|X; = 0]P[X; = 0]
r—1  r T w

:r+w—1'r+w+r+w—1.r+w
r ‘
3.21 = = PX{=1
(3.21) —— = PlXi=1],
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so X1 ~ X5. Note too that since X; X5 has range {0, 1},
E(X1X;) = P[X1Xs =1]

= P[Xl =1,X9 = 1]
= P[Xg = 1|X1 = 1]P[X1 = 1]
r—1 T

1

r4+w—1r+w’

COV(Xl,XQ) = E(XlXQ) - (EXl)(EXQ)
_ = 1 r [ T ]2

r+w—1r+w Llr+w

T [ r—1 T ]

T rtwlr+w—-1 r+w
—rw '

(3.22) | -

(r+w)2(r+w-—1)
[Thus X; and X, are negatively correlated, which is intuitively clear. [Why?)

By (3.21) and exchangeability, EX; = —— =pfori=1,...,n,s0

r+w

r

(3.23) EX = EX, + - EX,, = n( ) = np,

T+ w

the same as for sampling with replacement.

Key question: do we expect VarX also to be the same as for sampling with
replacement, namely, np(1 — p)? Larger? Smaller?

Answer: By (3.22) and exchangeability,

VarX =Y VarX;+2 Y, Cov(X;,X;)

Ci=1 1<i<j<n
= np(l — p) + n(n — 1)Cov(Xy, X2)
T w —rw
T Twrtuw +n(n_1){(r+w)2(r+w—1)} .
_ [1 _ __n_:_L_.]
(r + w)? r4+w—1
n—1
(3.24) =mp(1-p)[1 - |,
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where N = r + w is the total number of balls in the urn. [Discuss =]

By comparing (3.24) to np(1—p), we see that sampling without replace-
ment from a finite population reduces the variability of the outcome. This is
to be expected from the representation X = X; +- -+ X, and the fact that
each pair (X;, X;) is negatively correlated (by (3.22) and exchangeability).

3.2. Correlated and conditionally correlated events.

The events A and B are positively correlated if any of the following five
equivalent [verify!|] conditions hold:

(3.25) P[A N B] > P[A]|P[B];
(3.26) P[A | B] > P[A];
(3.27) P[B| A] > P[BJ;
(3.28) P[A| B] > P[A | B°;
(3.29) P[{B| A] > P|B | A°].

Because P(C) = E(I¢), (3.25) is equivalent to Cov(l4,Ip) > 0. Negative
correlation is defined similarly with > replaced by <.

The events A and B are (conditionally) positively correlated given C'if
any of the following five equivalent [verify!] conditions hold:

(3.30) P[ANB|C]> P[A| C|P[B | C];
(3.31) P[A| B, C] > P[A]| C);

(3.32) P[B| A, C]> P[B|C);

(3.33) PlA| B, C] > P[A| B, CJ;
(3.34) P[B| A, C] > P[B| A, C)].

Example 3.3: Simpson’s paradox.

(3.35) { P[A| B, C] > P[A| B, O]

P[A | B, C¢] > P[A| B®, CC]}#P[A]B]>P[AfBC]!

To see this, consider the famous Berkeley Graduate School Admissions data.
To simplify, assume there are only two graduate depts, Physics and English.

34



Physics Accept | Reject ‘

Female 60 40 |P|A|F, Phl=06
Male 50 50 |P[A| M, Phl=05 3

English Accept Reject ‘
f i

Female 250 750 | P|A| F, Bn] =025 {2}
Male 20 80 |P[A| M, En] =02 &

Total Accept Reject {

Female 310 790 | P[A| F] = 0.28
Male 70 130 | P[A| M]=10.35

Note:  P[A|F] < P[A| M)

Is this evidence of gender discrimination?

PA | F, Ph] > P[A| M, Ph),
P[A | F, En| > PA| M, En|,

so F’s are more likely to be accepted into each dept Ph and En separately!

Ezplanation: Most F’s applied to English, where the acceptance rate is low:
© <%E @<
} y { t
‘T L”%J

M

P[A| F] = P|A | F, Ph|P[Ph| F| + P|A | F, En|P|En | F),
P[A| M] = P|A| M, PhP|Ph| M|+ PlA| M, En]P{En | M. 0

Exercise 3.2. Show that the implication (3.35) does hold if B 1L C'. [
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3.3. Moment generating functions: they uniquely determlne mo-
ments, distributions, and convergence of distributions.

The moment generating function (mgf) of (the distribution of) the rv X is:
(3.36) mx(t) =E(e'*),  —oo<t< .

Clearly mx(0) =1 and 0 < mx(t) < oo, with co possible. If mx(¢) < oo
for || < 6 then the Taylor series expansion of !X yields

0 k k
(3.37) mx(t) = E[Z S%X')_] - Z'E(X"’) It] <,
k=0 k=

a power series Whose coefficients are the kth moments of X. In this case the
moments of X are recovered from the mgf myx by differentiation at ¢ = 0:

(3.38) EX*) =mP(0), k=1,2,.. [verify]
Location-scale:

(3.39) Max+b(t) = E(et(“XJ’b)) = eth(e“tX) = e"mx (at).

Multiplicativity: X,Y independent =
(3.40) mx+y (t) = E(et(X+Y)) = E(etX)E(etY) = mx (t)my (t).
In particular, if Xy,...,X,, are i.i.d. then

(3.41) MX 4t X, (8) = [mx, ()]

Example 3.4.

1, with probability p;

0, with probability 1-p. Then

Bernoulli (p): Let X = {

(3.42) mx (t) = pe' + (1 —p).

Binomial(n, p): We can represent X = X; + --- + X,,, where X0, X0
are i.i.d. Bernoulli(p) 0-1 rvs. Then by (3.41) and (3.42),

(3.43) mx(t) = [pe’ + (1 - p)]".
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Poisson (N):

= N : ‘
(3.44) mx (t) = Zetk e = et =MD,

Standard unsvariate normal N(0,1):

1 o w2
mX(t) = ﬁ\/ eme"_f’dm
— 00

- etz/z__l__/ e m—zt 2da’;
V2T J—co

2

(3.45) —e7,

General univariate normal N (u,0%): We can represent X = 07 + u where
Z ~ N(0,1). Then by (3.39) (location-scale) and (3.45),

0'2t2

(3.46) mx (t) = e!'my(ot) = e! T2,

Gamma(a, ) (includes Exponential(\) when o =1):

- >\a * tx a—1_—Az
mx(t) = T J, e . x* e Mdx
_ A A=) [® ac1 —(—t)
“h-or T f) a0
(3.47) = (Ait)a’ —00 <t < A O

Uniqueness: Suppose that X >0 (<0). If mx(t) < oo for some interval
0<t<d (=0 <t<0), thenmx uniquely determines the distribution of X.

More generally, if mx(t) = my(t) < oo for [t| < 6, then X sty e,
P[X € Al = P[Y € A] for all events A. [See §3.5.1]

Application 8.8.1: The sum of independent Poisson rvs 1s Poisson. Let
Xi,..., X, be independent, X; ~ Poisson(};). Then by independence,

t t_.' XY t..—-
mX1++Xn (t) — e>\1(e “1) .. eAn(e 1) —_— e(>\1+ 'f')\n)(e 1),

so X1 + -+ X, ~ Poisson(A\1 + -+ -+ An). O
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Application 3.3.2: The sum of independent normal rvs is normal. Suppose
X1,...,Xp are independent, X; ~ N(pi,02). Then by (3.40) and (3.46),

0‘2t2 02t2 (0'2+"'+0’2)t2
-1 —r e 1 n
mx,++X, (t) = el’l'lt+ 3 ... e“nt‘*' 5 — e(ﬂl‘“l" +Mn)t+——-————-———-——2 7
50 X1+ -+ Xn~N(u1 4+ tin, 0 + -+ +02). 0

Application 8.3.8: The sum of independent Gamma rvs with the same scale
parameter 1s Gamma. Suppose that Xq,..., X, are independent rvs with
X; ~ G(a;, A). Then by (3.40) and (3.47),

st \&n N\ ttan

mX1+'+X'n. (t) = ()\ __ t)al o ()\ - t)an = (A — t)a1+...+an y —O0 <t < A?
so X1+ -+ X, ~ Gamma(ay + -+ - + an, A). [

Convergence in distribution: A sequence of rvs {X,,} converges in dis-

tribution to X, denoted as X,, % X, if P[X,, € A] = P[X € A] for every®
event A. Then if mx(t) < oo for |t| < §, we have

(3.48) X, 3 X < mx, (t) > mx(t) V[t| <4  [See§3.3.1]

Application 3.8.4: The normal approzimation to the binomial distribution
(= the Central Limit Theorem for Bernoulli rvs).

Let S, ~ Binomial(n, p), that is, S,, represents the total number of successes
in n independent trials with P[Success] = p, 0 < p < 1. (This is called a
sequence of Bernoulli trials.) Since E(S,,) = np and Var(S,,) = np(1—p),the
standardized version of S,, is

Sn —np

vnp(1—p)’

so E(Y,,) =0, Var(Y,,) = 1. We apply (3.48) to show that Y, 4 N(0,1), or
equivalently, that

(3.49) Xn=+/p(1—p) Y, % NO,p(1 —p)):

3 Actually A must be restricted to be such that P [X € 3A] = 0; see §10.2.

Yn

I

38



t(Spn —np)
an(t):E[e Vi }

= ¢ PV [e%}

—e et (1-p)] by (3.43)

t(1—p) tp 1M
= [pe i+ (1—-ple ﬁ}

_ [p(l + t(l\/%p) + t2(12;p)2 +O(L))

+(1—p)(1—%+t—;—7—:§+0( ! ))]n

B t*p(1 —p) N
n {1 o T 0(53’72’)]
t?p(1—p)

— e 2 [by CB Lemma 2.3.14.]

2,01~

Since e 25 is the mgf of N(0,p(1 — p)), Xn A N(0,p(1 —p)).

[

Application 3.8.5: The Poisson approzimation to the binomial distribution
for “rare” events.

Let X, ~ Binomial(n,p,), where p, = 2 for some A € (0,00). Thus
E(X,) = np, = A remains fixed while P[Success] = p,, — 0, so “Success”
becomes a rare event as n — co. From (3.43),

m )= [(3)e+ 0= )"
~[1+ () -]
Aef—1),

d o
so X,, — Poisson(\) as n — oo.

Note: This also can be proved directly: for £ =0,1,...,

n k n—=k
PIX,=H = ()(2) (- 2" -
_ n(n—l)mlgn—k—!-l) A (1 . A)"“ )\‘ - ]

n KT
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3.3.1. Proofs of the uniqueness and convergence properties of
mgfs for discrete distributions with finite support.

Consider rvs X, Y, and {X,,} with a common, finite support {1,2...,s}.
The probability distributions of X, Y, and X,, are given by the vectors

P1 qi1 Pn,1
Px=| : 1|, Pr=| : Px, = : :
DPs qs Pn,s
respectively, where p; = P[X = j], ¢; = P[Y = j], pn,; = P[X» = 7],
j=1,...,s Choose any s distinct points ¢t; < --- < t5 and let
mx (t1) my (t1) mx, (t1)
my = : y My = , My, = :
mx (ts) my (ts) mx, (ts)
Since
mx (t;) = Bel X Zet”pj = ( t" e Sti)px,

etc., we can write [verify!]
(3.50) mx = Apx, my=Apy, mx,=Apx,,

where A is the s X s matrix given by

etl e2t1 estl
a={: s
ets 62155 est
Exercise 3.3*. Show that A is a nonsingular matrix, so A~! exists. L
Thus
(3.51) px = A 'mx and py = A 'my,
so if mx(t;) = my(t;) Vi = 1,...,s then mx = my, hence px = py

by (3.51), which establishes the uniqueness property of mgfs in this special
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case. Also, if mx, (t;) = mx(¢;) V then my, — my, hence px, — px by
(3.51), which established the convergence property of mgfs in this case.

Remark 3.1. (3.50) simply shows that the mgf is a nonsingular linear
transform of the probability distribution. In engineering, the mgf would be
called the Laplace transform of the probability distribution. An alternative
transformation is the Fourier transform defined by ¢ x (t) = E(e!**), where
i = +/—1, which we call the characteristic function of (the distribution of)
X. ¢x is complex-valued, but has the advantage that it is always finite. In
fact, since [e™| = 1 for all real u, |¢px (t)| < 1 for all real t. L

3.4. Multivariate moment generating functions.

X1 t1
Let X = : and t = | . |. The moment generating function (mgf)

Xp tp
of (the distribution of ) the rvtr X is

(3.52) - mx(t) =E(e!X) = (et X)),

Again, mx(0) = 1 and 0 < mx(t) < oo, with co possible. Note that if
X1,...,X, are independent, then

mx (t) = E(et1X1+"'+thp)
= E(ethl) . E(etpxp)
(353) =Mmx, (il)“-mxp(tp).

All properties of the mgf, including uniqueness, convergence in dis-
tribution, the location-scale formula, and multiplicativity, extend to the
multivariate case. For example:

If mx(t) < oo for ||t|| < & then the multiple Taylor series expansion of et X
yields

> t’fl .. -t];pE(Xfl .. 'Xz]fp)
B man=3 y MBEEEL)
k=0 ki+-+ky=Fk
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SO

(3.55)  BXP . xE)y=mEoR0), k. k>0 [verify]

Multivariate location-scale: For any fixed ¢ X p matrix A and ¢ x 1
vector b,

3.56 max+p(l) =B el (AXFD)) — bR (' AXY — et/bmx A't).
+

Example 3.5. The multivariate normal distribution N,(u,%).

First suppose that Z1,..., 7, are i.i.d. standard normal N(0,1) rvs. Then
by independence the rvtr Z = (Z4,..., Z,)" has mgf

(3.57) mz(t) = /2. eta/2 = gt't/?,
Now let X = AZ + pwith A: px g, and p: p x 1. Then by (3.56), (3.57),

mx (t) = e Pmy(A't)
_ ot he(A't) (A1) /2
_ et’uet’(AA')t/2
(3.58) = ot/ nHt'5t/2
where ¥ = AA’. We shall see in §8.3 that ¥ = Cov(X), the covariance
matriz of X. Thus the distribution of X = AZ + p depends on (u, A)
only through (u,X), so we denote this distribution by N,(u,>), the p-
dimensional multivariate normal distribution (MVND) with mean vector
and covariance matriz ¥.. We shall derive its pdf in §8.3. However, we can
use the representation X = AZ + u to derive its basic linearity property:

Linearity of N,(u,Y): If X ~ N,(u,X) then for C:r xpandd:r x 1,

Y=CX +d=(CA)Z+ (Cu+ d)
~ N, (Cp + d, (CA)(CAY)
(3.59) — N.(Cu+d, CEC").

In particular, if r =1 thenforc:pxlandd:1x1,

(3.60) X +d~ N (dp+d, dZc). O
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3.5. The Central Limit Theorem (CLT) = normal approximation.

The normal approximation to the binomial distribution (see Application
3.3.4) can be viewed as an approximation to the distribution of the sum of
‘1.i.d. Bernoulli (0-1) rvs. This extends to any sum of i.i.d. rvs with finite
second moments.

Theorem 3.2. Let {Yy,} be a sequence of i.i.d. rvs with finite mean u and
variance 2. Set S, = Y1+ -+ Y, and Y,, = %— Their standardized
distributions converge to the standard normal N(0,1) distribution: for any
a <b,

(3.61? P{a < %gﬁ < b} — Pla < N(0,1) < b] = 3(b) — ®(a),

o

< b} L Pla< N(0,1) < b = &(b) —9(a)

)

where ® is the cdf of N(0,1). Thus, if n is “large”, for any ¢ < d we have

c—np _ Sp—nu _d—nu
< < =
Ple < Sn < d] P{\/ﬁa = Vno = Vno ]

(3.63) ~ [dgﬁ?} ! [5\-'7_—%‘5}

Continuity correction: Suppose that {V,,} are integer-valued, hence so
is S,. Then if ¢,d are integers, the accuracy of (3.63) can be improved

significantly as follows:
Plc<8,<d]=Plc—05<S,<d+05]

(3.64) %©{d+$§;nu] —<1>[c—i)/'%;”“]
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3.6. The Poisson process.

We shall first construct the Poisson process (PP) in one dimension. Recall
the Poisson approximation to the binomial distribution (Application 3.3.5)

Lemma 3.2. Let N ~ Binomial(n, p,), where n — oo and p, — 0 s.t.
E(NM™) =np, =X > 0. Then N® % Poisson (A) as n — oo.

[Note that the range of N(™ is {0,1,...,n}, which converges to the Poisson
range {0,1,...} as n — oo.] [l

"This result says that if a very large number n of elves toss identical coins
independently, each with a very small success probability p,, so that the
expected number of successes np,, = A, then the total number of successes
approximately follows a Poisson distribution. Suppose now that these n
elves are spread uniformly over the unit interval (0,1], and that n more
elves with identical coins are spread uniformly over the interval (1,2], and
n more spread over (2, 3], and so on:

o T L o o o o VTR 't.._)
na
0 t 2 3 v

- For 0 <t < oo, let Nt(n) denote the total number of successes occurring in
the interval (0,¢] (set Nén) = 0.) Then E(Nt(n)) = At, and as n — oo,

(3.65) N™ 4N, ~ Poisson(\t),
(3.66) E(N;) = \t.

Considered as a function of ¢, {IV; | 0 < t < oo} is a stochastic process
= random function. A typical realization = sample path looks like:

- 3, :L . [P
/AN —

[

t
]
]
1
i

|
T I

Here the jump points 0 < T} < T3 < --- are random variables.

: + : ! 1

Ao VSR P
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Because of (3.65)-(3.66), the process {N; | 0 < t < oo} is called a
homogeneous Poisson process (PP) with intensity A. Its sample paths are
nondecreasing step functions with jump size 1. Such a process is called a
point process because it is completely determined by the locations of the
jump points 77,75, .. ..

Because all the elves are probabilistically independent and indepen-
dence is preserved under limits in distribution [cf. §10], for any fixed points
0=ty <ty <tg---, the increments Ny, — N;,, Ny, — Ny, ..., are mutually
independent. Thus the PP has independent increments with

(3.67) | Ny, — Ny,_, ~ Poisson(A(t — ti_1)),
(3.68) B[Ny, — Ny,_,] = Mt — ti1).

A non-homogeneous PP also can be defined, with A replaced by an
intensity function A(t) > 0. A non-homogeneous PP retains all the above
properties of a homogeneous PP except that in (3.67) and (3.68), (¢;—t;—1)\
is replaced by ftiz—l A(t)dt. A non-homogeneous PP can be thought of as

the limit of non-homogeneous elf-coin-tossing processes, where the elves are
distributed non-uniformly along the line.

There is a duality between a homogeneous PP {N; | 0 < ¢ < co} and
sums of i.i.d. exponential random variables. This is seen as follows. Let
Ty, Ty, ... be the times of the jumps of the PP.*

Proposition 3.1. Ty, To — T, T3 — T3,... are i.i.d. Ezponential (A) rvs.
In particular, E(T; = T;—1) = 31\-, which reflects the intuitive fact that the
expected waiting time to the next success is inversely proportional to the
intensity rate .

Partial Proof. P[T} > t| = P[no successes occur in (0,¢]] = P[N; = 0]
= e~ since N; ~ Poisson(\t). (The proof continues with Exercise 6.5.)[]

Note: Ty, ~ Gamma(k, \), because the sum of i.i.d. exponential rvs has a
Gamma distribution. Since {T} > t} = {N; < k—1}, this implies a relation

4 There must be infinitely many jumps in (0, OO) This follows from the Borel-
Cantelli Theorem, which says that if {An} is a sequence of independent events, then
Plinfinitely many A,, occur] is 0 or 1 according to whether Z P (An) is < 00 or = Q.
Now let A, be the event that at least one success occurs in the interval (n — 1, n]
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between the cdfs of the Gamma and Poisson distributions: see CB Example
3.3.1 and CB Exercise 3.19; also Ross Exercise 26, Ch. 4.]

In view of Proposition 3.1 and the fact that a PP is completely de-
termined by the location of the jumps, a PP can be constructed from
a sequence of ii.d. Exponential (\) rvs Vi, Va,...: just define T3 = Vi,
Ty = Vi4+Vy, 153 = Vi1 4+ Vo4 Vs, ete. Then T7,15,T5, . .. determine the jump
points of the PP, from which the entire sample path can be constructed.

PPs arise in many applications, for example as a model for radioactive
decay over time. Here, an “elf” is an individual atom — each atom has a
tiny probability p of decaying (a "success”) in unit time, but there are a
large number n of atoms. PPs also serve as models for the number of traffic
accidents over time (or location) on a busy freeway.

PPs can be extended in several ways: from homogeneous to non-
homogeneous as mentioned above, and/or to point processes in more than
one dimension. In general, a point process on an open region R C R" is a
random set function {N(A) | A C R}, where N(A) is the (random) number
of points that occur in the subset A.

-t T . - - . r - » L} . [
A u v
. . [y ’ - .~ .

' N .
* . 1] 124
; . () = fuccess

1,

This constitutes a Poisson process with intensity function A(t) > 0 if

(3.69) N(A) ~ Poisson( I3 A(t)dt),

(3.70) N(Ay) 1L+ 1L N(Ag) if Aq,..., Ay are disjoint.

This can be thought of as a limit of elf-coin-tossing processes where many
elves are distributed in R according to density function A(t). The PP is

homogeneous if A(t) = A > 0 (a constant), in which case [, A(t)dt reduces
to A - Volume(A); otherwise it is non-homogeneous.
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Examples of random processes that may be PPs include the spatial
distribution of weeds in a field, of ore deposits in a region, of erroneous
pixels in a picture transmitted from a Mars orbiter, or of galaxies in the
cosmos. These are called “spatial” processes because the random points
occur in at random locations in a region. These “may be” PPs because the
independence property may not hold if spatial correlation is present.

The waiting-time paradox for a homogeneous Poisson Process.

Does it seem that your waiting time for a bus is usually longer than you
had expected? This can be explained by the memory-free property of the
exponential distribution of the waiting times.

We will model the bus arrival times as the jump times 73 < 7% < - - - of
a homogeneous PP {NN;} on [0, co) with intensity A. Thus the interarrival
times V; =T; — T;—1 (1 > 1, To = 0) are i.i.d Exponential (M) rvs and

(3.71) E(V;) = X 1> 1.
Now suppose that you arrive at the bus stop at a fixed time t* > 0.

Let the index j > 1 be such that T;_; < t* < T (j > 1), so Vj is the length
of the interval that contains your arrival time. We expect from (3.71) that

: 1
(3.72) B(V;) = 5 vl
A
Paradoxically, however, i t 7:!
1
(3.73)  E(V;) = E(T; —t*)+E( Ti—1) > B(T; —t*) = R

since T; — t* ~ Expo ()\) by the memory-free property of the exponential
distribution: if the next bus has not arrived by time t* then the additional
waiting time to the next bus still has the Expo (\) distribution. Thus you
appear always to be unlucky to arrive at the bus stop during a longer—than—
average interarrival time!

This paradox is resolved by noting that the index j is random, not fized:
it is the random index such that V; includes t*. The fact that this interval
includes a prespecified point t* tends to make V; larger than average: a
larger interval is more likely to include t* than a shorter one! Thus it is
not so suprising that E(V;) > 1.
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Exercise 3.4. A simpler example of this phenomenon can be seen as
follows. Let U; and Uy be two random points chosen independently and
uniformly on the (circumference of the) unit circle and let Ly and Ls be
the lengths of the two arcs thus obtained: L

"

U,
g

Thus, Ly + Ly = 27 and L, £ Ly by symmetry, so

(3.74) E(L;) = E(Ly) = .

(i) Find the distributions of L; and of L.

(ii) Let L* denote the length of the arc that contains the point u* = (1,0)
and let L** be the length of the other arc. ‘

L%

Find the distributions of Z* and L**. Find E(L*) and E(L**) and show
that E(L*) > E(L**).

Hint: There is a simplifying geometric trick. L

Remark 3.2. In (3.73), it is tempting to apply the memory-free prop-
erty in reverse to assert that also t* — T;_; ~ Expo (A). This is actually
true whenever j > 2, but not when j = 1: t* — T, = ¢* % Expo ().
However this may be achieved by assuming that the bus arrival times
oy I9, T4, Ty, T1,T5, . .. follow a “doubly-infinite” homogeneous PP on
the entire real line (—oo, 00). Just as the PP on (0, 00) can be thought of
in terms of many coin-tossing elves spread homogeneously over (0, 0o), this
PP can be thought of in terms of many coin-tossing elves spread homoge-
neously over (—oo, 00). The PP properties remain the same, in particular,

48



the interarrival times T; — T;_; are i.i.d. Exponential () rvs. In this case
it 4s true that t* — T;_1 ~ Expo (A), hence we have the ezact result that

(3.75) B(V;) = -/%

In fact, V; ~ Expo (A\) + Expo (A 4 Gamma 2, \). L
J
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4. Conditional Expectation and Conditional Distribution.
Let (X,Y) be a bivariate random vector (rvtr) with joint pmf (discrete

case) or joint pdf (continuous case) f(z,y) . The conditional expectation of
Y given X is defined by

(4.1) EY | X =2 Zy flylx), [jointly discrete]

(4.2) E[Y | X](z) = /yf(y]a:) dy, [jointly continuous]

provided that the sum or integral exists, where f(y|z) is given by (1.28) or
(1.30). More generally, for any (measurable) function g(y),

(4.3)  E[g(Y)| X =z Zg f(ylx), [jointly discrete]

(4.4) Elg(Y) | X](z) = /g(y)f(y]x) dy, [jointly continuous]

Note that (1.29) and (1.31) are special cases of (4.3) and (4.4), respectively,
with g(y) = Ig(y). For simplicity, we often shorten the notation to E[- | X]
in both cases.

Because f(+|z) is a bona fide pmf or pdf, conditional expectation enjoys
all the properties of ordinary expectation, in particular, linearity:

(45)  Elag(Y) +bh(Y) | X] = aE[g(Y) | X] + bE[R(Y) | X].

The key Iteration Formula, which extends the Law of Total Probability,
follows from (4.3), (1.28), (3.5) (discrete) or (4.4), (1.30), (3.6) (continuous):

(4.6) Blg(V)] = E(Elg(Y) | X)), verify]
As a special case (set g(y) = Ig(y)), for any (measurable) event B,

(4.7) PlY € B|=E(P[Y € B| X]).
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We now discuss the extension of these results to the two “mixed” cases.
(i) X is discrete and Y 1is continuous.

First, the Iteration Formulas continue to hold: (4.7) follows immedi-
ately from the law of total probability (1.54) [verify], then (4.6) follows
since any (measurable) g can be approximated as g(y) ~ > b;Ip,(y). Thus,
although we cannot calculate P[Y € B] or E[g(Y')] directly since we do not
have a joint pmf or joint pdf, we can obtain them by the iteration formulas
in (4.6) and (4.7). For this we need to determine f(y|z) as follows:

For any event B and any x s.t. P[X = z]| > 0,

P[Y € B, X = 1]

4, P X =zl =

(1) Y eB|X=a= g

is well defined. Thus we can define

(4.9) Fole) = LP(yle) = LPlY <y| X =4
. Yy = dy Yy = dy >Y = Zj.

Clearly f(y|z) > 0 and [ f(y|z)dy =1 for each z s.t. P[X = x| > 0. Thus
for each such z, f(:|z) determines a bona fide pdf. This f(-|z) does in fact
determine the conditional distribution of Y given X because (4.9) extends
to all (measurable) sets B:

@10) Pl eB|X=al= [ fale)dy= [ 1) i)y
Now use the approximation g(y) =~ > b;I5,(y) to extend (4.10) to obtain
(@.1) Blo(¥) | X 2] = [ )/ lo)dy.

Note: In most applications, f(y|z) is not found via (4.9) but instead is
either specified directly or else is found using f(z|y) and Bayes formula
(4.14) — see Example 4.3.
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(ii) X is continuous and Y is either discrete or continuous.

For any (measurable) event B and any z such that f (z) > 0, we define
the conditional probability

(4.12) PlY € B| X](m):laiﬁ;lP[YEB|x§X§x+5]
_...\...-._LJ - _111P[Y€B7$§XS$+5]
Bg 7 ~ a0 Plz <X <z+4]
IR g 1" . PYeB, a<X<z+
= lim
, (x) élo J
4.13 = —~—PYeB, X<z
(4.13) | it |
Then the iteration formulas (4.6) and (4.7) continue to hold. For (4.7),
E(PlY € B| X]) = /oo (-Lip[y € B, X <1]) f(@)d
—oo M (@) da
—P[Y € B

Again (4.6) follows by the approximation g(y) =~ 3. b;Ip,(z, ).

In particular, if X is continuous and Y is discrete, then by (4.13),
f(y|z) is given by

flylz) = P[Y =y | X]|(z)

1 d
= ﬂx—)—c—l-;P[Y =y, X < 1]
——%y%[X<x|Y - PIY =y
(4.14) _ /@ '?Z)];( y) [by (4.9)].

This is Bayes formula for pmfs/pdfs in the mized case, and extends (1.58).
Remark 4.1. By (4.14),

(4.15) flylz) f(z) = flzly) f(y),
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even in the mixed cases where a joint pmf or pdf f(x,y) does not exist. In
such cases, the joint distribution is specified either by specifying f(y|z) and
f(z), or f(z|y) and f(y) — see Example 4.3. L

Remark 4.2. If (X,Y) is jointly continuous then we now have two defi-
nitions of f(y|z): the “slicing” definition (1.30): f(y|z) = fﬁg’g), and the
following definition (4.16) obtained from (4.12)-(4.13):

@16)  flole) = P <y X))
A Py <y X <al] by @413)
1 02
= f—(ﬂj—)mF(xay)
flz,y)
(@)

Thus the two definitions coincide in this case. L]

Il

Exercise 4.1. If X is continuous and Y discrete, show that X 1l Y <=

Flylz) = f(y).

Remark 4.3. This useful result illustrates fhe Iteration Formula (4.6):
Cov(g(X), h(Y)) = B(g(X)A(Y)) — (Bg(X)) (BA(Y))
= E(E[¢(X)n(Y) | X]) — (Bg(X)) [E(E[A(Y) | X])]
= E(g(X)B[R(Y) | X]) ~ (Bg(X))[EE[A(Y) | X])]
(4.17) = Cov(g(X), E[h(Y)|X]).

Here we have used the Product Formula [verify|:

(4.18) E[g(X) h(Y) | X] = g(X)E[A(Y) | X]. s

Example 4.1. (Example 1.12 revisited.) Let (X,Y) ~ Uniform (D), where
D is the unit disk in R2. In (1.44) we saw that

Y|X ~ Uniform( — /1 — X2,/1— X2),
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which immediately implies E[Y|X] = 0. Thus the iteration formula (4.6)
and the covariance formula (4.17) yield, respectively,
E(Y) = E(E[Y|X]) = E(0) =0,
Cov(X,Y) = Cov(X,E[Y|X]) = Cov(X,0) =0,

which are also clear from considering the joint distribution of (X,Y). U

Example 4.2. Let (X,Y) ~Uniform(T"), where T is the triangle below, so

2, O<z<l,0<y<uz
(4.19) f@,y) = {O, !

otherwise.

Thus
(4.20) f(z) = 2z10,1)(2),
hence L Gcy<an

flyle) = {8,, otherwise.,
That is,
(4.21) Y|X ~ Uniform(0, X)
[verify from the figure by “slicing”], so
(4.22) B[y | X] = %
From (4.20) we have E(X) = £ [verify], so the iteration formula gives

X 1 2 1
(4.23)  E(Y)=E(E[Y|X]) = E(g) =5 z=3
Also from (4.17), (4.22), and the bilinearity of covariance,
1
Cov(X, ¥) = 5 Cov(X, X) = % Var(X).
But [verify from (4.20)]

(426 Var(X)=B(X}) - BX)7 =3 - (2) =,

so Cov(X,Y) = 5 > 0. Thus X and Y are positively correlated. O
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Example 4.3. (A “mixed” joint distribution: Binomial-Uniform). Sup-
pose that the joint distribution of (X,Y’) is specified by the conditional
distribution of X|Y and the marginal distribution of Y (= “p”) as follows:

X|Y ~ Binomial(n,Y), (discrete)

4.25
(4.25) Y ~ Uniform (0, 1), (continuous)
SO
n
o ml— n-:1:, :0,..., 3
(4.26) f(zly) <m>y 1-9) z n

f(y):17 0<y<L

Here, X is discrete and Y is continuous, and their joint range is
(4.27) QX,YZQX XQy:{O,l,...,?’L}X(O, 1).

However, (4.25) shows that X M/ Y, since the conditional distribution of
X|Y varies with Y. In particular,

(4.28) E[X | Y] =nY.

Suppose that only X is observed and we wish to estimate Y by E[Y| X].
For this we first need to find f(y|x) via Bayes formula (4.14). First,

”> Ye(1 - Y)”“f“]
/O1 y*(1—y)" "dy

(

> 1
_ <n> YD1 (1 gyt ) =1 g
2

n\I'(x+1)I'(n—z+1)
(x T 19) [see (1.10)]
B n! zl(n — z)!
Czl(n—2)!  (n41)
(4.29) :nil, z=0,1,....n



This shows that, marginally, X has the discrete uniform distribution over
the integers 0, ...,n. Then from (4.14),

flyle) = (m>ym(1_—1})n_m -

+

0

I'(n + 2) (z+1)-1 (n—z+1)-1
. = “" 1—gy)\"™® , O<y<l
(4.30) Iz+1DI'(n—x+1) Y (1) Y

Thus, the conditional (= posterior) distribution of ¥ given X is

(4.31) V|X ~Beta(X +1, n— X +1),
so the posterior = Bayes estimator of Y|X is given by
1
['(n+2) X+1)— —X+41)—1
BlY | X] = [ (X4+1)~1({ _ ,\(n +>}_
Y] /Oy T(X + Dl(n—X +1) (=)
_ I'(n+2) /1 yXAD=1(] _ gy (=X +1)-1
NX+1DT(n—X+1)

B I'(n+ 2) HNX+2)'(n—X+1)

X +1D)I(n—X+1) I'(n + 3)

(DX +1)!

X! (n+2)!

X+1 -
4.32 = . U
(4.32) n -+ 2
Remark 4.4. If we observe X = n successes (so no failures), then the Bayes
estimator is ”ié, not 1. In general, the Bayes estimator can be written as
X+1  n /X 2 /1

5 S Ky 2y,
(4:33) n+2 n+2\n Jrn+2 2

which is a convex combination of the usual estimate %—- and the a priors
estimate 53 = E(Y). Thus the Bayes estimator adjusts the usual estimate
to reflect the a priori assumption that ¥ ~ Uniform(0, 1). Note, however,
that the weight -7 assigned to %(" increases to 1 as the sample size n — oo,

i.e., the prior information becomes less influential as n — oco. (See §16.) U
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Example 4.4: Borel’s Paradox. (This example shows the need for
the limit operation (4.12) in the definition of the conditional probability
Pl(X,Y) € C| X = z] when X is continuous:)

Similar to Examples 1.12 and 4.1, let (X,Y) be uniformly distributed
over the upper half H of the unit disk R? and consider the conditional
distribution of ¥ given X = 0. The “slicing” formula (1.30) applied to
f(z,y) = 20~y (z,y) gives

(4.34) Y | {X = 0} ~ Uniform(0,1).

However, if we represent (X,Y) in terms of polar coordinates (R, ®) as in
Example 1.12, then the event {X = 0} is equivalent to {© = %}, while
under this event, ¥ = R. However, R Il © and f(r) = 2r] 0,1)(r) (use the
same argument as in (1.45) and (1.46a)), hence the “slicing” formula (1.30)
applied to f(r,0) = f(r)f(0) shows that

(4.35) R ' {@ = g} ~ f(r) # Uniform(0, 1).

Because the left sides of (4.34) and (4.35) appear identical, this yields
- Borel’s Paradoz. The paradox is resolved by noting that, according to
* (4.12), conditioning on X is not equivalent to conditioning on O:

TH NN \\‘

Conditioning on {X = 0} Conditioning on {@ = %} L
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5. Correlation, Prediction, and Regression.

5.1. Correlation. The covariance Cov(X, Y) indicates the nature (posi-
tive or negative) of the linear relationship (if any) between X and Y, but
does not indicate the strength, or exactness, of this relationship. The Pear-
son correlation coefficient

Cov(X, Y)

5.1 Cor(X, Y) = = :
(5.1) ( ) v/ VarX+y/VarY pXY

the standardized version of Cov(X, Y'), does serve this purpose.

Properties:

(a) Cor(X,Y) = Cor(Y, X).

(b) location-scale: Cor(aX + b, cY + d) = sgn(ac) - Cor(X, Y).

(¢) —1<px,y <1. Equality holds (px,y = %1) iff Y = aX + b for some
a, b, i.e., iff X and Y are perfectly linearly related.

Proof. Let U =X —EX,V =Y — EY, and
g(t) = E[(tU + V)?] = ’E(U?) + 2tE(UV) + E(V?).

Since this quadratic function is always > 0, its discriminant is < 0, i.e.

(5.2) [BUV)]* < BU?)-E(V?),
(5.3) [Cov(X, Y)]* < VarX - VarY,

which is equivalent to p%m, < 1. [(5.2) is the Cauchy-Schwartz Inequality.]

Next, equality holds in (5.2) iff the discriminant of ¢ is 0, so g(tp) =0
for some to. But g(to) = E[(toU + V)?|, hence toU + V =0, so V must be
exactly a linear function of U, i.e., Y is exactly a linear function of X.

Property (c) suggests that the closer p% y is to 1, the closer the rela-
tionship between X and Y is to exact linearity. (Also see (5.22).)
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5.2. Mean-square error prediction (general regressibn).

For any rv Y s.t. E(Y?) < co and any —oo < ¢ < 00,

E[(Y —¢)?] = E([(Y —EY) + (EY — c)]2)
=E[(Y —EY)?] + (EY — ¢)* + 2(EY — ¢)E(Y — EY)
(5.4) - =VarY + (EY — ¢)%.

Thus ¢ = EY is the best predictor of Y w.r.to mean-square error (MSE) in
the absence of any other information, and the minimum MSE is

(5.5) min  E[(Y — ¢)?] = VarY.

—oo<e<Loo

Now consider a bivariate rvtr (X,Y) with E(Y?) < co. How can we
best use the information in X to obtain a better predictor g(X) of Y than
EY? That is, what function g(X) minimizes the MSE

(5.6) E[(Y - 9(X))*] = B(E[(Y — g(X))* | X])?

But this follows immediately if we hold X fixed and in (5.4) and (5.5),
replace the marginal distribution of Y by the conditional distribution of Y
given X and replace ¢ by ¢g(X):

(5.7) ~ E[(Y - g(X))? | X] = Var[Y|X] + (E[Y|X] — g(X))";

i 2 = Var :
5:8) _min _B[(Y = g(x))* | X] = Var(y|X

Thus g(X) = E[Y|X] is the best predictor of Y based on X, and from (5.6)
and (5.8) the minimum (unconditional) MSE is

(5.9) ;I(l}(l; E[(Y — g(X))?] = E(Var[Y|X]).

The best predictor E[Y|X] is often called the regression function [ex-
plain] of Y on X. The prediction error Y — E[Y|X] is called the residual.
The basic decomposition formula for the prediction of Y by X is:

(5.10) Y =E[Y|X] + (Y — E[Y|X]) = best predictor + residual.
Note that: E(best predictor)=EY and E(residual)=0.
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Proposition 5.1. (Variance decomposition). The best predictor and the
residual are uncorrelated:

(5.11) Cov(E[Y]X], Y - E[Y|X]) = 0.

Therefore the variance of Y can be decomposed as follows:

(5.12) VarY = Var(E[Y|X]) + Var(Y — E[Y|X])
= Var(best predictor) + Var(residual)
(5.13) = Var(E[Y|X]) + E(Var [Y|X])

Proof. From (4.17) and bilinearity,

Cov(E[Y|X], Y — E[Y|X]) = Cov(E[Y|X], B[Y|X] - E[Y|X]) =0,

-~
=0

which establishes (5.11) and therefore (5.12). Finally,

(5.14)  Var(Y —E[Y|X]) = B[(Y - E[Y|X])’]
= B(B[(Y - BlY|X))" | X])
= B(Var [YX]),
which gives (5.13). L

Exercise 5.1. Prove (5.11) directly from (3.11) or (3.12).

Remark 5.1. Consider a rvtr (Xi,..., X, Y) with E(Y?) < oo. Then
the best predictor g(X1,...,Xg) of Y | (X1,...,X%) s E[Y | X4,..., Xg].
All of the results above remain valid with X replaced by Xi,...,X). For
example, (5.9) becomes

min_ B[(Y — g(X1,...,Xk))?] = E(Var[Y|X1,..., Xz]),
g(Xl,...,Xk)

which implies that

(5.15) B(Var[Y|X1,..., X)) < --- < E(Var[Y|X;]) < VarY.
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5.3. Linear prediction (= linear regression).

In practice, the best predictor = regression function E[Y'| X] is unavailable,
since to find it would require knowing the entire joint distribution of (X,Y").
As a first step, we might ask to find the linear prediction function g(X) =
a + bX that minimizes the MSE
(5.16) E([Y - (a+bX)]?).

First hold b fixed. From (5.4) with Y replaced by ¥ — bX, the MSE is
minimized when

(5.17) a=a(b) =E(Y —bX) = E(Y) — bE(X),

SO minE[(Y — (a +bX))*) =E([Y —EY] —b[X“EX])z

| = VarY — 2bCov(X, Y) 4 b*Var X.
‘ I

This is a quadratic in b and is minimized when

Cov(X,Y)

1 b=
(5.18) VarX '’

[Cov(X, Y)]2 [Cov(X, Y))?

so minE([Y — (a+bX))?) = VarY —2

a,b \/arX \/arX
[CO-"(“(a Y )]
) - — .
(5 19) VarY Var X

Thus from (5.17) and (5.18), the best linear predictor (BLP) of Y| X is

a(b) + bX = [E‘Y _ (wﬁx} + [M]X

Var X Var X
B Cov(X,Y)
(5.20) =EY + e )X ~EX].
= YV (x -
(5.21) = py + px,y (OX ) (X = px),

where ux = EX, py =EBY, ox =sd(X), oy = sd(Y). Then E(a+bX) =
uy and, from (5.19), the MSE of the BLP a + bX is

2 2 2
Pxy9x9y

E([Y - (a+bX))?) = 0% — oz
(5.22) = (1 - pk,y)oy.
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The error of linear prediction Y — (a -+ bX) is again called the residual.
[See scatter plots.] The basic decomposition formula for linear prediction is:

(5.23) Y = (a+bX)+ [V — (a+bX)]

= best linear predictor + residual.
Again: E(best linear predictor)=EY and E(residual)=0. [verify]

Proposition 5.2. (Linear variance decomposition). The best linear pre-
dictor and residual are uncorrelated:

(5.24) Cov[a+bX, Y — (a+bX)] = 0.

Therefore the variance of Y can be decomposed as follows:

(5.25) VarY = Var(a + bX) + Var[Y — (4 + bX)]
= Var(best linear predictor) 4+ Var(residual)
(5.26) = pxyoy + (1= pX,y)oy.

Proof. From bilinearity and (5.18),
Cov[a+bX, Y — (a+bX)] = b[Cov(X,Y) — bVarX] = 0,

which establishes (5.24) and therefore (5.25). Finally, (5.26) follows from
(5.21) and (5.22). L

Exercise 5.2. Prove (5.25) directly, then use it to deduce (5.24). U

Remark 5.2. Note that (5.22) gives another proof that —1 < pxy <
1, or equivalently, pg(,y < 1. Also it follows from (5.26) that pgf,y, not
lpx v |, expresses the strength of the linear relationship between X and Y
if p%y = 1 then there is an exact linear relationship, while if p5 = 0

then b = 0 and there is no overall linear relationship, the BLP reduces to

the constant EY. Note that it is possible that P_2><,Y < 1 even if there is

an exact non-linear relationship between X and Y; for example if Y = eX.

(However, there is an exact linear relationship between logY and X.) (I
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SON'S HEIGHT (INCHES)

CORRELATION [CH. 8]

Figwe 1. Scatter diagram for the heights of 1,078 fathers and sons,

showing the positive association between son’s height and fathes’s height.”

Families where the height of the son equals the height of the father are

plotted along the 45-degres line y = x. Families where the fathes is 72

inches tall (to the nearest inch) are plotted in the vertical strip.:
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THE REGRESSION FALLACY

Figure 5. The regression effect. If a son is 1 inch taller than his father,

ps,

plotted along the dashed line. The points in the strip over 72

inches correspond to the families where the father is 72 inches tall, to the
, to the nearest inch; most of these points are above the dashed

line, The solid regression line picks off the centers of all the vertical stri

and is flatter than the dashed line,

i

nearest inch; most of these points are below the dashed line.. The points -
im the strip over 64 inches correspond to families where the father is 64

the family is
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Remark 5.3. Suppose we know that E[Y|X] is a linear function, i.e.,
E[Y|X] = ¢+ dX. (This holds in multinomial and multivariate normal
distributions — see §7.5 and §8.3). Then necessarily E[Y|X] = & + bX,
i.e., the best general predictor must coincide with the best linear predictor
[why?]. In this case, all the results in §5.2 reduce to those in §5.3.

Exercise 5.3. Prove or disprove: E[Y|X] is linear = E[X|Y] is linear.

Example 5.1. (Another Bayesian example.) Let X = height of father,
Y = height of son. Suppose that the joint distribution of (X,Y) is specified
by the conditional distribution of Y'|X and the marginal distribution of X
as follows:

(5.27) Y|X ~ Normal(a + bX,7?),
(5.28) X ~ Normal (u,0?),
SO
(y—a—bx 2

f(y|m> = ——e 2 ’

(5'29> 21T
] lemw®
f(fL') = 271-06 29 :

Suppose that we observe a son’s height Y and want to estimate ( = predict)
his father’s height X using E[X|Y]. For this we find f(z|y) via Bayes’
formula (4.14):

~ fyle) f (=)
flzly) = )
_ oonst | —h(x)
fly) ’
where
(5.30) h(m) — (y - a— ba})2 N ({L‘ — /1,)2

272 202

is a quadratic in & with leading term

= 254 L) =2 ()
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Since h(x) is minimized when

R (z) = p +—; =0,
i.e., when
Mgl 4 &
(5.32) p= 7 = (y),
=t
it follows that ( W)
x—cly
@) = g+ d(y)

where d(y) does not involve z. Thus f(z|y) must have the following form:

f(@ly) const - e~ ¥ _ Lm;c%lﬁ
Y) = ‘e 2 .
f()

However, since f(z|y) must be a pdf in  for each fixed y, we conclude that

_(m—cw?
floly) = e

(Note that it was not necessary to find f(y)!) Thus the conditional (=
posterior) distribution of X given Y is

XY ~ N(c(Y),?)
b(Y —a) @ 1
(5.33) = ( R )

(5:34) BlX|Y] = F
72 o2

a linear function of Y. In fact, this is again a convex combination of the
“unbiased” predictor (Y — a)/b of X and the a priori predictor u = E(X).
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Note that the weights assigned to (Y — a)/b and p are proportional to b?
and inversely proportional to 72 and o2, respectively [interpret!]. Also, since
E[X|Y] is a linear function of YV, it is also the best linear predictor of X|Y
(recall Remark 5.3).

How good is E[X|Y]? From (5.14) (with X and Y interchanged), its
MSE is given by

B[(X - B[X|Y])?] = Var(X - B[X|Y])
= E(Var[X|Y])
1
7t o
0,
~ { _237 if 02 ~ oo (i.e., if prior info not good).

(5.35) =

if 02 ~ 0 (i.e., if prior info very good);

The result (5.35) can also be derived in terms of px y. First,

Var X = o?; [by (5.28)]
VarY = Var(BE[Y|X]) + E(Var [Y|X]) [by (5.13)]
= b*Var(X) + B(r?) [by (5.27)]
= 202 4 72;
Cov(X, Y) = Cov(X, E[Y|X]) [by (4.17)]
= bCov(X, X)
= bo?.
Thus
(5.36) 1—p2y=1- (o) 7

o2(b202 + 72) b2 f 72’
so by (5.22) (with X and Y interchanged), the MSE of the BLP E[X|Y] is

,7_20.2

2 2 _
(5.37) (1—-pxy)o” = P

which agrees with (5.35). [l
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Remark 5.4. Consider a rvtr (Xu,...,Xx,Y) with E(Y?) < co. All
the above results remain valid but matrix notation is required — see §8.2.

For example, the best linear predictor g(Xx) = a + b'X ) of Y based on
X = (Xi,...,Xx)! is given by (compare to (5.20) and (8. 76))

(5.38) 6+ Xy, = BY + Cov(Y, Xi)[Cov(Xy)] ™ H(Xk — E(Xk)),

while (5.22)-(5.26) remain valid if p% y- is replaced by the multiple correla-
tion coefficient

(5.39) ka v = Cov(Y, Xy)[Cov(Xk)] ™ 1Cov(Xy,Y)/(VarY).
In particular E([Y — (& + b*Xy)]?) = (1 — pk, v)oy (cf. (5.22)), s0

(5.40) 1> ok, v = 2 px,y 20

Remark 5.5. In practice, the population quantities px, Ky, 0%, o2,
and px,y that appear in the BLP a + bx (5.21) are unknown, so must be

estimated from a sample (X1,Y1),..., (Xn, Yn). The usual estimators are:
/:\CX - X’n) /lY - ?ny

(5.41) L 1 & o o 1 < o 2
UX—‘n__lzZ;(Xz"Xn)> UY:n__liz::l(Yz“Yn)>

Yot (X — Xn) (Vi — Vo)
pxy =
\/iz—— X X \/Ez 1 Y Y)

When (X,Y) has a bivariate normal distribution these estimators are the
MLEs (CB Exercise 7.18), hence asymptotically optimal by Theorem 14.20.

Remark 5.6. If a linear predictor is not appropriate, i.e., if it is not the
case that Y =~ a + bX (+ error), it may be the case that a tranfsormation
will convert the non-linear relation into a linear one. For example,

(5.42) Y ~ae?® = Y =logYV =~ (loga)+bX
(5.43) Y ~aX? = Y =logY =~ (loga)+ b(log X),
(5.44) Yreat+bX? = Y=Y = a+bX?).
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(Of course, one must assume that the error in Y’, not Y, is additive.) U

Note: The examples (5.42) - (5.44) emphasize that the “linearity” in a “lin-
ear model” comes from the (approzimate) linear dependence of the response
Y on the unknown parameters a, b, loga, etc., not on X! (See §8.5.)

5.4. Covariance and Regression.

Proposition 5.3. If E[Y|X] is a strictly increasing function of X, then
Cov(X,Y) > 0.

Proof. This is an immediate consequence of (4.17) and the following lemma.

Lemma 5.1. (Chebyshev’s Other Inequality) If X is a non-degenerate
v and g(X) and h(X) are both strictly increasing in X, then

(5.45) Cov(g(X), (X)) > 0.

Proof. Let Y be another rv with the same distribution as X and indepen-
dent of X. Then

[9(X) = g(V)][A(X) - h(Y)] >0

with strict inequality whenever X # Y, which occurs with positive proba-
bility since X and Y are independent and non-degenerate [verify]. Thus

([g(X) = g(MN[R(X) = h(Y))])
l9(X)R(X)] = Elg(X)h(Y)] = E[g(Y)A(X)] + E[g(Y)h(Y)]
(Elg(X)h(X)] - E[g(X)]ER(X)]),

0

A
= =

I
DO

since X and Y are i.i.d., which yields (5.45). o
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6. Transforming Continuous Multivariate Distributions.

6.1‘. Two functions of two random variables.

Let (X,Y) be a continuous random vector with joint pdf fx y(z,y) and
consider a transformation (X,Y) — (U, V), where

(6.1) U=uXY), V=uvXY)

The pdf fuv(u,v) is obtained by differentiating the joint cdf Fy v (u,v):

2
fuv(u,v) = auavFU,V(U, V)
52
~ Budv
& dz d
- auav /L(u)v) fX,Y(w7y) L y)

where R(u,v) is the region {(z,7) | u(z,y) < v, v(z,y) <wv}. If the double
integral can be evaluated® explicitly, then the derivatives can be taken to
obtain fy,v(u,v). Three examples of this method® are now presented.

PlU <u, V < v

(6.2)

Example 6.1. Let (X,Y’) be uniformly distributed on the unit square; set
(6.3) U=max(X,Y), V=min(X,Y).
In Example 2.5 we found the marginal pdfs of U and V separately. Here
we find the joint pdf of (U, V') by using (6.2).

First specify the range of (U, V): this is just the triangle

T={(u,v)]|0<u<l 0<v<u}

O

from Example 4.2. Then for (u, v) eT, 0 I

5 If the mapping (X , Y) — (U, V) given by (6.1) is differentiable and 1-1, then the
integral in (6.2) need not be evaluated — instead, fu,v(u, 'U) can be obtained by simply
multiplying fx,y(w, y) by the Jacobian — see §6.2.

6 Another example was given earlier — see (1.45).
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I

PlU <u]—PlU <,V >1]
=P[X <u,Y<ul-Po<X<uv<Y <y
| =u? — (u—v)?, [by independence]
6.4)  fuv(w,v)=2Ir(u,0),
which is the same as (4.19). Thus (U, V) is uniformly distributed on T
Note: |

FU)V (u) U)

B(UV) = B(XY) = (EX)(EY) = 211
B(U 4+ V)= B(X +Y) =1,

E(V):‘/O [1—FV(U)]dv:/O (1——1})2dv:%, [CB Ezer. 2.14],

so E(U) = 2, hence (recall Example 4.2)

Cov(U, V) = 3~ (BU)(BV) = 7 - <§> @) = o

Example 6.2. Let X,Y be i.i.d. Exponential(1) rvs and set

[

(6.5) V =min(X,Y), Z =|X -Y|=max(X,Y) — min(X,Y).

In Example 2.6 we found the marginal pdfs of V' and Z separately. Here
we find the joint pdf of (V, Z) via (6.2).
The range of (V, Z) is (0,00) x (0,00). For 0 <v < 00,0 <z <00,

PV <wv,Z<2=PlZ<z—PlV>v7<z], AN
PlV>uv,Z<2l=PX>v,Y>u, |X-Y][<z
P[(X,Y) in shaded region] |
2P[(X,Y) in half of region]
2P[X >v, X <Y < X + 2]

— 2/006"“" (/Mze"ydy) dx wr'
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= 2/ e " (e™" — e~ %) dx
=2(1-¢7%) / e @ dx
=e (1-e7?),

where (6.6) follows by symmetry: (X,Y) ~ (Y, X). Therefore

82
fralo,) =~ [ (-7

(6.7) = (2¢7) (™)
= fy(v) fz(2), [r'eca,ll (2.17), (2.20)]

so V and Z are independent, with
V ~ Exponential(2), Z ~ Exponential(1).

Interpretation: Suppose that X, Y represent the lifetimes of two lightbulbs.
Thus, V = min(X,Y) is the time to the first burnout (either X or Y). Once
the first burnout occurs, the time to the second burnout has the original
exponential distribution Expo(1), not Expo(2). This is another memory-
free property of the exponential distribution. It is stronger in that it shows
that the process renews itself at the random time V. (The first memory-free
property concerned any fized renewal time ¢.) L]

Exercise 6.1. Find Var[max(X,Y)]. Find Var[max(Xi,..., Xn)], where
the X; are i.i.d. Exponential(1) rvs (recall Exercise 2.4). [l

Exercise 6.1%*. (Converse of Ezample 6.2: a second characterization of
the exponential distribution (compare to Ezercise 1.2).) Let X,Y be positive
i.i.d. rvs with common pdf f, assumed positive and continuous on (0, c0).
Show that if V = min(X,Y) and Z = |X — Y| are independent, then X
and Y must be exponential rvs, i.e., f(z) = Ae~*® for some A > 0.

Hint: follow the approach of Example 6.2.
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Example 6.3. Again let X,Y be iid. Exponential(1) rvs and set

X
X+Y

(6.8) U=X+Y, W=

In Example 2.6 we found the marginal pdfs of U and W separately. Here
we find the joint pdf of (U, W) via (6.2).

The range of (U, W) is (0,00) x (0,1). For 0 < u < 00,0 < w < 1,

PlU<u, W<w|=PX+Y <u, X <w(X+Y)]

:/0 / )me”ydy>d:v

~3
L

(6.9) =[1- - w.

Therefore

. . ) N
fow (u,w) = auaw[l—-e —ue "] w

(6.10) = (ue™) - 1

= fu(u) fw(w), [recall (2.16), (2.21)]

so U and W are independent, with
U~ Ga,mma(Q, 1), W ~ Uniform(0, 1).

Interpretation: As noted in Example 2.6, (6.9) and (6.10) can be viewed as

a “backward” memory-free property of the exponential distribution: given
X+Y, the location of X is uniformly distributed over the interval (O X+Y),
i.e., over the “past”. U

Exercise 6.2. (i) Let U = max(X,Y) and V = min(X,Y) in Example
6.2. Find the conditional distribution of V' | U. Does this exhibit the
“backward” memory-free property?

(ii) Repeat this question for Example 6.1, where X, Y are i.i.d uniform rvs.
(iii) Repeat this question for f(z,y) = ce™™2X(@¥) 0 < 2,y < co. (Find c.)
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6.2. The Jacobian method.

Let A, B be open sets in R™ and

T:A- B

(6.11)
ZISE(ZCl,...,xn)HyE(yla"wyTJ

a smooth bijectivé (1-1 and onto) mapping (= diffeomorphiém). The Jaco-
bian matriz of this mapping is given by

Syr ... OuL
5 8:1;1 Oz
(6.12) Jr(z) = ((—9—‘7’—/> = | S
v Oyn ... OYn
8(E1 8(13»,1,

that is, <g%> = gy" The Jacobian of the mappmg is glven by
i

()] = %l — | det (%M > 0.

Theorem 6.1. (Substitution formula for multiple integrals.) Let A, B be
open sets in R™ and T : A — B a diffeomorphism such that |Jp(x)| > 0 for
“a.e.” . Let f be a real-valued integrable function on A. Then

ox l‘ :
(6.13) /f dw_/B e f(r- ()) By dy.- [explain]

[See (6.16) for the relation between ]%%} and ‘-g—z ]

Corollary 6.2. Let X be a random vector (rvtr) with pdf fx(z) (wrto
- Lebesque measure) on R™. Suppose that A := {z | fx(z) > 0} is open and
that T : A — B s a diffeomorphism with |Jp(z)| > 0 a.e. Then the pdf of
Y :=T(X) is given by

(6.14) ) = T[] 1)

74



Proof. For any (measurable) set C € R",

P[Y € C] =P|X € T7}(O)]
=/ fx(x)dx
T-1(C) -
| _ ox
- [ s@w| 5|,
which confirms (6.14) [Why?] O

The calculation of Jacobians can be simplified by application of the
following rules.

Chain Rule: Suppose that z — y and y — z are diffeomorphisms. Then
T+ 2z isa diffeomorphism and

(6.15)

833

[This follows from the chain rule for partial derivatives:

‘ B l@yly y(w)

0zi(y1(z1,. .. ,wn)a,z;:;wyn(ml’ D) — Z ?_El‘. % — [(—g—;—) (%)}

Therefore (%) = (g;) (6y) now take determinants.|

Inverse Rule: Suppose that x + y is a diffefomorphism. Then

el =[5

Oy ly=y(z) |0z

[Set z =z in (6.15).] Reversing the roles of  and y we obtain
Oz |1

6.16 = | ‘ .

( ) 833 z=z(y)

Combination Rule: Suppose that  — u and y — v are (unrelated) diffeo-
morphisms. Then

ou). o0

ozl loyl

(6.17)
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[The Jacobian matrix is given by

(G- (% &)

Extended Combination Rule: Suppose that (z,y) — (u,v) is a diffeomor-
phism of the form v = u(z), v = v(z,y). Then (6.17) remains valid.

[The Jacobian matrix is given by

(8(u, ’U)) B g—% 0 |

o=y \5% o)

Jacobians of linear mappings. Let A: p X p and B: n X n be nonsingular
matrices and ¢ a nonzero scalar (A, B, L, M,U, V, c fixed.) Then:

(a) vectors: y =cx, z,y:p x 1: 83" = |c|?. [combination rule]
(b) matrices: Y =cX, X,Y:pxmn: ‘ ‘— |c|P™. [comb. rule]
(c) symmetric matrices: Y = cX, X,Y : p X p, symmetric: ' l = |c ]p(p+l)
[comb. rule]

(d) vectors: y = Az, z,y:px1, A:pXxp: [8 | = | det AJ. [verify]
(e) matrices: Y = AX, X,Y:pxn: |Z%|=]|det A|". [comb. rule]
V=XB, X,Y:pxn: |5%|=]detBJ. [comb. rule]

V=AXB, X,Y:pxn |9%|=|det A|"|det B[P. [chain

rule]

Example 6.4. The Gamma(a, A) distribution with shape parameter o > 0
and intensity parameter A > 0 has pdf

AO&

a—1_-—Az
F—(&-)‘ZU € I(O,OO) (ZU)

(6.18) g(z;a, \) =

Let X ~ Gamma(a,\) and Y ~ Gamma(f,A) be independent Gamma
random variables with the same scale parameter and define

X
X+Y'

(6.19) U=X+Y, W=
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Find the joint pdf of (U, W), find the marginal pdfs of U and W, and show
that U and W are independent. (This extends Example 6.3.)

Solution. The ranges of (X,Y) and (U, W) are

A:={(z,y) |z >0,y >0} = (0,00) x (0, 00),
B:={(u,w)|u>00<w<1}=(0,00) x (0,1),
respectively. Notice that both A and B are Cartesian product sets. The

transformation
T:A— B

(6.20) (z,y) = (z+ vy, z/(z+7))

is bijective, with inverse given by

T-1:B - A

(6.21) (u,w) — (vw, u(l —w)).

Thus 77! is continuou‘sly differentiable and bijective, and its J acobian is
given by

8(uw) B(uw) u
(6.22) ’ (u w)! = ’ a<u<1 “w)) a<u<1 w>>‘ ‘1_ ] T
Because
_/\_Ciiﬁ_ a1 =Aw, -1 Ay ]

it follows from the transformation formula (6.14) that

a+p
fuw (u, w) :m(uw>a—le—/\uw(u(1 —w))? e ) Ly Tp (u,w)
AetByatB—lg—Au N 1 1
620 =T (1) _I—‘_((a);:—(?)wa~ (1 = w)P 1y ()

=fu(w) - fw(w).
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Thus U 1L W, U ~ Gamma(a + 5, A), W ~ Beta(a, §). O

Remark 6.1. (The converse of Example 6.4 — a characterization of the
Gamma distribution.) The Gamma family is the only family of distribu-
tions on (0, 00) with the property that X + Y and Xfy are independent.
[References: Hogg (1951 Ann. Math. Statist.); Lukacs (1955 Ann. Math.
Statist.); G. Marsaglia, (Festschrift for I. Olkin); Kagan, Linnik, Rao (book).

Remark 6.2. Let U and W be independent with U ~ Gamma(a+£3, ) and
W ~ Beta(a,8). It follows from Example 6.4 that UW ~ Gamma(a, \),
Ul -W) ~ Gamma(G,A), and UW 1L U(1 — W).

Exercise 6.3. Let X,Y, Z be independent rvs with X ~ Gamma(a, \),
Y ~ Gamma(f, ), and Z ~ Gamma(vy, \). Set

X v X+Y
X+Y’ X+ Y+Z

Show that U 1L V' 1L W and find the distributions of U, V, and W.

U =

W=X4+Y+7Z

Example 6.5. Let X,Y be ii.d. random variables each having an Expo-
nential (A) distribution on (0, c0) with pdf

(6.25) nz) = )\e‘A‘”I(O,OO)(a:)
w.r.to Lebesgue measure. Find the joint pdf of (V, Z), where
V = min(X,Y), Z=X-Y.

(Be sure to specify the range of (V, Z).) Find the marginal pdfs of V and
Z, and show they are independent.

Solution. The ranges of (X,Y’) and (V, Z) are

A= {(z,y) | x>0,y >0} =(0,00) x (0,00),

(6.26) B:={(v,z)|v>0}=(0,00) x (—00,00),

respectively. Both A and B are Cartesian product sets. The transformation

T:A— B

(6.27) (z,y) — (min(z,y), z—y) = (v,2)
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is bijective, with inverse given by

T7':B— A
(6.28) N _
(v,2) = (v+27, v+27) = (z,y),
where 2zt = max(z,0), 2~ = —min(z,0). Then T is continuously differ-

entiable on the open set B* := B\ Ny, where Ny := {(v,2) | # =0} is a
(Lebesgue-) null set. The Jacobian of 7! on B* is given by [verifyl]

1 1 ) .
0(z, y) Hl le’ it 2 > 0;
(6.29) t@(v z)‘ B 10
’ H, =1 ifz<o.
Because
(630) fX,Y (337 y) = /\26_/\($+y)]A(m7 y))

it follows from the transformation formula (6.14) and (6.28) that

fv (v, 2) =A2e M2 D 15 (y, 2)
oy Az
(631) =2)\e 22 I(O,oo)(v) : 58 Al II(—oo,oo)(Z)
=fv(v) - fz(2).

Thus, V and Z are independent, V" has an Exponential(2)) distribution on
(0,00), and Z has a “double exponential distribution” on (—o00, 00). Ll

Exercise 6.4%*. (Converse of Fxample 6.5: another characterization of
the ezponential distribution (compare to Exercise 6.1%%).) Let X,Y beii.d.
positive random variables, each having a positive and continuous pdf f on
(0,00). Show that if V = min(X,Y) and Z = X —Y are independent, then
each must have an Exponential(\) distribution, i.e., f = f\ for some A > 0.

Hint: Express the joint pdf fy 7z and the marginal pdfs fy, fz in terms of
f. By independence, fy, z = fv fz. Deduce that

(6.32) flo+|z]) =[1—=F()]f(lz]) forv >0, —co <z < o0,
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where F(v) = [ f(z)dz. (To be rigorous, you have to beware of null sets,
i.e., exceptional sets of measure 0.)

For extra credit, drop the assumption that f is positive; the conclusion
is changed to X,Y ~ Exponential()\)+constant. For double super extra
credit also drop the assumption that f is continuous. L

Exercise 6.5. (Continuation of Proposition 3.1.) Let T3,T5,... be the
jump times in a homogeneous Poisson process with intensity parameter .

(i) Show that 77 and Ty — 17 are independent Exponential(A) rvs.
(ii) For any n > 3, show that 1y, Ty — 11, ..., 1, — T),_1 are i.i.d. Expo-

nential () rvs.

Example 6.6. (Polar coordinates in R?). Let (X,Y) be a continuous
bivariate rvtr with joint pdf fx v (z,y) on R?. Find the joint pdf fge(r,0)
of (R,0), where (X,Y) — (R, ©) is the 1-1 transformation [verify] whose
inverse is given by '

(6.33) X = Rcos 0O, Y = Rsin©.

Solution. The range of (R, 0) is (0, c0) x [0, 27), the Cartesian product of
the ranges of R and ©. The Jacobian of (6.33) is

)

’8(33,3;)‘_'0089 —rsing|
o(r,0) | Isin@ rcost |

(6.34)
so from (6.14),
(6.35) fro(r,0) = fxy(rcost,rsing) r.
In the case where fx v (z,y) is radial, i.e.,
fxy(z,y) = g(z®+vy*)
(recall (2.9),(2.10)); (6.35) becomes
fre(r,0) =rg(r?)

1
6.36 — 9 2y,
( ) mrg(r?) o
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This shows that:
(i) R and © are independent;

() fr(r) = 2m7g(r?);
(ii1) © ~ Uniform|0, 27).

A special case appeared in Example 1.12, where (X,Y) was uniformly
distributed over the unit disk D in R?, i.e., (cf. (1.45))

Froy (@) = ~Ip(@,y) = ~Lon( +4%) = 9@ +17)
Thus R and © are independent, © ~ Uniform[0, 27), and (cf. (1.46a))
fr(r) =27 g(r?) = 2rlg ().
Another special case occurs when X,Y are ii.d. N(0,1) rvs. Here

1 _ x? 4y?

fX,Y(a;)y): 5’7;6 2 Eg<$2+y2),

so again R and © are independent, © ~ Uniform|0, 27), and

2

2,

fr(r) =2rrg(r*) =re

Finally, set S = R2 (= X2 4 Y?). Then % = 2r, so

dr 2 1 1 _s
o(s) = frlr(s)) - S = e F = e,
hence S ~ Expo (1) = Gam (3, ) = x3 (see Remark 6.3). O

These results extend to polar coordinates in R™. Suppose that
X = (Xi,...,X,) is a continuous rvtr with joint pdf f(z1,...,2pn). Then
X can be represented by polar coordinates R,©1,...,0p—1 In several dif-
ferent ways, depending on how the angles ©; are defined. However, in each
case R = +/X? + - X2 and the Jacobian has the form

‘ O(x1,...,Tn)
3(7’,91, v 7077,—1)

(637) — ,'m,—l . h(@l, ces ,en_1>
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for some function h. Thus, if f (7’1, ey X)) = ( 4o x2), de, i f s
radial, then by (6.14) the joint pdf of ( R,O4,... On 1) again factors

(638) fR,@l,---,@n—l (7’, 91, ‘e ,Hn,l) rn“ g(r ) : h(@l, s e 70n—1)'
Thus R is independent of (©1,...,0,_1) and has pdf of the form
(6.39) fr(r) = cn - 1" Lg(r?),

where ¢, does not depend on g.
To evaluate ¢, let X1,...,X, beiid. N(0,1) rvs, so

I

(6.40) fr(r) = -

Again set S = R?, so dr/ds = 1/(2s*/%), hence

(6.41) fs(s) = st st e

from which we see that ¢, = 2(7/?)/T'(n/2) and

(6.42) S=R’=X2+--+ X2~ Gamma (Z,1) (=x5)

Remark 6 3. The chi-square distribution with n degrees of freedom, de-
noted by %2, is defined as in (6.42) to be the distribution of X7 + - + X2
where X1, ..., X, are ii.d. standard normal N(0,1) rvs. The pdf of X3 was
shown dlrectly in (2.7) of Example 2.4 to be that of the Camma(2, 2) dis-
tribution, from which (6.42) also follows from Application 3.3.3 in §3.3 on
moment generating functions, or from Example 6.4 in the present section.

Remark 6.4. The transformations in Examples 6.3 - 6.6 are 1-1, while
those in Examples 6.1 and 6.2 are 2-1 [verify].

Exercise 6.6. (i) Show that B(a, §) - Bla + 3, ) B(a, 8+ 6), where
the B’s denote independent beta rvs.

[Hint: apply the result at the end of Examp]e 6.4.]
(ii)* Show that B(«, B+7)-B(a-+0, v+46) B(a B+v-+0) Bla+p8, 7).

Exercise 6.7. Use ¢, to find the volume of the unit ball in R". L]
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7. The Multinomial Distribution.

The multinomial experiment. Consider a random experiment with &
possible outcomes (or “categories”, or “cells”) Ci,...,Ck. Let p; = P(C;).
Suppose the experiment is repeated independently n times, i.e., n indepen-
P p y y 1.6, p
dent trials are carried out, resulting in X; observations in cell Ci:

Cells : ¢l |... lo K=
Probabilities| p; p2 |... Dk Zpi =1, |
i=1
« k I <3:
Counts : X1 1 Xo |... | Xk ZXi = n. ’
‘ i=1 ‘

Definition 7.1. The distribution of (Xi,...,Xk) is called the (complete)

multinomial distribution for k cells, n trials, and cell probabilities p1,. .., Pk-
We write ’
(7.1) (X1, Xi) ~ Mi(13 D1, -, P): o

The multinomial distribution is a discrete multivariate distribution.
Note that the marginal distribution of each X is Binomial(n; p;). In fact,
when k = 2, My essentially reduces to the binomial distribution:

(7.2) X ~ Binomial(n; p) <= (X,n—X)~ Ma(n; p,1—p).
The multinomial pmf and mgf. For z1 > 0,...,2x > 0, }:f:l Ty =N
(x;’s integers),

n! .
T, Tk
"'fck!pl pk .

(73)  Pl(X1, o Xe) = (@150 @0)] = o5

Draw picture of range; discuss complete vs. incomplete multinomial dist’n.
g

Here the multinomial coefficient

' n! B n
mll---xk! H I )
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is the number of ways that the labels “C1, ..., Cy” can be assigned to 1,...n

such that label C; occurs z; times, i = 1,..., k.
[First, the n distinguishable labels cl,...,C7 . .. Chy. .., CYF can be as-
signed to 1,...,n in n! ways. But there are z;! permutations of ch ..., Cr

The fact that the probabilities in (7.3) sum to 1 follows either from their
interpretation as probabilities or from the multinomial expansion

n 1 T
I T VT S 2

e, Tk
miZO,ZZE,,;:TL

If we replace p; by p;e™ in (7.4) we obtain the multinomial mgf (7.5):

mx, .. Xu (tl, o >tk) = F <6t1X1+-..+thk)
(7.5) = (p1e” + - —I—pket’“)n [p; — pie’t in (7.4)].
Also, the mgf of the incomplete multinomial rv (Xi,...,Xg—1) is
Mxy o Xy (F1y ooy Thm1) = MXq, o X1, X5 (B -+ o5 Tk—1,0)
= (pre™ + -+ + pr_1e™ = + pre’)”
(7.6) = [p1(e” = 1)+ +pp_r(e™t = 1) + 1]".

Additional trials. Let

(Xl, ce ,Xk) ~ Mk(m; D1y ,pk),
(Yla s 7ch) ~ Mk:(na P1,... 7pk)7

denote the cell counts based on m and n independent multinomial trials
with the same k and same p;’s. Then obviously

(7.7) (X1 +Y1,.. ., X +Ye) ~ Mg(m+n; p1,..., D).

Combining cells. Suppose (Xi,...,Xk) ~ Mi(n; p1,...,pr) and define

new “combined cells” D1, Do, ..., D, as follows:
Dy Dy D.
(78) Cl>'°'70k17 Ck1+17"'70k2) IR Ckr__l—l—l)"wckr)
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where 1 < r < kand 1 <k; <ky <...<k—1 <k =k Definethe
combined cell counts to be

Vi=Xi++Xp, Yo=Xp+ o+ Xy o, Yo =Xpo 1+ 4+ Xk,
and the combined cell probabilities to be

qGu=p1+ +Dkyy @2 =DPhy+1+ T Dkys vy @r =Dkp_y+1 + T Dk,
Then obviously

(7.9) Y1,...,Ys) ~ My(n; q1,...,¢-).  [same 7]
In particular, for any [ with 1 <1 <k,
(7.10)

(X1, X1, n= (X1 4+ + X)) ~ Mg (n; pry. oo, 1= (14 +m0)).
Conditional distributiqns. First consider k£ = 4:

(X1, X2, X3, X4) ~ My(n; p1,p2,P3,Pa)-
In (7.8)let r =2, k1 =2, kp =4, so
Y = X1 + Xo, Yo = X3+ X4,
@1 =p1+Dp2, G2 =P3+ P,
hence by (7.9),
(Y1,Y2) ~ Ma(n; q1, q2).

Therefore the conditional distribution of (X3, X2, X3, X4) given (Y7, Ys) is
as follows: for integers xz1,x2,x3,24 and yi,ys such that z1 + x2 = yi,
T3 + T4 = Y2, and y1 +y2 =N,

P[(X1, X2, X3, X4) = (z1, 22,73, 24) | (Y1,Y2) = (y1,12)]

:P[(Xl,Xz,Xs,le) = (z1, T2, T3, Ta)]
P[(Y1,Y2) = (y1,2)]

n! T2, T3
m1|¢,32|a;3|m4|p1 ‘Do’ p3 p4

n! Y1 Y2
y1! yz'ql ‘P

! 1 ! 3 T4
=t () () S (B )
zilza! \qq qi zalza! \ go q2
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This shows that (X1, X2) and (X3, X4) are conditionally independent given
X1+ Xy and X3+ X4 (=n — (X1 + X3)), and that [discuss]

(X1, X2) | X1+ X2 ~M2<X1 + Xo; b P2 )
(7.12) P1+Dp2 p1+D2
' D3 D4
Xa, X4) | Xz + X ~M(X+X; , .
(s Xa) | X ,4 2\ ! D3 + P4 p3+104>
In particular,
(7.13) X1 | X1+ Xs NBinomial(Xl + 3, ),
P1+ D2
SO
_ P1
(714) E[Xl | X +X2] = (Xl +X2) <p1 +p2).
Verify:

npr = B(X;) = B(E[X; | X + X,]) = E[(X1 + Xﬁ(pfipzﬂ — np1.

It also follows from (7.12) that

; . b1 D2
715) (X1, Xs) | Xz + X NM(n——X—i—X : , ,
(7.15) (X1, Xa) | Xs + Xy 2\ = (Xa +Xa) 2o 101+Pz)

which shows the negative (linear!) relation between (X1, X3) and (X3, X4).

Now consider the general case, as in (7.8). Then a similar argument
shows that

(X1, 3 Xky)s (Xiga1y ooy Xio)s ooy (Xkpyt1y--+5 Xk,)
are conditionally independent given
X144+ Xiy, Xeg1++ Xy ooy Xipyp1+ -+ X,y
with

(716) (in—1+17"'1in) l in-1+1 + o+ Xy,

2

Pki_1+1 ks
~ Mki_ki—l (in—1+1+' ' '+in; : P )

Dhiyt1 oDk Phi_y41 + D
fori=1,...,r, where kg = 0.
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In particular, for 2 <[ < k,

(7.17) (X150, X) | X, -y X

b1 g
~M(n~X Fo o X): )
l (Ko ) pr+-+ prt-

Because X; + -4 X = n, we know there is a negative linear relation
between any X; and X;. Let’s verify this explicitly. For 1 # 7,
(7.18) X | Xy~ Binomial(n — X;; b ),
L —pj;
(7.19) EX: | X5) = (n - X,) (12— ),
1— D4
Cov(X;, X;) = Cov(B[X; | X;], X;)

= Cov((n - XJ)< b ), Xj>

1—~pj
_ 4 _
. (1~pj)Var(X])
_ (P 1o
= =(725)rws1 = m)
(7.20) = —np;p; < 0.

An alternative derivation is based on the variance formula (3.13):

2 Cov(X;, X;) = Var(X; + X;) — Var(X;) — Var(X;)
=n(pi +p;)(1 —pi —p;) —npi(1 — p;) — np;(1 - p;)
= —n(p; +p;)? + np; + np;
= —2np;p;, |

which yields (7.20). (The second line follows from the fact that

X; + X; ~ Binomial(n; p; + p;).) nd
. N N
Remark 7.1. For k > 3 the range of (X;, X}) X e
shown here, indicates the negative relation B
between X; and X;: o R
N P S S W
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Exercise 7.1. (Representation of a multinomial rvtr in terms of inde-
pendent Poisson rvs.) Let Yi,...,Yk be independent Poisson rvs with
Y; ~ Poisson()\;), i = 1,...,k. Show that

>\1 )\Ic
LYYt Y = n) ~ Mg b :
(Y1, .., V) [{Yi+ - -+Y, =n} k(n SR )\1+.__+/\k>

Exponential family. From (7.3), the multinomial pmf can be written as
an exponential family (see Example 11.11). When 1 + -+ 2z =n,

(7.21)
: n! .
1 Ti
oot
"I’.l' “ e wk'
]
_ 2 gF110gp1ty+Ti—1log pr_1+Tk log pr
21! xp!
1 Pi Pk—1
_ n! enlog(1~p1-—"“—Pk—1)em1 log 1_,,1_.‘._,,,6_1+"'+$k—110g T=pi— —Ph 1
1! xk!

This is a (k'—— 1)-parameter exponential family with natural parameters

(7.22) 6, = log bi =1, k-1
l—p1— —Pr-1

(Note that the Binomial(n, p) family is a one-parameter exponential family
(see Example 11.10) with natural parameter log t2.) |

Maximum likelihood estimates (MLE). The MLE of (p1,...,p) is
(D1, Pk) = (22,..., Z&). [See Example 14.24]

Representation of a multinomial rvtr as a sum of i.i.d.
Bernoulli (0-1) rvtrs. First recall that a binomial rv X ~ Bin(n, p)
can be represented as the sum of n i.i.d. Bernoulli rvs:

(7.23) X=Up+ +Un,

where U; = 1, if Success on trial j;
7710, if Failure on trial j.
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Now extend this to multinomial trials. Consider a multinomial experi-
ment as in §7.1 with ni.i.d. trials and k possible outcomes (cells) C1,...,Ck-
Again let p; be the probability of cell C; and X; be the total number of
outcomes in cell C;. Form the column vectors

X1 D1
(7.24) X=| |, p=E|:]

Xk Pk
so we can write X ~ My(n; p). Then the multinomial rvtr X can be
represented as ’

(7.25) X=U;+ -+ Uy,
U1j

where U; = : tkx1
U}cj

with U; j=

1, if cell C; occurs on trial j;
0, if cell C; does not occur on trial j.

Note that each Uj is a Bernoulli rutr: it has exactly one land k—10s.
Clearly (7.25) generalizes (7.23).

The representations (7.23) and(7.25) are very convenient for finding
moments and applying the Central Limit Theorem to obtain normal ap-
proximations to the binomial and multinomial distributions. For example,
since E(U;) = p and V(U;) = p(1 — p) in (7.23), it follows that in the
binomial case, BE(X) = np and Var(X) = np(1l — p), and that as n — oo,

X —
(7.26) "4 N(,1) if0<p<l,
np(1 — p)
X —np d

(7.27) or equivalently,

= N(0, p(1 = p))-
For the multinomial, the mean vector and covariance matrix of U; are

E(Ulj) y4l
E(Uj) = - =D
E(Uk;) Pk
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Va,r(Ulj) COV(Ulj, U2j> ce COV(Ulj, Uk;j>

Cov(Uz;, U15) Var(Us;) oo Cov(Usj, Ugj)
Cov(U;) = Y o N | ’
Cov(Ug;, U1j) COV(Ukj> Uzj) e Var(Ukj)
p(l—p1) —pip2 -+ —P1Dk
—pop1 p2(l—p2) -+ —D2Dk .
_ . . _ [verify]
—PkP1 —pkp2 -+ Pr(l— k)
= Dy — PP,

where Dp, = diag(p1,...,px). (Note that Dp — pp’ is a singular matrix of
rank k — 1, so it has no inverse.) Thus by (7.25) and the independence of
Ula SRR Uka

(7.28) E(X) = np, Cov(X) = n(Dp — pp’).

Therefore, it follows from the multivariate Central Limit Theorem that

X —
(7.29) , :p 4 Ny (0,Dp — pp').-

Now suppose that p; >0, ..., px > 0. Then Dy is nonsingular, so by
the continuity of convergence in distribution (§10.2),

~1 (X -
(7.30) D;? ( \/;p> 4 N (0,1 —ud'),
_1 ~1 _1 _1

where Dp? = diag (pl 2Dy 2) and u = Dp ?p is a unit vector, ie.,

uw'u = 1. Again by the continuity of convergence in distribution,

i (552)

since I, — uu’ is a projection matriz of rank k — 1 (apply Fact 8.5).

2
d
L[Ny (0, Iy — u!) I ~ X3 _1,

(.
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But

_ Sk_? (X; — np;)?

’l/:l pZ

(7.32) E i (Observed; — Expected;)? 2.

I

Expected,

which is (Karl) Pearson’s classical chi-square goodness-of-fit statistic for
testing the simple null hypothesis p. Thus we have derived Pearson’s classic

result that X2.i.X}%-1-
(However, Pearson got the degrees of freedom wrong! He first asserted

that x? 4, x2, but was corrected by Fisher, which Pearson did not entirely
appreciate!)

Remark 7.2. Note that (7.29) is an extension of (7.27), not (7.26), which
has no extension to the multinomial case since Dy, — pp’ is singular, hence
has no inverse. However, if we reduce X to X = (Xy,..., Xk—1)’, then

(7.33) | Cov(X) = n(D, — Pp’)

is nonsingular provided that py > 0, ..., pr > 0 (see (x)), where Dp =
diag(p1,...,pk—1) and p = (p1,...,Pk—~1)". Then (7.26) can be extended:

3 (ffl — nf)\

(7.34) _ (ﬁp — f)f)’)_ _.u\_/___._w) 4 Ni—1(0, Iy—1),

from which (7.31) can also be obtained (but with more algebra).

(¥) For a = (ay,...,ax-1) # 0, use the variance inequality [how?]:

. 2
N k—1 k—1
a (Dp - PP/> a = Zl aipi — (Zl aiPi)

1

k-1 k-1 ) k-1 2
> <Z1 a%?i) <Z1 pé) - <Z-41 aiPi) > 0.
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8. Linear Models and the Multivariate Normal Distribution.
8.1. Review of vectors and matrices. (The results are stated for
vectors and matrices with real entries but also hold for complex entries.)

An m X n matrix A = {a;;} is an array of mn numbers:

ali RPN A1n

A=

Ami .. Omn
This matrix represents the linear mapping (= linear transformation)
| A:R" > R™ |
(8.1)
x — Az,

where £ € R™ is written as an n X 1 column vector and

n
a1 ... Qin 1 D i1 0155
Ax = = e R™.
n
mi1 ... Omn L Zj:l A5 T4

Thus the jth column vector of A is the image Au,; of the jth coordinate
column vector u; (see (8.19)). The mapping (8.1) is clearly linear:

A(bx 4 cy) = bAx + cAy.
Matrix addition: If A = {a;;} and B = {b;;} are m X n matrices, then
(A+ B)i; = aij + bij.

Matrix multiplication: If A is m x n and B is n X p, then the matriz
product AB is the m x p matrix AB whose 7j-th element is

(8.2) (AB);; = Z Gitbrj-

Then AB is the matrix of the composition RP 5 R 4 R™ of the two
linear mappings determined by A and B [verify]:

(AB)x = A(Bz) Vo € RP.
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Rank of a matrix: The row (column) rank of a matrix A : m x n is the
dimension of the linear space spanned by its rows (columns). The rank of

A is the dimension r of the largest nonzero minor (= r x r subdeterminant)
of A. Then [verify]

row rank(A) < min(m,n),
column rank(A) < min(m,n),
rank(A) < min(m,n),
row rank(A) = column rank(A)
= rank(A) = rank(A’)
= rank(AA") = rank(A’A).

Furthermore, for A: m xn and B : n X p,
rank(AB) < min(rank(A), rank(B)).

Inverse matrix: If A : n X n is a square matrix, its inverse A=1 (if it
exists) is the unique matrix that satisfies

AAT = A"TA =T,

where I = I,, is the n X n identity matriz” diag(1,...,1). If A~! exists then
A is called nonsingular (or regular). The following are equivalent:

(a) A is nonsingular.

(b) The n columns of A are linearly independent (i.e., column rank(A) = n).

Equivalently, Ax # 0 for every nonzero x € R™.

(c) The n rows of A are linearly independent (i.e., row rank(A) = n).

Equivalently, 2’ A # 0 for every nonzero x € R".
(d) The determinant |A| # 0 (i.e., rank(A) = n). [Define det geometrically.]

e If A is nonsingular then A1 is nonsingular and (A=1)~! = A.

" Tt is called the “identity” matrix since Jx = ¢ Vx € R™.
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e If A:m X m and C :n x n are nonsingular and B is m x n, then
rank(AB) = rank(B) = rank(BO).

o [f A:nxnand B:n xn are nonsingular then so is AB, and

(8.3) (AB)™' =B7t4~L.

o If A=diag(ds,...,dn) with all d; # 0 then A~! = diag(d]?,...,d;1).

' 'n

Transpose matrix: If A = {a;;} is m X n, its transpose is the n x m
matrix A’ (also denoted by A!) whose ij-th element is aj;. That is, the
m row vectors (n column vectors) of A are the m column vectors (n row
vectors) of A’. Note that [verify]

(8.4) (A+B) =A"+ B
(8.5) (AB) = B'A’ (A:mxn, B:nXxp);
(8.6) (A7 = (aH~! (A :n x n, nonsingular).

Trace: For a square matrix A = {a;;} : n X n, the trace of A is

(87) tr(A) = Z:lzl Aig,

the sum of the diagonal entries of A. Then

(8.8) tr(aA + bB) = atr(A) + btr(B);
(8.9) tr(AB) = tr(BA); (A:mxn, B:nXxm)
(8.10) tr(A") = tr(A). (A:nxn)

Proof of (8.9):
w(4B) =377 (4B)s = 77 (Y] e |
=3 (307 buai) =" (BA)w = tx(BA).
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Determinant: For a square matrix A = {a;;} : n x n, its determinant is

A= e ] ame
= +Volume(A([0, 1]")),

where 7 ranges over all n! permutations of 1,...,n and ¢(7) = +1 according
to whether 7 is an even or odd permutation. Then

(8.11) [AB| = |A]-|B] (A, B:nxn);

(8.12) A7 = AT

(8.13) |A'| = |A] |

(8.14) |A| = Hé_l a;; if A is triangular (or diagonal).

Orthogonal matrix. An n x n matrix U is orthogonal if
(8.15) U’ =1.

This is equivalent to the fact that the n row vectors of U form an orthonor-
mal basis for R™. Note that (8.15) implies that U’ = U~!, hence also
U'U = I, which is equivalent to the fact that the n column vectors of U
also form an orthonormal basis for R™.

Note that U preserves angles and lengths, i.e., preserves the usual inner
product and norm in R"™: for z,y € R"™,

(Uz, Uy) = (Ux) (Uy) =2'U'Uy =2’y = (z, y),
SO
|Uz|? = (Uz, Uz) = (z, z) = ||z|*.

In fact, any orthogonal transformation is a product of rotations and reflec-
tions. Also, from (8.13) and (8.15), |U|? = 1, so |U| = #£1.
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Complex numbers and matrices. For any complex number ¢ = a+ib €
C, let ¢ = a — b denote the complex conjugate of c. Note that ¢ = ¢ and

cc = a® 4+ b? =|cf?,

cd = ed.
For any complex matrix C' = {¢;;}, let C = {¢;;} and define C* = C’. Then

(8.16) (CD)* = D*C*.

The characteristic roots = eigenvalues of a real n x n matrix A are the
roots Iy, ..., I, (with multiplicities) of the n-th degree polynomial equation

(8.17) A—11] =0.

These roots may be real or complex; the complex roots occur in conjugate
pairs. Note that the eigenvalues of a triangular or diagonal matrix are Just
its diagonal elements.

By the equivalence of (b) and (d) for the (possibly complex) matrix
A — I, for each eigenvalue [ there exists some nonzero (possibly complex)
vector v € C™ s.t.

(A—1Iu=0;
equivalently,
(8.18) Au = lu.

The vector u is called a characteristic vector = eigenvector for the eigenvalue
[. Since any nonzero multiple cu is also an eigenvector for [, we will usually
normalize u to be a unit vector, i.e., [|u]|? = u*u = 1.

For example, if A is a diagonal matrix, say

d 0 - 0
0 dy -~ O

A =diag(dy,...,dp,) = | . , . )
0 O d,,



then its eigenvalues are just di,...,dn, with corresponding eigenvectors
uy,...,U,, where

(8.19) w=(0,...,0,. 1 ,0,...,0)

is the i-th unit vector.

Note, however, that in general, eigenvalues need not be distinct and
eigenvectors need not be unique. For example, if A is the identity matrix
I, then its eigenvalues are 1,...,1 and every unit vector v € R™ is an
eigenvector for the eigenvalue 1: Ju=1"wu. :

However, eigenvectors u, v associated with two distinct eigenvalues [,
m cannot be colinear: if u = cv then

lu = Au = cAv = cmv = mu,
which contradicts the assumption that [ # m.

Symmetric matrix. An n x n matrix S = {s;;} is symmetric if S = 5,
i.e., if Sij = Sji V’L,j

Fact 8.1. Let S be a real symmetric n X n matri.
(a) Each eigenvalue | of S is real and has a real eigenvector u € R™.

(b) If I # m are distinct eigenvalues of S with corresponding real eigenvec-
tors u and v, then u L v, i.e., vw'v = 0. Thus if all the eigenvalues of S are
distinct, each eigenvalue | has exactly one real eigenvector w.

(c) If S71 exists, it is also symmetric.

Proof. (a) Let [ be an eigenvalue of S with eigenvector u # 0. Then
Su=Ilu = u'Su=lutu=1

But S is real and symmetric, so S* = .5, hence

w*Su = (u*Su)* = u*S*(u*)" = u*Su.

Thus ©*Sw is real, hence [ is real. Since S — [ I is real, the existence of a
real eigenvector u for [ now follows from (b), p.93.
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(b) We have Su = lu and Sv = mv, hence
(W) = (lu)v = (Su)'v =1u'Sv=1u(mv) = m(u'v),

so u'v = 0 since [ # m.

(¢) I =851 = (SS-1) = (S~1), s0 (1) = (§)"! = 51,

[

Fact 8.2. (Spectral decomposition of a real symmetric matriz.) Let S be
a real symmetric n X n matriz with eigenvalues l1, ..., ln (necessarily real ).
Then there exists a real orthogonal matriz U such that

(8.20) S=UDU,

where D; = diag(ly, . ..,l). Since SU = UDy, the i-th column vector u; of
U is a real eigenvector for ;.

Proof. For simplicity we suppose that I, ..., are distinct. Let uy,..., un
be the corresponding unique real unit eigenvectors (apply Fact 8.1b). Since
Ui,...,Un is an orthonormal basis for R", the matrix

(8.21) U=(uy - Up) NXN

satisfies U'U = I, i.e., U is an orthogonal matrix. Since each u; is an
eigenvector for I;, SU = UDy [verify], which is equivalent to (8.20).

(The case where the eigenvalues are not distinct can be established by a
“perturbation” argument. Perturb S slightly so that its eigenvalues become
distinct [non-trivial] and apply the first case. Now use a limiting argument
based on the compactness of the set of all n X n orthogonal matrices.) U

Fact 8.3. If S is a real symmetric matriz with eigenvalues ly,...,l,,,
(8.22) tr(9S) = Zi:l li ;

(8.23) S| = Hizl l; .

Proof. This is immediate from the spectral decomposition (8.20) of S. U
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Positive definite matrix. A real symmetric n x n matrix S is positive
semi-definite (psd) if its quadratic form is nonnegative:

(8.24) 'Sr>0 VzeR"
S is positive definite (pd) if its quadratic form is positive:
(8.25) 'Sz >0  V nonzero z € R™.

e The identity matrix is pd: 2'Iz = ||z||* > 0 if z # 0.

e A diagonal matrix diag(di,...,d,) is psd (pd) iff each d; >0 (> 0).

o If S:nxnispsd, then ASA’ is psd for any A : m x n.

o If S:n xnispd, then ASA’ is pd for any A : m x n of full rank m < n.
o AA’ is psd for any A : m X n.

o AA’ is pd for any A : m x n of full rank m < n.

Note: This shows that the proper way to “square” a matriz A is to form
AA" (or A'A), not A? (which need not even be symmetric).

e Spd = § has full rank = S~ exists = S~ = (S™H)S(S~1 is pd.
Fact 8.4. (a) A real symmetric n X n matriz S with eigenvalues lv,. .., 1,

is psd (pd) iff each l; >0 (> 0). In particular, |S| > 0 (> 0) if S is psd
(pd), so a pd matriz is nonsingular.

(b) Suppose S is pd with distinct eigenvalues Iy > --- > 1, > 0 and corre-

sponding unique real unit eigenvectors ui, ..., u,. Then the set
Ve,

(8.26) E={zeR"|2'S 1z =1}

is the ellipsoid with principle azes \/liuq, ..., \/lptin.

Proof. (a) Apply the above results and the spectral decomposition (8.20).
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(b) From (8.20), S = UD,U’ with U = (u; - - uy,), so S~ = UD; U’ and,

E={zecR"|(U'z)D ' ({U'z) =1}

=U{yeR"|y'Dly=1)} (y=U'z)
2
=Uy= (Y1, -,Yn) yl—l— —I—y—nzl
ll ln
EUEO

But & is the ellipsoid with principle axes v/Ijuy, ..., vI,u, (recall (8.19))
and Uu; = u;, so & is the ellipsoid with principle axes vI1u1, ..., VIntn.

Square root of a pd matrix. Let S be an n X n pd matrix. Any n X n
matrix A such that AA’ = S is called a square root of S, denoted by Sz,
From the spectral decomposition S = UD;U’, one version of S7 is

[SIE

(8.27) s¥ = Udiag(i?,... 12)U' =UD}U".

.. . . 1. .
this is a symmetric square Toot of S. Any square root Sz is nonsingular, for

(8.28) 1S7| = |S|7 0.

Partitioned pd matrix. Partition the pd matrix S : n X n as
sl Mo
ny [ S11 Stz
8.29 S = :
(8.29) 2 (521 522>
where ny + ny = n. Then both S1; and 522 are symmetric pd [why?],

S1o = Sby, and [verify!]
(8.30)

I, —S1255 S11 - Si2 In, 0 :(511-2 0>
0 I, So1 S22 — 855821 In, 0 Sz )/’
where
(8.31) 511.2 = 511 - 512S2—21521
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is necessarily pd [why?] This in turn implies the two fundamental identities

(8.32) Si S _ (I S1255, ) (S O I, 0
. So1 Saz 0 I'n, 0  Soo St So1 Iny )

—1
511 Slg o [nl 0 51_112 0 Inl _3123521
(833) <S21 S22> N <_SQ—21S21 Ing> < 0 32—21 0 Inz ’

The following three consequences of (8.32) and (8.33) are immediate:
(8.34) S is pd <= Si12 and Soo are pd <= Saz.1 and Si1 are pd;

(8.39) S| = [S112l - [Sa2] = [S22.a] - [S11] ;

for z = (‘;I;l) € R", the quadratic form z'S —1z can be decomposed as
2

(8.36) SC/Sﬁlm == (.’131‘ - 5125;21&?2)/5;11,2(331 - 51252_21332) + $l252—21332.

Projection matrix. An n X n matrix P is a projection matrix if it is
symmetric and idempotent: P* = P.

Fact 8.5. P is a projection matrix iff it has the form

- Im 0 /
(8.37) PﬂU<O O>U

for some orthogonal matrix U : n x n and some m < n. In this case,
rank(P) = m = tr(P).

Proof. Since P is symmetric, P = UD;U’ by its spectral decomposition.
But the idempotence of P implies that each {; =0 or 1. (A permutation of
the rows and columns, which is also an orthogonal transformation, may be
necessary to obtain the form (8.37).) [

Interpretation of (8.37): Partition U as

m n-—m
(8.38) | U=n (h Uz ),
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so (8.37) becomes
(8.39) P =U,U7.

But U is orthogonal so U'U = I, hence

Im 0\ . (UU U,
(8.40) -(o In_m>—UU_<UéU1 Ui )

Thus from (8.39) and (8.40),

PU, = (UL U]) Uy = Uy,

PUy = (U1U7) Uy = 0.
This shows that P represents the linear transformation that projects R"
orthogonally onto the column space of Uy, which has dimension m = tr(P).

Furthermore, I — P is also symmetric and idempotent [verify] with
rank(l — P) =n —m. In fact,
I—-P=UU—P=(U1U] +U:U3) — U U] = UU3,

so I — P represents the linear transformation that projects R™ orthogonally
onto the column space of Uy; the dimension of this space is n—m = tr(I—P).

Note that the column spaces of U; and U, are perpendicular, since
UiUy = 0. Equivalently, P(I - P) = (I — P)P = 0, i.e., applying P and
I — P successively sends any € R™ to 0. '

X

PLgat
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X1
8.2. Random vectors and covariance matrices. Let X = ( .| be

Xn
a rvtr in R™. The expected value of X is the vector

E(X1)
E(X) =
E(Xn)

which is the center of gravity of the probability distribution of X in R™.
Note that expectation is linear: for rvtrs X, Y and constant matrices 4, B,

(8.41) B(AX + BY) = AE(X) + BE(Y).
Zy o Zin
Similarly, if Z = : : is a random matrix in R™*",
Zml ct Zmn

E(Z) is also defined component-wise:

E(Zu) - E(Zn)
B(Z) = : :
E(Zm) - E(Zmn)

Then for constant matrices A : k x m and B : n X D,
(8.42) E(AZB) = AE(Z) B.
The covariance matrix of X (= the variance-covariance matriz), is

Cov(X) = E[(X — EX)(X — EX)’]

Var(X1) Cov(Xi,X2) -+ Cov(X1, Xn)
Cov(X2, X1) Var(X3) oo Cov(Xa, Xp)
Cov(Xn, X1) Cov(Xn,Xa) - Var(X,)
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The following formulas are essential: for X :nx 1, A:mxn, a:n x1,

(8.43) Cov(X) = E(XX') — (EX)(EX)";
(8.44) Cov(AX +b) = ACov(X) A’
(8.45) Var(a'X 4 b) = ¢/ Cov(X) a.

Fact 8.6. Let X = (Xq,...,Xy) be a rvtr in R™.
(a) Cov(X) is psd.

(b) Cov(X) is pd unless 3 a nonzero a = (a1,...,a,) € R™ s.t. the linear
combination

X =a1 X1+ +a,X, =c (aconstant).

Thus the support of X is contained in a hyperplane of dimension <n — 1.
Proof. (a) This follows from (8.45) since Var(-) > 0.
(b) If Cov(X) is not pd, then 3 a nonzero a € R™ s.t.

0 =a' Cov(X)a = Var(d'X).
But this implies that a’ X = constant. W
Forrvtrs X :m x 1 and Y : n x 1, define

Cov(X,Y)=E[(X — EX)(Y — EY)]

COV(Xl,Yl) COV(Xl,Yé) cee COV(Xl,Yn)
COV(XQ,Y]_) COV(XQ,YQ) cee COV(XQ,Yn)

- . . . rm X n.
Cov(Xm, Y1) Cov(X,,Y2) -+ Cov(Xpy,Yn)

Clearly Cov(X,Y) = [Cov(Y, X)]". Thus, if m = n then [verify]
(8.46) Cov(X £Y) = Cov(X)+ Cov(Y) £ Cov(X,Y) + Cov(Y, X).
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and [verify]

X 1LY = Cov(X,Y) =0
(8.47) = Cov(X £Y) = Cov(X) + Cov(Y).

Variance of sample average (sample mean) of rvtrs: Let Xi,..., X,
be i.i.d. rvtrs in R?, each with mean vector u and covariance matrix . Set

1

K= ~(Xa o+ Xa)

Then E(X,,) = p and, by (8.47),

_ 1 1
(8.48) Cov(X,) = ﬁ—iCov(Xl +o+ X)) = _77_,2'

Exercise 8.1. Verify the Weak Law of Large Numbers (WLLN) for rvtrs:

X,, converges to u in probability (Xn, 2 ), that is, for each € > 0,

Pl| X, -l <¢g—1 asn— oo

Example 8.1a. (Extension of (3.18) to identically distributed but corre-
lated rvs.) Let Xi,...,X, be rvs with common mean u and variance o2
Suppose they are equicorrelated, i.e., Cor(X;, X;) = p Vi # j. Let

1 , 1

(8.49) Xn (X14-+Xn), 8

T n
the sample mean and sample variance, respectively. Then

(8.50) E(X,) = p (so X, is unbiased for pu);.
— 1
Var(X,) = —T-ﬁVar(Xl 4+ 4+ Xn)

= 515[71,02 +n(n —1)po?] [why?)]
(8.51) = 9;;[1 +(n—1)p).
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When Xi,...,X, are uncorrelated (p = 0), in particular when they are
independent, then (8.51) reduces to 9;—, which — 0 as n — oco. But when
p >0, Var(X,) — o%p # 0, so the WLLN fails for equicorrelated i.d. Tvs.

This argument does not apply for p < 0 since (8.51) imposes the constraint

<p<l1.

(8.52) o <

Next, using (8.51),
1

- (n;) [n(aQ + 2 —n (97;{1 +(n—1)g] ﬂﬂﬂ
(8.53) = (1—p)o?. | “

Thus s2 is unbiased for o2 if p = 0 but not otherwise! L)

- Example 8.1b. We now re-derive (8.51) and (8.53) via covariance matri-
ces, using properties (8.44) and (8.45). Set X = (X1,...,X,)’, so

Ay 1
(8.54) EX)=1] ' | = pen, wheree, = | : | :nx 1,

1o e p

Cov(X) =02 | "

e
poop 1
(8.55) = o*[(1 = p)I,, + penel].
‘Then X,, = e/, X, so by (8.45),
Var(Xn) = ﬁ'g“e;m[(l — p)In + penele,
02 2 : !
= —[(1 = p)n + pn®] [since e,,e, = 1|
. |
o
2y (m-1
—[1+(n=1)a,
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which agrees with (8.51). Next, to find E(s2), write

Y Xi—Xn)? =) X7 - n(X,)?
1=1 i=1
1
— X,X o _(eizX)2
T
1

=X'X — E(X'en)(e;X)
=X'(I,-P)X
(8.56) = X'QX,

where P = le,e] is the projection matrix of rank 1 = tr(Leyel,) that
projects R™ orthogonally onto the 1-dimensional subspace spanned by e,,,
and @ = I, — —};ene;l is the projection matrix of rank n — 1 = tr @ that
projects R™ orthogonally onto the (n — 1)-dimensional subspace e, (see
figure). Now complete Exercise 8.2:
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Exercise 8.2. Prove Fact 8.7 below, and use it to show that
(8.57) E(X'QX) = (n— 1)(1 - p)o?,
which is equivalent to (8.53).

Fact 8.7. Let X : n x 1 be a rvtr with E(X) = 6 and Cov(X) = 3. Then
for any n X n symmetric matrix A,

(8.58) B(X'AX) = tr(AS) + 6’ A6,
(This generalizes the relation E(X?) = Var(X) + (E X)2.)

Exercise 8.3. Show that Cov(X) = o%[(1 — p)I,, + pe,e’] in (8.55) has

mn
one eigenvalue = o2[1+ (n— 1)p] with eigenvector e,, and n— 1 eigenvalues

=o*(1—p).

Example 8.1c. Eqn. (8.53) also can be obtained from the properties of
the projection matrix ). First note that

(8.59) Qe,, = 0.

Define
Y

(8.60) Y=| ! | =QX :nx1,
Y,

SO

(8.61) B(Y) = QB(X) = uQe, =0,

Cov(Y) = o2Q[(1 — p) I + penel]Q
(8.62) =0?(1 - p)Q.
Thus, since @ is idempotent (Q? = Q),
E(X'QX) =E(Y'Y) = E[tr (Y'Y)]
= Eltr (YY")] = tr [E(Y'Y")] = tr [Cov(Y)]
=?(1-p)tr(Q) =’(1 - p)(n—1),

which again is equivalent to (8.53).
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8.3. The multivariate normal distribution. [This section will revisit
some results from §4, 5, 6.] As in Example 3.5, first let Z1,...,Z, be i.i.d.
standard normal N(0,1) rvs. Then the rvtr Z = (Z1,..., Zy,)" has pdf

H (27r
1

=1

.

(8.63) - e 372,

where z = (21,...,2,). This is an extension of the univariate standard
normal pdf to R™ with E Z = 0 and Cov Z = I,,, so we write Z ~ Ny, (0, I,).

Now let X = AZ + u, with A : n x n nonsingular and p : n x 1. This
is a linear (actually, affine) transformation with inverse given by

Z=A"X-p)
and Jacobian |A|, so by the Jacobian method for transformations,
1 e N (A=Y AL
fx (@) = ——n—e 3@ W) (AT AT @=p)

-~ @m)nA]

_ 1 o~ (a—p) (AA") " (1)
(27T)”/2|AA"1/2

_ L be-we e
(2m)n/2[5|1/2

(8.64)

where ¥ = AA’ = Cov(AZ + p) = CovX. Thus the distribution of X
depends only on the first two multivariate moments (i, ) = (E X, Cov X),
so we write

X ~ N’n(:uﬂ E))

the (nonsingular, n-dimensional) multivariate normal distribution (MVND)
with mean vector u and covariance matriz ¥. (Note that ¥ = AA’ is pd.)

We can use the representation X = AZ + u to derive the basic linearity
property of the nonsingular MVND:
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8.3.1. Linearity of N,(y,%): If X ~ Np(u, %) then for C : n X n and
d: n x 1 with C nonsingular,

Y=CX+d=(CAZ+ (Cu+d)
~ Np(Cu+d, (CA)(C’A)’)
(8.65) = N, (Cu+d, CEC").
Remark 8.1. It is important to remember that the general (possibly singu-
lar) MVND was already defined in Example 3.5 via its moment generating
function, where it was shown (recall (3.59)) that the linearity property

(8.65) holds for any C : m x n. Thus the following results are valid for
general MVNDs.

8.3.2. Marginal distributions are normal. Let

ny [ X1 L1 Y11 X2\
866 ~ Nn n ) .
(8.66) N2 (X2> v <<“2> <E21 E22>>

Then by the linearity property (8.65) (actually (3.59)) with C' = (I, 0),

‘ X
(867) X1 = (Inl O) (X;) ~ Nn1 (/'Lla 211)7
and similarly
X
(569) Xo=(0 L) (51) ~ Mo 12, B,

8.3.3. Linear combinations are normal. If X, X, satisfy (8.66) then
for A;:m x n; and Ay : m X ng, (8.65) (actually (3.59)) implies that

X
A X1+ A2 Xp = (A1 Ag) <X1>
2
(8.69) ~ Nin (A1 + Aopiz, A1S11 AL + A1T12 45 + AsTa1 A + AsTaady).
8.3.4. Independence <= Uncorrelation. If X, X, satisfy (8.66) then
(870) X UL Xy = COV(Xl, Xg) =12 = 0.
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Proof. = is obvious. Next, suppose that Y12 = 0. Then < is established
for a general MVND via its mgf (recall (3.58)):

menstnnn -l (). o s) (2) 2

— et’lulet’lzlltl/Q . et;uget;ZQth/Q
= mx, (t1) - mx, (t2)-

Since this mgf factors, X; 1L X [by (8.67), (8.68), and the uniqueness
property of mgfs.]

Exercise 8.4. Prove (8.70) for a nonsingular MVND using the pdf (8.64).

Exercise 8.5. Extend (8.70) as follows. If X ~ N, (u, ¥) then for any two
matrices A: I xnand B:mxn, |

(8.71) AX 1L BX <= AZB =0.

Hint: Consider (g) X and apply (8.65).

8.3.5. Conditional distributions are normal. If X, X, satisfy (8.66)
and Yoo is pd (in particular if ¥ itself is pd), then

(872) X1 | Xo ~ an (,U1 + 2122521 (X2 - ,LLQ), 211.2) .
Proof. Again apply linearity ((8.65), actually (3.59)) and the identity (8.30):

X1 — Y1255 Xo
Xo

— -[TLI Z‘1222_21 X1
Xa
212222 /~L].
n1+4n2 ng Lo ?
212222 S 2\ (e —B1285
O o1 222 0 Iy,
p1 — Elzzzoﬂz Y112 0
n1—|-7’L2 ! 0 222 .
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By (8.67) and (8.70), this implies that

(8.73) X1 — $19555 Xo ~ Nuy (1 — 212555 2, L11.2)
and
(8.74) X — %1% Xo UL Xo.

Thus (8.73) holds conditionally:
(875) Xl — 2122521)(2 | X2 ~ an <M1 — 2122521/1,2, 211.2> y

which implies (8.72) [verify]. O

Exercise 8.6. Prove (8.72) for a nonsingular MVND using the pdf (8.64).

_ f_(gﬁ_l,mz)

That is, apply the formula f(z1|z2) = =5y
Hint: Apply (8.35) and (8.36) for .

8.3.6. Regression is linear, covariance is constant (= homoscedas-
tic). It follows immediately from (8.72) that

(8.76) E(X; | X2) = p1 + D125 (X2 — pa2),
(877) COV(Xl ‘ X2> = 211,2.

(Compare (8.76) with (5.38) in Remark 5.4.)

8.3.7. The bivariate case. Take n; = no = 1 and consider

X1 ~ N Nz 011 012
Xo 2_ po )\ o021 022

i 2
— H1 o pPo102
8.78 = N .
&7 i _<M2>’ (pawz o ﬂ
Note that
2
C = g1 po1o2 \ _ [ 91 ,O 1 p o1 O
(8.7v~)> E — <100_10_2 O_g ) < O 0_2> (p 1 0 0_2 .2
SO

(880) [B| =ofo3(1—p"),

1 ot 0 1 - 1 0
(B81) > "1—p2< 0 051><~p 1>< 0 o;1>'




Thus from (8.64) the pdf of (X1, X>) is

(8.82 1 o Tt (S (S22 ) —ap( 21 (22t )|

27T0'10'2(1—p2)1/2 ,

while (8.76) and (8.77) become

(8.83) B(X, | Xa) = i +p (g-;-) (X — ),

(8.84) - Var(X; | Xo) = (1-p%) 2.

Note that (8.83) agrees with the best linear predictor X; given by (5.21),
and (8.84) agrees with (5.27), the variance of the linear residual X; — Xj.

Remark 8.2. In the special case where 02 = 02 = ¢? then

() ~((2) =G 9)
-(2r)=0 ) (E)
a(( ) 0)0 )6 DG )
w ()= (157 1L,))

In particular, this implies that (X7 + X3) 1L (X7 — X3) in this case. (This
extends CB Exercise 4.27, where it was assumed that p = 0.)

Exercise 8.7. (cf. Example 5.1.) Define the joint distribution of X,Y via
the hierarchy ‘

Y| X ~Ni(BX, T°),

X ~ Ny(0, 02).

Show that the joint distribution of X,Y is No(u, X) and find p and . Find
the conditional distribution of X|Y and the marginal distribution of Y.

113



Exercise 8.8. Clearly X, ... X, i.i.d. = X1,..., X, are exchangeable.
(i) Find a trivariate normal example showing that <= need not hold.

(i) Clearly Xi,...,X, exchangeable = X1,...,X, are identically dis-
tributed. Find a trivariate normal example showing that X;,..., X, iden-
tically distributed # Xi,...,X, exchangeable. Show, however, that =
holds for bivariate (n = 2) normal and bivariate binary distributions.

(iii) Find a non-normal bivariate distribution where X; and X, are identi-
cally distributed but X; and Xy are not exchangeable.

8.4. The MVND and the chi-square distribution.

In Remark 6.3, the bhz’-square distribution x2 with n degrees of freedom was
defined to be the distribution of

7. +22=27'7=2|7,

where Z = (Z1,..., Zn) ~ Nu(0,1,). (That is, Z1,...,Z, are i.i.d. stan-.
dard N(0,1) rvs.) Recall from Example 2.4 that

: 1
.85 2 noZ
(8.85) X, ~ Gamma <2, 2) ,
(8.86) E(x2) =n,
(8.87) Var(x2) = 2n.

Now consider X ~ N, (i, X) with ¥ pd. Then

(8.88) Z ="YX - p) ~ Nu(0, I,),
(8.89) (X -w)S X -pw) =22 ~ X
Suppose, however, that we omit X! in (8.89) and seek the distribution

of (X — 1) (X — p). Then this will not have a chi-square distribution in
general. Instead, by the spectral decomposition ¥ = UD,U’, (8.88) yields

(X - w)(X —p) = 282 = (U'Z) DA(U'2)
(8.90) =V'D\V = MVE+-- N V2,
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where Aq,..., A, are the eigenvalues of ¥ and V =U'Z ~ N, (0, I,,). Thus
the distribution of (X — u)'(X — ) is a positive linear combination of in-
dependent x3 rvs, which is not (proportional to) a x2 rv. [Check via mgfs!]

8.4.1. Quadratic forms and projection matrices. Let X~ N, (¢, 0%1,)
and let P’ be an n X n projection matrix with rank(P) = tr(P) = m. Then
the quadratic form determined by X — £ and P satisfies

(8.91) (X — &) P(X — &) ~ 022,

Proof. By Fact 8.5, there exists an orthogonal matrix U : n X n s.t.

(L. 0\,.
P_U<O O)U.

Then Y = U'(X — &) ~ N, (0, 021,,), so with Y = (Y1,...,Y,),

(X —¢)P(X — &) =Y (181 8> Y S V2V o2

8.4.2. Joint distribution of X,, and s,,%. Let X1,...,X,, be a random
(ii.d) sample from the univariate normal distribution Ny (u,0?) and let

- 1 1 n _
Xp==(X1+ - +X), s= > (X = Xn)%

:E n—1

(Recall (3.18), also Example 8.1a,b,c.) Then:

(8.92) X, and s2 are independent;
(8'93) Xn ~ N (/ny %2> ;

2
(8.94) S5 ~ v Xn—1-

Proof. As in Example 8.1b, let P = e, e/, Q = I,, — %ene;, and

X1
(8.95) X=| ! | ~Nu(uen, 0°I,).
Xn
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[Figure p.107]. Then P(0?1,)Q' = 0?PQ = 0so PX 1. QX by (8.71). But

Xn
= X,e, = PX ~ N, (uPe,, 0’P) = N, (,uen, 0—2ene§1> :
% n
X, - X,
: :X—Xnen:(f——P)X:QX,
X, — Xn

so this implies (8.92) and (8.93). Finally,

ijl(Xi ~X)? = (QX)(QX) = (X — pen)Q(X — pey,)  [verify]
and rank(Q) = tr(Q) = tr(I — P) =n — 1, so (8.94) follows from (8.91). [

Geometrical interpretation of (8.95): The i.i.d. normal model (8.95)
is the simplest example of the univariate normal linear model. If we let L
denote the 1-dimensional linear subspace spanned by e, then (8.95) can
be expressed as follows:

(8.96) X ~ N, (& 0%1,) with £elL.

If welet P = P, = %enen’ denote projection onto L, then Q = Q;1. =
I, — Pr, is the projection onto the “residual” subspace L+ [Figure p.107],
and Pythagoras gives us the following Analysis of Variance (ANOVA):

In = PL + QL)
X =P, X+QrX,
(8.97) IX11* = 1P X|* + |QLX|I?,

XD+ X=X 4> (X - X2,
Total Sum of Squares = SS(L) + SS(L1).

[SS(L1) is often called the “residual sum of squares”.] Then we can see
similarly that under the normal linear model (8.96),

(8.98) SS(L) AL SS(LY) and SS(L*) ~ 0*xFimr ).
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Furthermore it follows from (8.111) below that for £ € L,

(8.9 IPLX I = S8(8) ~ oy (L1,

2
a noncentral chi-square distribution with noncentrality parameter le]

o2
§8.4.3). Note that for the model (8.95), £ = ue,, so

(see

2 2
H
o2 g2 — 7

hence the noncentrality parameter = 0 iff 4 = 0. Thus the “null hypothesis”
(=0 can be tested by means of the F-statistic = F-ratio

SS(L)  Xeim(z) (”ﬁ!2> _x (’713&;)

(8.100) F= ST _

2
Xdim(LL) Xn—1

The null hypothesis i = 0 is rejected in favor of the alternative hypothesis
p # 0 for sufficiently large values of F. [See §8.4.3 for the noncentral chi-
square distribution, also Remark 8.4 and Exercise 18.27.]

Exercise 8.9. Extend (8.92) - (8.94) to the case where X1,..., X, are
equicorrelated, as in Examples 8.1a,b,c. That is, if as in Example 8.1b,
X ~ Ny (pen, 02[(1 — p)I, + penel]), show that

(8.101) X, and s2 are independent;
(8.102) X~ N (p,, 21 4 (n— 1)p]> ;
(8.103) 2~ TUp) g2

Hint: Follow the matrix formulation in Example 8.1b.
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8.4.3. The noncentral chi-square distribution. Extend the results of
§8.4 as follows: First let Z = (Z1,...,2,) ~ Nu(u,1,), where
p=(p1,..., 4n) € R™ The distribution of

Zi4 22 = = || Z|?

is called the noncentral chi-square distribution with n degrees of freedom and
noncentrality parameter ||1||*, denoted by x2(||u|?). Note that as in §8.4,
Z1,. .., %y are independent, each with variance = 1, but now E(Z;) = ps.

To show that the distribution of ||Z||? depends on u only through its
(squared) length || ,u||2 choose® an orthogonal (rotation) matrix U : n x n
s.b. Up = (||p]],0,...,0), ie., U rotates p into (||u,0,...,0)’, and set

Y =UZ ~ No(Up, UU') = Ny (1], 0,....,0Y, L,).
Then the desired result follows since

IZI? =Y =Y? + Y2+ + V2
~ [Ni(llell, DI+ [N (0, DI+ -+ + [Ny (0, 1)]?
= xilul®) +5 + -+ x3
(8.104) = xi (Iull®) + 31,

where the chi-square variates in each line are mutually independent.
To find the pdf of V. =Y ~ x3(6) ~ [N1(V/3, 1)]?, where § = ||u|?,
recall the method of Example 2.3: |

d

fr) = P <ol = Pl-Vi < Vi < Vi)

_d 1 6~%(t~ﬁ>2dt
dv /27

:——1 o d /\/_ tvé ‘Tdt
\ 2m dv Vo

8 Let the first row of U be [ = ’Tﬁﬂ ana let the remaiﬂing n — 1 rows “be.aﬁy

orthonormal basis for L'L.
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™ =V | k=0
00 k Vv 2
= _-——-—1 e_% Z -(-Si‘-—(-i—-/ tke" T dt
o — K dv J_ /5
1 5 > 5k d v 2
= ——=e 2 —_— t2ke= T dt why?
2 kg() (2k3)' dv —/v [ ]
1 ) > 5k k 1 %)
= ——e 2 v 2e7 2 verif
oo [5\k 12k 4 2
_s (5) vz ~le73
(8.105) = e 2 Z 2 [ 112k } * Ck,
LW | (el

VT v

Poisson(%) weights pdf of X§+2k
where ok
2k k12%5 T (1£2k)
Cr =
(2k)\V/2m

by the Legendre “duplication formula” for the Gamma function! Thus we
have represented the pdf of a x2(8) rv as a mixture (weighted average) of
central chi-square pdfs with Poisson weights. This can be written as follows:

(8.106) 3(0) | K ~ x3,0x  where K ~ Poisson(5/2).

(Compare this to the result of Example 2.4.) Thus by (8.104) this implies
that Z'Z = | Z||? ~ x2(6) satisfies

(8.107) Y2(0) | K ~ x2,0x  where K ~ Poisson(é/2).

That is, the pdf of the noncentral chi-square vV = x2(8) is a Poisson(§/2)-
mizture of the pdfs of central chi-square rvs with n + 2k d.f., k=0,1,....

The representation (8.107) can be used to obtain the mean and variance
of x5 (6):
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E[X%((S)] = E{E[Xi—pzx | K1}

= E(n + 2K)
=n+2(6/2)

(8.108) =n+6;

Var[2 ()] = B[Var(xZyax | K| + Var[E( 2k | K)]

= E[2(n + 2K)] + Var(n + 2K)
= [2n + 4(6/2)] + 4(6/2)

(8.109) = 9n + 46.

Exercise 8.10*. Show that the noncentral chi-square distribution x2(4)
is stochastically increasing in both n and d. W

Next, consider X ~ Nyn(u, ) with a general pd ¥. Then
(8.110) X'EX = (STEX) (ETEX) ~ Xa(W'E T ),
since Z = 53X ~ Np(£ 3, I,) and 5= 3ul? = w'E " p. Thus, by
Exercise 8.10, the distribution of X '$,=1X in (8.110) is stochastically in-

creasing in /'S p.

Finally, let Y ~ Np(§, 02I,) and let P be a projection matrix with
rank(P) = m. Then P = U1U] where U!Uy = Iy, (cf. (8.38) - (8.40)), so

|PY|? = [U:UY |2 = (UU1Y) (DiU1Y) = Y'UhUTY = oY |

But
UlY ~ Ny (U€, 0°UiU1) = N (Ui, 0°In),

so by (8.110) with X = UiY, p = Ul¢, and © = 0%Im,

Y WY o (EOTE) Gl

[MEEEEIE——

SO )
8.111) iy~ o, (LE5H)
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Remark 8.4. By taking P = Py, for an m-dimensional linear subspace L of
R™, this confirms (8.99). Furthermore, under the general univariate linear
model (8.96) it is assumed that & € L, so Pré = £ and || PL&]* = [|€]|*. In
view of Exercise 8.10%, this shows why the F-ratio

2 e
(8.112) F= SS(L) _ |PLY ] Xdim(z) ( = )
SS(L4) — ll@wY P X?lim(Li)

in (8.100) will tend to take larger values when £ # 0 than when £ =0, hence
why this F-ratio is a reasonable statistic for testing § =0 vs. { # 0 (£ el).
(See Exercise 18.27 for a generalization.)

8.5. Further examples of univariate normal linear models.

As indicated by (8.96), the univariate normal linear model has the
following form: observe

(8.113) X ~ N,(&, 0%1,) with €L,

where L is a d-dimensional linear subspace of R™ (0 < d < n). The compo-
nents X1,..., X, of X are independent® normal rvs with common unknown
variance o2. Thus the model (8.113) imposes the linear constraint that
¢ =E(X) € L. Our goal is to estimate § and o? subject to this constraint.

Let P; denote projection onto L, so Qr = I, — Pr is the projection
onto the “residual” subspace L' (recall the figure in Example 8.1b). Then
it can be shown (compare to §8.4.2) that

(8.114) £ = PLX is the best linear unbiased estimator (BLUE) and
maximum likelihood estimator (MLE) of & (see §14.1);

2
WQe Xl s ynbiased for o?;

NQLXIE 45 the MLE of 0?; 52 = 1825,

(8.115) &2

Il
Il

~

(8.116) (€, &%) is a complete sufficient statistic for (&, o?) (see §11, §12);
(8.117) ¢ and 62 are independent;

9 More generally, we may assume that X ~ N, (f , 0220) where Xg is a known p.d.
—1/2
matrix. This can be reduced to the form (8.113) by the transformation Y =2, / X.
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(8.118) & ~ N, (&, 0%PL);
(8119) &% ~ T2,

"This leaves only one task: the algebraic problem of finding the matrices
P, and @, and thereby calculating é and 52. Typically the linear subspace
L is specified as the subspace spanned by d linearly independent n x 1
vectors z1,...,2q € R™ (d < n). That is,

L={p1z1+ -+ Baza| br,.. . Ba € R}
(8.120) ={ZB|B:dx1ecR,

where

b1
Z=(z - ), PB=]":
B

The matrix Z : n x d, called the design matriz, is a matrix of full rank d,
so Z'Z is nonsingular. The linear model (8.113) can now be written as

(8.121) X ~ N,(Z8, 0%I,) with B e RY

and our goal becomes that of estimating 8 and 2.
For this we establish the following relation between P;, and Z:

(8.122) PL=2(2'2)"17

To see this, simply note that Z(Z’Z)~1Z’ is symmetric and idempotent,
Z(Z'Z) 'Z'(R™) C Z(R%) = L by (8.120), and

rank[Z(Z'Z) 1 Z") = w|Z(Z'Z2) 71 2'] = tr(1,) = d,

so Z(Z'Z)~'Z'(R™) = L, which establishes (8.122). Now by (8.114) and
(8.122),

ZB=E=2(2'2)"'7'X,
Z'4B8=27X,

SO
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(8.123) B=(2'2)""7'X.
Finally,
QX =, —P)X =[I, - 2(Z'2)" ' 7" X,

SO
1 1
(8.124) 5% = 1QLX|* = —— X[, — Z(Z'2) 12 X.

n—d

An alternative expression for &2 is
(8.125) 52— — X — PLX|P = —— X — €]
n—d n—d

It follows from (8.121) and (8.123) that

(8.126) B~ NalB, 0*(Z'2)71),
(8.127) (B—B)(Z'2)(8 - B) ~ >3

Thus by (8.117), (8.119), and (8.127),

(B-8)(Z'Z)(B - )

do?

(8.128) ~ Fyna,

from which a (1 — a)-confidence ellipsoid for 3 easily can be obtained:

(8.129) (1=a)=P (B B)(Z'Z)(B~B) < d5*Fup_aa)

Example 8.2. (The one-sample model.) As in §8.4.2, let X1,...,X,, be
a random (i.i.d) sample from the univariate normal distribution Nj(u,o?),
so that

X =(X1,...,X,) ~ Ny(epn, 021,)

satisfies (8.121) with Z = e,,, d =1, § = p. Then from (8.123) and (8.124),

1 —
fr=(enen) el X = =3 X=X,
.1

1 n
_ nro_ / -1/ _ o
04 = 1X I, —en(e,e,)  €,]X — E z':1(XZ X

n_.
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the sample mean and sample variance as before. The (1 — «)-confidence
ellipsoid (8.129) becomes the usual Student-t confidence interval

(8.130) it 2t e

Nz

Example 8.3. (Simple linear regression.) Let Xi,..., Xy be independent

rvs that depend linearly on known regressor variables t1,. .., tn, that is,
(8.131) X; =a+ bt + ¢, 1=1,...,n,
where a and b are unknown parameters and €1, . . ., €, are 1.i.d unobservable

random errors with ¢; ~ N1(0,02) (02 unknown). We can write (8.131) in
the vector form (8.121) as follows:

X1 1 t1 €1
: I a\ | -
. - . . b . )
X 1 t, €n
or equivalently,
(8.132) X=ZF+c¢e

Since € ~ N, (0, 02I,,), (8.126) is a special case of the univariate normal
linear model (8.121). Here the design matrix Z is of full rank d = 2 iff
(t1,...,tn) and (1,...,1) are linearly independent, i.e., iff at least two t;’s
are different. (That is, we can’t fit a straight line through (1, X1),. .-, (tpy Xn)
if all the t;’s are the same.) In this case

(8.133) 7'7 = <£t %;) ,

so (8.123) and (8.125) become [verify]

B — q . n th’ Z XZ .
\b) T \ Xt Dt St X ) | Do) (Xi=Xn) |7
Z(ti—fn)Z
1 \ 1 _ A i}
~2 (A N2 L . L 2
5% = —— ) Xi (a+ bt:))* = — S I = Xn) = bts — ).
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(The expressions for & and b should be compared to (5.17) and (5.18), where
(X,Y) corresponds to (¢, X).)
Note that b can be expressed as

(8.134) b= o ,

a weighted average of the slopes . Zn determined by the individual data,
points (t;, X;), where the Welghts are proportlonal to the squared distances
(t; — tn)?. Furthermore, it follows from (8.126) and(8.133) that [verify]

(8.135) b~ Ny (b’ Z(ti En)2) ’

so a (1 — a)-confidence interval for the slope b is given by [verify]

(8.136) b —— tha/2

Note that this confidence interval can be made narrower by increasing the
dispersion of ti,...,t,. In fact, the most accurate (narrowest) confidence
interval for the slope b is obtained by placing half the ¢;’s at each extreme of
their range. (Of course, this precludes the possibility of detecting departures
from the assumed linear regression model.)

Exercise 8.11. (Quadratic regression.) Replace the simple linear regres-
sion model (8.131) by the quadratic regression model

(8137) X¢=a+bti+ct?—l—q, 1=1,...,n,

where a, b, ¢ are unknown parameters and the ¢;’s are as in Example 8.3.
Then (8.137) can be written in the vector form (8.121) with

1t t] a
(8.138) Z=1: + [, B=10b
1 t, t2 ¢



Assume that the design matrix Z has full rank d = 3. (Note that although
the regression is not linear in the (known) t;’s, this qualifies as a linear
model because E(X) = Zf is linear in the unknown parameters a, b, c.)

Find the MLEs b and ¢, find 42, and find (individual) confidence intervals
for b and ¢. Express your answers in terms of the ¢;’s and the X;’s.

Exercise 8.12 (The two-sample model.) Let Xi,...,X,, and Y7,...,Y,
be independent random (i.i.d) samples from the univariate normal distri-
butions Ni(u,0?) and Ni(v,0?), respectively, where m > 1 and n > 1.
Express this as a univariate normal linear model (8.121) — what are Z, d,
and (3, and what if any additional condition(s) on m and n are needed for
the existence of 27 Find the MLEs /i and 7, find 62, and find a confidence

interval for u—v. Express your answers in terms of the X;’s and Y}’s. (Also
see Exercise 18.26.)
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9. Order Statistics from a Continuous Univariate Distribution.

Let Xq,...,Xn be an iid. random sample from a continuous distribu-
tion with pdf fx(z) and cdf Fx(z) on (—o00,00). The order statistics
Y, < Yy < -+ < Y, are the ordered values of Xji,...,X,. Often the
notation X1y <+ < X(n) is used instead. Thus, for example,

Yi=X = min( X1, .. . Xn),
Yn = X(n) = max(Xl, ces ,Xn).
The mapping
(X1,...,Xn)——>(Y1 <Y< <Yn)

is not 1-1 but rather is (n!) - 1: Each of the n! permutations of (X1,...,Xn)
is mapped onto the same value of V1<Ye< - <Yy):

—_— Ty
n2 ¥ ot ‘//:f'.’_ﬂ;-/-"" 3:9;“71) mz3 (O
- Z 4 - S
//] 2~)/ /, - .\../
A ¢~

We now present approximate (but valid) derivations of the pdfs of:
(i) a single order statistic Y5 ;
(i) a pair of order statistics Y3, Yj ;

(iii) the entire set of order statistics ¥1,...,¥x.

(These derivations are based on the multinomial distribution). 7 &y
/ A
s

(i) Approximately, fy,(y)dy ~ Ply < Yi <y + dy]:

But the event {y < Y; < y + dy} is approximately the same as the event

{6—1) X's € (—00,y), 1 X € (y, y +dy), (n—1) X's € (y + dy, 00).}

i

(i-1) obsenvs tons (m—;)‘oésmu.;?‘,w;

armem—————————
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The probability of this event is approximated by the trinomial probability

n!

=D (n—9)! Fx ()] [fx (w)dy]' [1 = Fx (@)]" "

Thus, cancelling the dy’s we find that

nl

(91) in (y) (Z _ 1) ( ) [FX(y)]Z ' [1 - FX( )]TL—Z fX(y)

— '—"ws‘/ﬂ, 2+dz
(ii) Similarly, for ¢ < j and y < z, s
fvi,v; (y, 2)dydz e
~Ply<Yi<y+dy, z<Y; <z+dz]

7?’(}(?)&
%P[('I’— 1) X's € (-—OO,’y),lX € (y7y+dy)7 (J — i 1) X's € (y+dy,z), '
1X € (2, 2z+dz), (n—j) X's€ (z+dz, 00)] [see figure]

n!

~G =iy O Ul
(Fx(2) — Fx @)~ [fx(2)dz]! [ — Fx ()" 77

f

@ -1) ¢ bseﬂmf‘o A8

~———

ww > 2« ’
Thus, cancelling dydz W% obtain ?. s
n! i—1 j—i—
in,Yj(y,Z)—( 0IG = = Di(n—7) [Fx ()] [Fx(2) = Fx @)
(9.2) 1= Fx ()" fx (W) fx(2).

(iii) Finally, for y1 < -+ < ¥n,

le,...,Yn (yl) s 7yn)dy1 T dyn

~Ply; <Yy <y +dyr, -, Yn < Yo < yn + dyn]
n!

| M [fx1)dya]' - [fx (yn)dyn]"
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0w e Oaé;
hooay Gk

Thus, cancelling dy; - - - dy,, we obtain

(9.3) Sy Y s ) =0l fx () - Fx (yn)-

The factor n! occurs because (Xi,...,X,) —» (Y1 <Ya < -+ < Y,) is an
(n!) - 1 mapping. |

Exercise 9.1. Extend (9.3) to the case of exchangeable rvs: Let X =

(X1,..., Xn) have pdf fx(z1,...,2,) with fx symmetric = permutation-
mvariant, that is,

9.4) fx(z1,...,2,) = fx(@r(1y s Trn)) for all permutations 7.

Show that the order statistics ¥’ = (¥ < -+ < Y,,) have joint pdf given by

(95) fY(yla"wyn):n!fX(y17'°'>yn)-

Example 9.1. For the rest of this section assume that Xy, ..., X,, are i.i.d
Uniform(0, 1) rvs with order statistics Y; < --- < Y,,. Here

(9.6) fx(x)=1 and Fx(z)==z for 0 <z < 1,
0 (9.1) becomes

n! i
(G- Di(n—4)!”

(9.7) fri(y) = 1(1 - y)”"i, O<y<l.

Thus we see that the i-th order statistic has a Beta distribution:

(9.8) Y; = X5 ~ Beta (i, n — i + 1),
. 1

. Vi) = E(X) = ,

99 E(Y) = B(X () = ——

(9.10) Var(Y;) = Var(X) = in —i+1)

(n+1)2(n+2)
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Note that if n is odd, Var(X(;y) is maximized when i = “—;“—l, i.e., when X
is the sample median. In this case,

1

(9.11) Var(X(n_Zﬂ)) = TEE) =0 (1).

On the other hand, the variance is minimized by the extreme order statistics:

n

(n+1)%(n+2) =0 (),

(9.12) Var(X(l)) = Var(X(n)) =

a smaller order of magnitude. The asymptotic distributions of the sample
median and sample extremes are also different: the median is asymptotically
normal (§10.6), the extremes are asymptotically exponential (Exercise 9.4.).

Relation between the Beta and Binomial distributions: It follows
from (9.7) that for any 0 < y < 1,

n!

(i — 1)!(n— 1)

i—1
= P[(i — 1) or fewer X's < y] = Z (Z) yR (1 —y)" 7k,
k=0

1
/ w1 = w)""du = P[Y; > v
y

Now let 7 =¢—1 and t = 1 — u to obtain the following relation between
the Beta and Binomial cdfs:

013) (= ]f”!_ o /0 il it = 3 (Z) (1 — )k,

k=0

Joint distribution of the sample spacings from Uniform(0,1) rvs.
Define the sample spacings W1, ..., Wy, W, 11 by

Wi="
Wo=Y,-Y;
(9.14) :
Wn - Yn - Yn—l
Wn—’rl =1-Y,.
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Note that 0 < W, < land Wi + -+ Wy + Wiy = 1. Furthermore,

Yi =W,

Yy = Wy + Wy
(9.15)

From (9.3) and (9.6) the joint pdf of Y1,..., Yy is

(916) le,-~-,Yn(y17"'7yn):n!) 0<y1<"'<yn<17

and the Jacobian of the mapping (9.15) is | 2%| =1 [verify], so'”

(9.17) fW1,~-.,Wn (wl, cen ,wn) =nl, O0<w; <1, 0 <wp+ ot wn < 1.
1 .
v A

{ 2z

\3
[
W
W)
Q ~N

;1 ) W,

Clearly both fw. w. (wi,...,w,) and its range are invariant under all
y 1 ) n 3 Y g
permutations of wy, ..., wn, S0 Wi, ..., W, are exchangeable:

X distn
(9.18) (Wi, ., W) B Wty s War(m))

for all permutations (mw(1),...,n(n)) of (1,...,n). Thus, from (9.8)-(9.10),

(9.19) W; " W, =Y; ~ Beta(l, n), 1<i<n,
1 |

9.20 ‘ E(W;) = ——, 1 <1<

(9.20) W) = <i<n,

(9.21) Var(W;) = - 1<i<n.

(n+1)2(n+2)

10 Note that (9.17) is a special case of the (incomplete) Dirichlet distribution — cf. CB
Exercise 4.40 with a = b = c = 1.
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distn

Also, for 1 <i<j<mn, (W;, W;) = (W1, W), so

COV(W@, Wj) = COV(W1, W2)
= %{Var(W} + W3) — Var(Wy) — Var(W3)]

= [Var(r3) — 2ver(r)

1 2(n —1) 2n
T2l (n+1)2n+2) (n+1)2(n+2)
1
(9.22) = — < 0.

(n+1)%(n+2)

Exercise 9.2*. Extend the above results to (Wy,..., W,, W,41), that is,
show that W1, ..., W,, W,11 are exchangeable. Thus (9.19) - (9.22) remain
valid for i = n + 1.

Note: since Wy + -+ Wy + Wy =1, Wi, ..., Wy, Wy1 do not have a
joint pdf on R™H!,

Exercise 9.3. Find Cov(Y;, Y;) = Cov(X(;), X)) for 1 <4 < j <n.

Exercise 9.4. Show that nW; -5 Exponential(A = 1) as n — oo.

Hint: One method is to show that P[nW; > w] — e™ for 0 < w < 0.
Another is to use (9.19), the representation of a Beta rv in Example 6.4,
and Slutsky’s Theorem 10.6 (as applied in Example 10.3).
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10. Asymptotic (Large Sample) Distribution Theory.

10.1. (Nonparametric) Estimation of a cdf and its functionals.

Let Xy,...,X, be a random (i.i.d.) sample from an unknown probability
distribution P with cdf F' on (—oco, 00). This distribution may be discrete,
continuous, or a mixture. As it stands this is a nonparametric statistical
model'" because no parametric form is assumed for F. Our goal is to
estimate I based on the data Xi,..., X,,.

Definition 10.1. The empirical (= sample) distribution P, is the (dis-
crete!) probability distribution that assigns probability 7—1{ to each observa-
tion X;. Equivalently, P, assigns probability % to each order statistic X,
so P, depends on the data only through the order statistics. The empirical
cdf Fy, is the cdf associated with P,, i.e., ,

Fale) = 4 <)

. 1« ,
(10.1) = D I oom)(X0):
=1
| ' 1
(10.2) == D T ou(X) :
=1
! 2
:
En(x): L |

1 ¢
L cr nf
% &

!
Xp) oo Xy ¥ K X =
(Note that Fy, is a random function.) Eqn. (10.2) shows that F,, depends
only on the order statistics, while (10.1) shows that for each fixed x,

0

(10.3) nF,(z) = EI(_OO,%] (XZ) ~ Binomial(n, p = F(z)).

i=1

1 Some parametric models: {N(,LL, 0'2)}, {Exponential()\)}, {Poisson()\)}, etc.
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Thus by the LLN and the CLT, for each fixed z, p,, = F, (z) is a consistent,
asymptotically normal estimator of p = F(z): as n — oo,

(10.4) I (z) — F(z),
(10.5) VilFa(e) = F(x)] 5 Ni[0, F(z)(1 - F(z)).

In fact, (10.4) and (10.5) can be greatly strengthened by considering the
asymptotic behavior of the entire random function Fr () on (—o0, 00):

The Glivenko-Cantelli Theorem: If F is continuous, then F,(z) —
F(z) uniformly in x:

(10.6) SUP_ oo <zcoo [ Fn(z) — F(2)| — 0 as n — oo.

- The Brownian Bridge: First consider the case where Ui,..., U, arei.id.
Uniform(0,1) rvs with cdf G(u) = v for 0 < u < 1 and empirical cdf G,,.
Here G}, (u) — G(u) is a random function of v € [0,1] that is “tied down” to
0 at each endpoint. Then

(10.7) Vn[Gp(u)—G(u)] % By as random functions on [0, 1] as n — oo,

where By denotes the Brownian Bridge stochastic process. This is a random
function on [0, 1] that can be thought of as the conditional distribution of
a standard Brownian motion B(u) starting at 0, given that B(1) = 0.

“Gfu)Bu [J\[\\ NN IM”L
A < < EM-’
"'L L ' G066y ! o I g
Now let Xi,...,X, beiid. ~ any (continuous) F on (—o0, co) with em-

pirical cdf F,,. Then F(X;) 4 Uj,sofor0 <u <1,
nFu(F (u) = #{X; S F7'(u)} = #{F(X,) < u} 2 £{U; < u} =nGo(w).
Because u = G(u), it follows from (10.7) that

(10.8) Vn [Fo(F~H(w) = F(F~ ()] £ v/n[Gn(u) - G(u)] % By on [0, 1],

This gives the asymptotic distribution of the K. olmogorov-Smirnov goodness-
of-fit statistic for testing a specified null hypothesis F: with z = F~1(u)

y

(10.9) SUP_ o pcoo V| Fn(@) — F(z)| 5 SUPg<y<q [Bo(u)]  asn — oo.
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Theoretical (=population) Empirical (= sample)
quantity ¢(P) or ¢(F) estimator ¢(P,) or ¢(Fy,)

probability distribution:
' P (range = (—o0, 00)) <+ P, (range = {Xqy,...,Xm)})

cumulative distribution function (cdf):

F o R

p?
4 —

o

probability of a set A:

P(A) = [, dP 6 Pu(A)= 2100 — pup
' A

probability of A = (—0, z]:

F(z)= ["_dF o Fu(e) = 2lcma®e) o o gp
nmean:
Ep(X) = [zdF o %, = 2= O = [ qp,
variance:
Varp(X) = [(@-BEp(X)2dF ¢ 82 = 2eam @5 _ i 5 y2gm
| p-th qﬁantile (0<p<1):
1
p_"f———-’
‘ j

) = " if mM 'IIS
En f . X([ P]-'{J) MOt Jﬂ?fﬂj@k‘
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Basic method of nonparametric estimation: To estimate a “func-
tional” ¢(F) of F, use ¢(F,,).113 (Equivalently, to estimate a “functional”
¢(P) of P, use ¢(P,).) Simple examples are given on the preceding page.
Since F,, is a consistent and asymptotically normal (CAN) estimator of F'
(both for fixed z and as a random function), we would like to conclude that
¢(F,) is a CAN estimator of ¢(F'). For this we need to show:

e The functional ¢ of interest is continuous, in fact differentiable, in F,,(!);
e Consistency and asymptotic normality are preserved by such a ¢.

These results require the general theory of “weak convergence” (= con-
vergence in distribution) of stochastic processes. We will not prove them in
general, but only for the above examples. We will need the following:

(i) Definition and properties: convergence in probability (X, = X) in R,
convergence in distribution (X, 4 x ) in R¥,

(ii) Perturbation = Slutsky-type results (“c” represents a constant in R*):
(1010) X, 2 X, Y, 20 = X.+Y,5X;
(10.11) Xn S X, Yo Dec = h(Xn Vo) 5 h(X, c) if his continuous.

(iii) Central Limit Theorem (CLT) (for R!, see CB Theorems 5.5.14-15):
Let X1, Xo,... i.id. rvtrs in R*, E(X;) = pu, Cov(X;) = 3. Then

(10.12) Vi (X = p) % Ni(0, ).

(iv) Propagation of error = §-method = Taylor approximation: Let {Y;,}
be a sequence of rvtrs in R* such that

(10.13) V(Yo — 1) -5 Nk (0, 2.

12

'’ Sometimes we prefer to adjust qb(Fn) slightly to obtain an unbiased estimator. For

example, the unbiased sample variance is 8;, = ;-1—7_5-1-5%

N

This remains a CAN estimator.
13" 1f the statistical model is parametric, a nonparametric estimator need not be effi-

cient. In the Poisson()\) model, for example, the optimal estimator of E(X) = Ais Xn

(see Example 12.13), so the nonparametric estimator 8% of Var (X ) = A is inefficient.
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If g(y1,...,yx) is differentiable at p = (p1, ..., ux), then

d
(10.14) Vi [g(Ya) — a(1)] = N1(0, (V9),. 2 (V9)),
where (Vg),, = (—5%97, Ceey ?9%97;) . is the gradient of g with the partial deriva-
tives evaluated at y = pu, provided that at least one g—y% # 0. In the

univariate case (k = 1) this can be written as
d :
(10.15) v [g(Ya) — g(w)] > N1 (0, [g'(w)]?0®)  (if ¢'(1) # 0).

10.2. Modes of convergence.

Let X, X1, X5, ... be a sequence of rvs or rvtrs with range X', all occurring
in the same random experiment, so we can meaningfully write X,, — X,
X1+ -+ X, etc. (These rvs/rvtrs are not necessarily independent.) We
treat the case that & = RF (although most of these concepts and results
are valid when X is any complete separable metric space).

Definition 10.2. X,, converges to X in probability (X, 5 X) if V e > 0,

(10.16) Pl X, —X||> €] 20 asn— oo.

a.sS.

X, converges to X almost surely (X, =3 X) if

(10.17) Pl lim X, =X]=1,

n—oo

or equivalently, if V € > 0,
(10.18) P[||Xpnir — X|| > € for at least one k > 0] — 0 as n — 0o.

Note that convergence in probability is weaker than a.s. convergence:
the former only involves the joint distributions of all pairs (X,, X), while
the latter involves the joint distribution of the entire infinite sequence

X, X1,Xo,.... Furthermore, if X = ¢, then X, P ¢ only involves the
marginal distribution of each X,,. (We will see that X, 5o — X, LS c.)
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Example 10.1. The Weak (Strong) Law of Large Numbers states that if
X1,Xs,... is a sequence of i.i.d. rvs in R! with finite mean E(X;) = g,
then

(10.19) X, B (X, ).

Under the added assumption of finite second moments, the WLLN is proved
easily by means of Chebyshev’s inequality (cf. §3.1). The proof of the SLLN
is nontrivial.

Next, if we also assume that Var(X;) = o? is finite, then the sample

variance s2 converges to o?:

n—l

(10.20) §2 = < ZXQ X2> B (0 4 u?) — p? = o?

by (10.19), Thm 10.3b, and the WLLN applied to X%, X2, .. .; also s2 ©53 o2

by the SLLN. (These results also extend to a sequence of rvtrs in RE) O

Next let P, P, P, ... be a sequence of probability measures on a com-
mon sample space §2. We say that A C Q is a P-continuity setif P(0A) = 0,

where OA is the boundary of A: 7/“) 7 Y
Definition 10.3. P, converges weakly to P (P, > P) if \
’(10.21) P,(A) — P(A) as n — oo V P—continuity sets A.

Now let X, X;, Xa,... be a sequence of rvs or rvtrs, not necessarily all

occurring in the same random experiment, but still with common range X.
Let Px (resp. Px, ) denote the probability distribution of X (resp. X,).

Definition 10.4. X, converges to X in distribution (X, <, X) if
Px. 5 Px, that is, if

(10.22) P[X,€ A] - P[X € A] asn — co V Px—continuity sets A.

The need for restriction to P-continuity sets is easily seen: Suppose
that X,, is the rv degenerate at —3;: Then we want that X, 4 x = 0, but

P(X, € (-00,0]]=0 4 1=P[X € (~00,0]].
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Here the set A = (—o0,0] is not a Px-continuity set, since 94 = {0} so
P(8A) = 1 # 0. Thus it does hold that X,, > X.

Note that convergence in distribution is a property of the sequence
of distributions Px, Px,, Px,, ..., not of the values of X, X;, Xs,... them-

selves. Thus, for example, if X, % X we cannot conclude anything about
the limiting behavior of X,, — X (unless X = ¢).

Theorem 10.1. (Basic characterization of convergence in distribution.)
the following are equivalent:

(a) X, 5 X.

(b) Fx, (z) — Fx(x) for every continuity point x of Fx.

(c) Elg(X,)] — E[g(X)] for every bounded continuous function g.
Note re (b): Fx is continuous at x iff (—oo, x] is a Px-continuity set.

This theorem, whose proof is omitted, is “basic” because condition (c)
is much easier to work with than (a) or (b). Here is an example:

Corollary 10.1. If X% X and h is continuous, then h(Xy)— h(X)

Proof. By (c) it suffices to show that E[g(h(X,))] — Elg(h(X))] for any

bounded continuous g. But this holds since X, < X and g(h(-)) is bounded
and continuous.

Example 10.2. If X,, % X ~ N;(0,1), then X2 % X2 ~ x2.

Remark 10.1. The conclusion of Corollary 10.1 remains valid if h is not
continuous but P[X € Dy] = 0, where D, is the set of discontinuity points
of h [proof omitted]. For example, if A(z) = 2 on (—o0,00), then Dj = {0}.
Thus

d 1 4 1
10.2 X — 0] = Lo 1
(10.23) X, — and P[X=0=0 = X X

Remark 10.2. Condition (c) need not hold if X, < X and g is continuous
but unbounded. For example, suppose that g(x) = = on (—o0, 00) and take
x. 4™ with probablhty
™10, with probability 1 - =
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Then X, 9, X = 0 [verify] but 1 = E(Xy) E(X) = 0. More generally,
Xn 4, ¥ need not imply that the moments of X,, converge to those of X.

Theorem 10.2. (a) X» LS X = Xp X = Xp 4 X
(b) If X =¢ then Xn 2 c < Xn—ic.
Proof. (a) The first = is immediate by comparing (10.18) to (10.16).

We prove the second = for the case of 1-dimensional rvs, i.e., X = R!,

by verifying condition (b) of Theorem 10.1. Suppose that X, 2, X and let z
be a continuity point of Fx. We must show that lims—co Fx (z) = Fx(x).
For any ' <z < z”,

Fx(z)=P[X <o/, Xn <]+ PX < z', X, > x
< P[X, <a]+P[X <&, Xn >zl

But the last probability — 0 since X, P, X and ' < z, hence
Fx(z') <liminf P[X, < z] = liminf Fx, (2).
n—+oo n—od ‘
“Similarly Fx (") > limsup,,_,. Fx., (z), so

Fx(z') < liminf Fx, (z) < limsup Fx,, (z) < Fx(z").

= OO

Now let z/ T « and z’ | z. Since Fx is continuous at x, we conclude that
lim,,_e Fx,. () = Fx(x), as required.

(b) (This proof is valid for & = RF*.) First suppose that X, 2, X = c. Note
that A C R* is a Px-continuity set iff ¢ ¢ 94, i.e., iff either ¢ € interior(A)
or ¢ € interior(R* \ A). In the first case, for all sufficiently small € we have

1> P[X, € A] > P[|Xo — X|| < ¢] = 1=P[X € 4],

hence P[X, € A] — P[X € A]. Similarly this limit holds in the second
<

case, hence X, 4 x. A
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Now suppose X 4 X = ¢ To show that X, > ¢, consider the set
= {z | |z — c|| > €}. Clearly A is a Px-continuity set Y € > 0, hence

/1 /®/// P[“Xn“"cn>€]“"P[”X—CH>€]=0. 0
7/ 24

Remark 10.3. In Theorem 10.2(a), neither < holds in general. (See CB
Example 5.5.8 (as modified by me) for the first counterexample.)

Theorem 10.3. Let h be a continuous function on X.

(a) If Xn ®5 X then h(X,) =5 h(X).

(b) If X, B X then h(X,) & h(X).

Proof. (a) follows easily from the definition (10.17) bf a.s. convergence.
(b) Fix € > 0 and select a sufficiently large p(e) such that the ball

By ={z € R*| ||z]| < p(e)} C R

satisfies P[X € Bpy] = 1 — €. Increase p(e) slightly if necessary to in-

sure that By is a Px-continuity set [why possible?]. Since X, 4 x by
Theorem 10.2a, 3 n(e) s.t.

n > n(e) = P[X, € By 21— 2¢
= P[Xn € By and X € By()]
> P[Xn € By ] + P[X € By — 1
> 1 — 3e.

Furthermore, h is uniformly continuous on B,(), that is, 3 d(¢) > 0 s.t.
2,y € By, |z —yll <5(e) = [h(z) = h(y)| <e.
Also, since X, & X, 3 n/(e) s.t.
n>n'(e) = P[|X,—X]| >0(e)] <e
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Thus h(X,) £ h(X), since for n > max{n(e), n'(¢)},

Pl[h(Xn) = R(X)| = €] =P[|h(Xn) — M(X)| Z €, Xn € By(e), X € Bp(e)]
+P[|M(Xn) = h(X)| > ¢, {X, € Bye), X € By }°]
< P[||Xn — X| > 6(), Xp € Byey, X € By ]
+1~P[X,, € By and X € By ]
< 4e.

Exercise 10.1. It can be shown that if X, 2 X , there is a subsequence
{n'} C {n} s.t. X,y “> X. Use this to give another proof of (b).

Theorem 10.4 (Slutsky). If X, % X and Y, 50, then X, + Y, 4 X,

Exercise 10.2. Prove Theorem 10.4 for rvs in R'.
Hint: Similar to the proof of the second = in Theorem 10.2a.

Theorem 10.5. Suppose that X, % X in R* and Y, & cin R\ Then
(Xn, Y2) 2 (X, ¢) in RF, ,

Proof. Write (X,,Y,) = (Xa,¢) + (0,Y, — ¢). By Theorem 10.1c,

(Xn, ©) < (X, ¢), and clearly (0, Y, — ¢) <4 (0 (0, 0), so the result follows
from Theorem 10.4.

Theorem 10.6 (Slutsky). Suppose that X, 4 X inRF and Y, B ¢ in
R, If h(z,y) is continuous then h(X,, Yy) <, h(X, c).

Proof. Apply Theorem 10.5 and Corollary 10.1.

Remark 10.4. If h is not continuous but P[(X, ¢) € Dp] = 0, then
X, % X and Y, 2 c still imply h(Xn, Yy) <, h(X, ¢) (use Remark 10.1).

Example 10.3. If X, <, N1(0, 1) and Y,; — ¢ # 0 then by Remark 10.4,

Xn 4 N1(0, 1 1
WX, Yo) = 3 4, 1(C >:N1(O, -(:5)
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In particular, if X1,..., X, are i.i.d. rvs with E(X;) = p and Var(X;) = o2,

VX = 1) 4 n01) and S22

°n P
o

by the CLT and (10.20), so
<10.24) t, = V/“( n ) ::'VG€<)( )/O-~—>]Vi(0 ])

n —
Sn Sn/a

[This is a “robustness” property of the Student ¢-statistic, since it shows
that the large-sample distribution of t, does not depend on the actual
distribution being sampled. (As long as it has finite variance.)]

Example 10.4. (Asymptotic distribution of the sample variance.) Let
Xi,...,X, be an i.i.d. sample from a univariate distribution with finite
fourth moment. Set u = E(X;), 0% = Var(X;), and

(Xia—uﬂ . Kxig—uﬂ _ «;24)2 1

Then the sample variance
1 n 3 1 mn B
2 .+ E : L 2 _ E 2 _ 2
S, = 1 o (Xz Xn) — n—1 [i:1 Xz an:|

is an unbiased, consistent estimator for o (cf. Examples 8.1 and 10.1). We
wish to find the limiting distribution of s2 (suitably normalized) as n — oo:

(10.25) Mg = Var

Let V; = X; — u. We have the following normal approximation for s2:

o (1) -

i)

(10.26) 5 N1(0, Aot

\/502_ n ~7\?
n—1 +nh-1) (vinVn)

by Slutsky’s Theorem, the CLT, and the fact that vV <4 N (0, 02)
[Since A4 depends on the distribution being sampled, this shows that s2,
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unlike ¢,,, is not robust to departures from normality.] In the special case
that. X; ~ N1(u, 02), Ay = Var(x3) = 2 [verify], so

(10.27) | Jn(s2 — a?) S Ny (0, 20%). 0
10.3. Propagation of error = §-method = Taylor approximation.
Theorem 10.7. (a) Let {Y,,} be a sequence of rvs in R such that
(10.28) V(Y — 1) 5 N1 (0, 02), o2 >0.

If g(y) is differentiable at p and g'(p) # 0 then

(10.29) Vi [9(Ya) = g(w)] = N1 (0, g/ (1)]*0®) .

(b) Let {Y,)} be a sequence of rvtrs in R* such that

(10.50) (Yo — 1) 5 Ni(0, %), % pd.

If g(y1, ..., yr) is differentiable at p = (pa,. .. , bk ), then

d
(10.31) v [g(Ya) — g(w)] = N1(0, (Vg) = (Vg)"),
where Vg = (—(%gl—,...,%) and the partial derivatives are evaluated at

y = u, provided that at least one 8%9; = 0.

Proof. (a) Since g is differentiable at p, its first-order Taylor expansion is

(10.32) 9(y) = g(p) + (v — w)g (1) + O(ly — ul?).

Thus by (10.28) and Slutsky’s theorems,

Vi [9(Yn) — ()] = VA(Ye — w)g' (1) + O(/7 [V — pl?)
4 Ny (0, [ (w)]?0?),

since v/n(Y, — u) 4, N:(0, 0?) = n|Y, —pu2=0, (ﬁ) 20.
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(b) The multivariate first-order Taylor approximation of g at y = y is

k
o) = 96 + Y (os - )5

T O(lly — ul?)

=09+ (G ) =)+ Ol — P

= g(u) + (Vo) (y — 1) + O(lly — pl|?).

Thus by (10.30) and Slutsky’s theorems,

vV [9(Yn) — g(w)] = (Vo)vn(Y, — p) + O(vn ||Yy — 1))
% Ny (0, (Vg) S (Vg)),

since n |V, — ul|2 % [Ne(0, D)|2 < 00 = O(/n||Y; — pl?) 5 o. 0

Remark 10.5. Often Y,, = X,,, a sample mean of i.i.d. rvs or rvtrs, but Y,,

also may be a sample median (see §10.6), a maximum likelihood estimator
(see §14.3), etc.

Example 10.5. (a) Let g(y) = -;— Then g is differentiable at y = p with
g (p) = —;%2" (provided that p # 0), so (10.29) becomes

' 1 1 d o2
(10.33) Jn (?Z — ;> < N, (o, ﬁz) .
(b) Similarly, if g(y) = logy and u > 0, then ¢'(u) = %, hence

2
d o
(10.34) vn(logY, —logp) = Ny (O, ;’i) :
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Exercise 10.3. Assume that /n(Y, — p) 4, N; (0, 02).

(i) Find the asymptotic distribution of /7 (Y2 — p2) when p # 0.

(ii) When p = 0, show that this asymptotic distribution is degenerate (con-
stant). Find the (non-degenerate!) asymptotic distribution of n (Y2 —-0).

Note: if pu = 0 the first-order (linear) term in the Taylor expansion of g(y) =
y? at y = 0 vanishes, so the second-order (quadratic) term determines the
limiting distribution — see CB Theorem 5.5.26. Of course, here no expansion
is needed [why?].

Example 10.6. For a bivariate example, take g(z, y) = xy and suppose

wsra[(5)- ()] () (2 )

Then g—g— = i, and —g—% = g at (g, fly)s 50 if (s, fty) 7 (0,0), (10.31) yields
2
. d i oy
\/E(XnYn — Paly) — Ny [07 (fy, Pz) (UCE 027;) (My)Il
. TY Yy /‘l’SE
(10.36) = Ny (0, uzo’?g + ,uiaz + 20y g Oay)

In particular, if X, and Y,, are asymptotically independent, i.e., if o4y = 0,

: . d
(10.37) VI Xn Yy — patty) — N1 (0, ,“50:% + #3;0"5,2/)-
[Note the interchange of the subscripts « and y — can you explain this?]

Exercise 10.4. In Example 10.6, suppose that (ugz,py) = (0,0). Show

that /n(X,Y, — 0) % 0 but that nX,Y, has a non-degenerate limiting
distribution. Express this limiting distribution in terms of normal variates
and find its mean and variance.

Exercise 10.5. (i) Repeat Example 10.6 with g(z, y) = £. (Take py 7# 0.)

(ii) Let Fyn,n denote a rv having the F-distribution with m and n degrees of
freedom. (See CB Definition 5.36 and especially page 624.) First suppose
that m = n. Show that as n — 00,

(10.38) o 1 (Frn — 1) 5 N1 (0, 4).
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(iii) Now let m — co and n » oo s.t. 2 — v (0 <7y < 00). Show that

(10.39) M (P — 1) 5 N1 (0, 2+ 27),

2
(10.40) VA (Fmn —1) 5 N <o, 2+ ;) .

10.4. Variance-stabilizing transfox_'mations.

Let {Y,,} be a consistent, asymptotically normal (CAN) sequence of estima-
tors of a real-valued statistical parameter 8, e.g., = p in the Binomial(n, p)
model, 8 = X in the Poisson()\) model, # = X or + in the Exponential(})
model, § = p or o or £ in the normal model N(y, 02). Assume that the
asymptotic variance of Y, depends only on 6:

(10.41) Jn (Y, —0) % Ny (0, 02(6)) .
Define zg = ®~!(1— ), the (1—f)-quantile of N1(0, 1). Then (10.41) gives

- N(o,1) |
l—a~P —zg_g\/ﬁ(y”mg)gzg W(l/]/\\“’é
L 2 0(9) 2 P /7 . >

[ o(6) o(6) zg_} | 2, 2/,

10.42 =P\Y, — «e <O0L<Y, +——=
(10.42) _ \/ﬁz2_ < +\/ﬁ

hence Y,, + 0\5%) za is an approximate (1 —«)-confidence interval for §. How-
ever, this confidence interval has two drawbacks:

(i) If o(0) is not constant but varies with 6, it must be estimated,'* which
may be difficult and introduces additional variability in the confidence
limits, so the actual confidence probability will be less the nominal 1 — a.

(ii) The accuracy of the normal approximation (10.41) may vary with 6.
That is, how large n must be to insure the accuracy of (10.41) may
depend on the unknown parameter 6, hence is not subject to control.

14 Sometimes the inequalities in (10.42) may be solved directly for #. This occurs.
e.g., in the Binomial(n,p) model with § = p, o2 (p) = p(l — p) - see Example 10.8.
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These two drawbacks can be resolved by a wvariance-stabilizing trans-
formation g(Y,), found as follows: For any g that is differentiable at y = 0,
it follows from (10.41) and the propagation of error formula that

d
(10.43) Vlg(¥a) = 9(0)] S N (0, [/ (0)%02(6))
Therefore, if we can find a differentiable function g such that
(10.44) [g'(0)]?0%(f) =1 (not depending on 6),

then (10.40) becomes
(10.45) Valg(¥n) = g(0)] 5 N1 (0, 1).

This averts the difficulty (i), since it implies that g(Y,,) + \/%z% is
an approximate (1 — a)-confidence interval for g() that does not involve
the unknown 6. If in addition ¢(#) is monotone in 6, this interval can be
converted to a confidence interval for #. Furthermore, it may also alleviate
difficulty (ii) since the normal approximation (10.45) is usually accurate
over a wider range of §-values uniformly in n. (See Example 10.8.)

To find g that satisfies (10.44), simply note that (10.44) yields

90) = =
(10.46) g(0) = / % (a,n‘indeﬁnite integral).

If we can solve this for g, then g(Y;,) will satisfy (10.45).

Example 10.7. Suppose that Xi,..., X, is an i.i.d. sample from the
Exponential(A = 3) distribution. Then E(X;) = 8, Var(X;) = 62, hence
X, is a CAN estimator of 8:

(10.47) Vi (X, — 0) -5 Ny (0, 62).

Here 0%(0) = 62, so the variance-stabilizing function g(6) in (10.46) becomes

g(0) = %—Q = log¥.
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We conclude that -

(10.48) V7 [log X — log 6] < N1 (0, 1),

which yields confidence intervals for log and thence for 0. U

Note: If X ~ Expo(—é—) then 0 is a scale parameter, i.e., X ~ 6Y where
Y ~ Expo(1). Thus
log X ~ logY +log#,

which easily shows why log X, stabilizes the variance for 0 < 6 < oo.

Example 10.8. Suppose we want a confidence interval for p € (0, 1) based

on X,, ~ Binomial(n, p). Then p, = Xn ig a8 CAN estimator of p:

n

(10.49) Vi (Bn —p) 5 N1 (0, p(1—p))-

Here o(p) = 4/p(1 — p), so the function g(p) in (10.46) is given by

= -————@———— = 2 arcsin veri
g(p) - / \/m =2 (\/ﬁ) [ fy!]

Thus arcsin(y/p,) stabilizes the variance of pn (see the following figures):

(10.50) N [arcsin(\/ﬁ—n) - arcsin(\/ﬁ)} <Ny <0, l) :

which yields confidence intervals for arcsin(,/p) and thence for p.
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arcsin(,/p) :

i 1
p—

This non-linear transformation «gtretches” the interval (0, 1) more near p =
0 and p = 1 than near p = 1/2.

Asymptotic distn. -
of pPn:

:
i
/
i
}
J
1

A~
Dn —

Var(fn) = 2 (17: ) depends on p It is very small for p ~ 0, 1, where the
distribution of Py is relatively skewed due to its truncation at the endpoint
0 or 1 and the normal approximation is not very good unless n is very large.

P20 p<'s  pPal
Asymptotic distn.

of arcsin(v/Pn ): ' ‘.

M
b T
T arcsin(y/pn ) — 7

Var(arcsin(v/pn)) =~ + does not depend on p. The distribution of
arcsin(\/ﬁn) is not very skewed for p = 0, 1 and the normal approxima-
tion is fairly good uniformly in p for moderately large n.

-
-
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Remark 10.6. A variance-stabilizing transformation can be used to make
comparisons between two or more parameters based on independent sam-
ples. For example, if mp; ~ Binomial(m, p;) and npe ~ Binomial(n, ps)
with m — co and n — co s.t. = — v (0 < v < 00), then [verify]

vn Karcsin(\/g—ﬁ;) — arcsin(+/ Py )) - <arcsin(\/ﬂb) — arcsin(\/p_g)ﬂ

d 1 1
10.51 Ni {0, =+ — .
1051 o ( N 4’Y>
Thus (arcsin(v/pr ) — arcsin(y/p2 ) + 4/ %:——; zg is an approximate (1 — a)-

confidence interval for (arcsin(,/p1) — arcsin(,/pz )), which can in turn be
used to test the hypothesis p; = pg vs. p1 # po.

Exercise 10.6. (i) Assume X ~ Poisson()). Find a variance-stabilizing
transformation for Xy as A — oo. That is, find a function h and constant
¢ >0 s.t.

(10.52) [R(X2) — R(A)] % N1(0, c).

Use this to obtain an approximate (1 — «)-confidence interval for \.
Hint: Write A = nf with n — oo and 6 the fixed unknown parameter.
(ii) Let X ~ Poisson()) and X,, ~ Poisson(u), where X 1L X, and A

and 4 are both large. Based on (i), describe an approximate procedure for
testing A = p vs. A # L.
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10.5. Asymptotic distribution of a sample covariance matrix.

Xl — Xn
Y: yroe )Wn = Y,
distribution with finite fourth moments. Let

(32)=(0)=¢
(10.53)
oo ()= ()= G D) (5 2)

The sample covariance matriz is defined to be

Let Wy = > be an i.i.d. sample from a bivariate

z.

I

(10.54) S, = -ﬁ-jl_——l- }:jzl(Wi — W) (Wi — Wy)'
S (X — Xn)? S(Xi = Xn) (Y = Ya) )

- (10.55 =
SRS (Z(xz- - X)Yi-Tn) N Ya)

First, S, is an unbiased, consistent estimator of . To see this, set

(Xi=p\
VL“‘(}/;__V):WZ 51

so E(V;) =0, Cov(V3) =X, Cov(V,) = L%. Then from (10.54),

E(Sn) = n _1_ 1E [Z(V:& — VTL)(VL - Vn)’:‘
(1056 L p[y v —nlVi]
=7 [nCov(Vi) — n Cov(Vy,)]

I

1 1
[nE—n-——Z}
n—1 n

=%,
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so Sy, is unbiased. Also, Sy, is consistent: by the WLLN applied twice,

_ n 1 / ‘7 Y7/ p
(10.57) Sn=—— (E PR AZE ann) )

We wish to determine the limiting distribution of 1/n(S,—X) asn — oo
(recall Example 10.4 for the limiting distribution of 1/n(s2 — ¢?)). From
this we can determine, for example, the limiting distribution of the sample
correlation coefficient. Note that S,, and 3, being symmetric 2 X 2 matrices,
should be viewed as 3-dimensional vectors. As in (10.26) we can write

Vi(Sa—5) \
— A [ (w7 - 2]

n—1

= '.”'711 [*/_"_’ (%ZVM-’ —E)] + n\{_ﬁlz_ _— (\/ﬁ‘_fn\)/(ﬁ\/ﬁ‘_fn)’

Because =2 — 1 and /nV, LA N5(0,%), the second and third terms — 0
[verify], hence by Slutzky’s Theorem, /n(S, — X) has the same limiting

distribution as .
- V-3 ).
/i (5 v )

However, V1V{,...,V,V,! can be viewed as ii.d. 3-dimensional random
vectors, so the Central Limit Theorem can be applied as follows:

Clearly E(V;V/) = . Next,

o2 0 0 (F)?
(10.58) Cov(V;V/) = Cov 0 or O (L) (Yizr)
0 0 72 (—_—Yi;”)2
(Xi—g)2
(10.59) = D(o,7) Cov (—XJB:E)(XJT_—”) D(o,T),
(Yj_V)2
where
o> 0 0
(10.60) D(o,7)=| 0 or O
' 0 0 72



But

(10.61) Cov (X%‘—“z Yizvy } = K — R(p)R(p),

where

K40 K31 K22 X\ Y — v\
(10.62) K= K31 K29 /‘613), fﬁljk:E < : #> <z V> :|,

K22 K13 Ko4

o 1
(10.63) | R(p) =E (Xru) (Yzz) | = ?

Therefore from (10.59) and (10.61),

(10.64) Cov(V;V/) = D(o,7) [K — R(p)R(p)'] D(,7)
= A,

(recall (10.25)). The factorization (10.64) shows how the scale parameters
o and 7, the standardized fourth moments «, , and the correlation p con-
tribute to the covariance matrix of V;V/, hence to that of S,. Thus the
CLT yields

(10.65) V(Sy — ) S N3(0, A).
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Example 10.8 (Consistency and asymptotic normality of the sample cor-
relation coefficient and Fisher’s z-transform.) The sample correlation r,, is
a consistent estimator of the population correlation p: because

(10.66) Ty = . _ — o(S0).
\/nil 2(Xi — Xn)2\/n—31 S (Vi — Yy)2

where

(10.67) oay.2) = Y

VT/z
is continuous for z,y > 0, and because S,, = ¥ by (10.57), it follows that

(10.68) Ty = p as 1 — 0o.

Exercise 10.7. (i) Apply (10.65) to find the asymptotic distribution of
v/n (rn,—p). Express the asymptotic variance in terms of p and the moments
Kk in (10.62). (Since 7, is invariant under location and scale changes, its
distribution does not depend on y, v, o, or 7.)

(ii) Specialize the result in (i) to the bivariate normal case, i.e., assume that

()~ [(0) (% ) =]

[Evaluate the ;i in (10.62).]

(iii) In (ii), find a variance-stabilizing tranformation for r,. That is, find

a function g(r,) such that v/n[g(r,) — g(p)] < N1 (0, ¢) where ¢ does not
depend on p (specify c).
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10.6. Asymptotic distribution of sample quantiles.

Let X1,...,X,, be an ii.d. sample from a continuous distribution on R'
with unknown cdf F'. We shall show that for 0 < p < 1, the p-th sample
quantile X(p+1) = Fy 1(p) is a CAN estimator of the p-th population
quantile = F~!(p). That is, we shall show:

provided that F~! exists and is continuous at p;
- d p(1 —p)
(10.70) Vi (X4 — F7HP)) = N <07 )
" F(F=2()

provided that F'~1 exists and is differentiable at p. (This requires that
f(F=p)) >0.)

To derive (10.69) and (10.70), first consider the case where Uy, ..., U,
are 1.i.d. Uniform(0,1) rvs with cdf G(u) = u, 0 < u < 1 (recall §10.1). From
(10.4) and (10.5) we know that the empirical cdf Gy, (u) ~ 1 Binomial(n, u)
is a CAN estimator of G(u):

(10.71) Gn(u) 2 Gu) = u,

(10.72) Vi [G(u) — G(u)] 5 Ny (0, u(l —u)).

Let 0 < Uq) < -+ < Uy <1 be the order statistics based on Uy, ..., U,.
Proposition 10.1. Uyy)+1) Ly (=G (p)).

Proof. Fix € > 0. Then
{U([np]+1) <p-— e} = {[np] + 1 or more Us < p — €}

:{Gn(p-—e)z [np]H}.

n

L p (since [np — ([np] + 1)| < 1), so

But Gn(p—e)gp—eand LT—L—Z—’T]TJE—

P [U([np]+1) <p-— 6] — 0 as n — oo.
Similarly,
P [Ugnpj41) =p+€] =0  asn— oo.
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distn

Proof of (10.69): Since (X1,...,X,) = (F~Y(U1),...,F~ Y (Uy)),

distn

(10.73) Xy Xmy) E(F T Uay), - FHUmy))

because F'is increasing, so
distn

(10.74) X(npl+r) = F7 Unp)1)):

Since F~! is assumed continuous at p, X ([npj+1) 2, F~1(p) by Prop. 10.1.

Proposition 10.2.
d
(10.75) VI (U(np)+1) —P) = N1(0, p(1 —p)) .

Proof: First, for any t € R1,

{(Vn (Ugnglt1y —p) <t} =

where

(10.76) A, = vn [Gn (p + %) — Gn(p) - ——tﬁ] 2,0, [see below]
(10.77) By = v [Ga(p) — p] -5 N1 (0, p(1-p)), [by (10.72)]
(10.78) C), = v/n l:p— (-[—"—p]ﬁf—lﬂ _ o - (\[7%’] + Dl \/177 0.
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Thus the asserted result follows by Slutsky and symmetry:

P [vA (Ugnp)ery =) < 1] = PIN1(0, p(1 —p)) = —t]
= P[N1(0, p(1 —p)) < t].

To verify (10.76): if t > 0 then for \/n > ¢,

: Binomial(n, =
A'n dlg;m \/_ﬁ { \/ﬁ) - ’ } )
n Vn

hence

E(A)) =0,  Var(An)= -% (1 - —jﬁ) 0 asm— oo,

so (10.76) follows from Chebyshev’s inequality. The proof is similar if t < 0.

Proof of (10.70): By (10.74), (10.76), and propagation of error,

Vi (X gy = F710)) 2"V [F7 (Ugptry) = F ()]
4 (0, [ Y @) p(1 - 9))

=N, |0, p(1—p) > since F' = f].
( FE W) /

Example 10.9. Asymptotic distribution of the sample median.
When p = %—, F~1(1/2) = m is the population median, X(jn/21+1) = Xn 18
the sample median, and (10.70) becomes

(10.79) Jn (Xn _ m) 4 N, <o, m> |

This shows that the precision = accuracy of the sample median as an es-
timator of the population median is directly proportional to f(m). This
makes sense because the larger f(m) is, the more the observations X; will
accrue in the vicinity of m (see following figure):
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/\//\\
\ Ja“‘f - - e
- 1 - : e

' . v
e /:“’(1/;;) m s /' [//z«>
sample median ‘ sample median
hag high precision has low precision

Remark 10.7. (a) If f(F~*(p)) = oo or = 0 then (10.70) is inapplicable.
In the first case X(jup41) may converge to F'!(p) at a rate faster than

\/~, while in the second case it may converge at a slower rate or may not

converge at all: b //_\ /1y /\

(b) The asymptotic normality (10.70) of the p-th sample quantile X ([p]+1)
is valid when p is fixed with 0 < p < 1. It is not valid when p = p(n) — 0
or 1, e.g., the extreme order statistics X(l) = Xun and Xn) = Xmax
are not asymptotically normal. For example, in the Uniform(0, 1) case of
Example 9.1, the variance of these extreme order statistics are O ( ) rather
than O ( ) thus to obtain a nontrivial limiting distribution they must be
multiplied by an “inflation factor” n rather than \/n — see Exercise 9.4.

10.7. Asymptotic efficiency of sample mean vs. sample median
as estimators of the center of a symmetric distribution. \

Suppose that Xy,..., X, is an i.i.d. sample from a distribution with pdf
fo(z) = f(z—0) on R1 where 6 is an unknown location parameter. Suppose
that f is symmetric about 0, ie., f(zx) = f(—z) V z, so fg is symmetric
about 6. Thus @ serves as both the population mean (provided it exists)
and the population median. Thus it is natural to compare the sample mean
X,, and the sample median X,, as estimators!® of 4.

Suppose that 72 = Var(X f 22 f(z)dz < oo and f(0) > 0. Then
from the CLT and (10.79),
(10.80) v (X —6) S (0, 72),

(10.81) NG (Xn - 9> 4 N, (0, m> |

15 Neither XL nor X, need be the (asymptotically) optimal estimator of §. The
maximum likelihood estimator usually is asympotically optimal (Theorem 14.9), and it
need not be equivalent to Xn or Xn; e.g., if f is a Cauchy density (Example 14.5).
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Thus the asymptotic efficiency of X, relative to Xn (as measured by the
ratio of their asymptotic variances) is 4[f(0)]>72.

2

Example 10.10. If X; ~ N1(6,1) (so 72 = 1), then f(z) = —12—7-;6"%—, S0

(10.82) 4[f(0)]*72 = 2 0.637,

hence X, is (asymptotically) less efficient than X,.: in the normal case the
precision of the sample median based on n observations is about the same
as that of the sample mean based on only .637n observations.

Actually, this should not be interpreted as a strong argument in favor
of X,. The efficiency of the sample median X, relative to X, is about
64%, which, while a significant loss, is not catastrophic. If, however, our
assumption of a normal model is wrong, then the performance of the sample
mean X, may itself be catastrophic. For example, if f(z) = 0 + (a7 s the

standard Cauchy density then the asymptotic variance of /n(X, —0) is
| 1 72
10.83 ="~ o4
10:59) HFOF 4

but 72 = 0o so the asymptotic variance of X, is infinite. In fact, X, is not
even a consistent estimator of 8. Because of this, we say that the sample
median is a robust estimator of the location parameter 6 (for heavy-tailed
departures from normality), whereas the sample mean is not robust.

Note: in the Cauchy case the sample median, while robust, is not optimal:
the MLE is better (see Exercise 14.36(i)). N

Exercise 10.8. Let f(z ) = 5e Le-l2l be the standard double exponential
density on R, so fo(z) = Le~1=—0l,

(i) Find the asymptotic efﬁmency of the sample median X, relative to the
sample mean X, as estimators of 0.

(ii) Find the MLE g for 9, i.e., the value of § that maximizes the joint pdf

1
(1084) f@(SEl) - ,wn = 2_ H e"lmm“'e‘
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