MDP Exercise 1.5*. Let $S = \frac{X}{\sqrt{1-Y^2}}$, $T = \frac{Y}{\sqrt{1-X^2}}$. To show that $S \not\perp T$, show that

(*)
$$P[S \le 1/2, T \le 1/2] \ne P[S \le 1/2]P[T \le 1/2].$$

Because $S, T \sim \text{Uniform}(-1, 1)$, the right side $= (3/4)^2 = 9/16$.

Now draw the region on the left side as the intersection of two semicircular-type regions in the unit disk. The boundaries of the two semicircles intersect at the point $(1/\sqrt{5}, 1/\sqrt{5})$. This intersection includes the entire portion of the disk in the third quadrant, which has probability 1/4. The intersection also includes parts of the disk in the second and fourth quadrants. By the uniform distributions of S and T and by Cavalieri's Principle, each of these has area equal to half of the disc quadrant, hence each has probability 1/8, hence so far we have probability 1/4 + 1/8 + 1/8 = 1/2.

Now examine the portion of the intersection that lies in the first quadrant of the disk. By the shape of the semi-circular boundaries, this portion contains the square with lower left vertex (0,0) and upper right vertex $(1/\sqrt{5}, 1/\sqrt{5})$, which square has probability $1/5\pi$. Thus the intersection on the left side of (*) has probability at least $1/2 + 1/5\pi$. But this already exceeds 9/16, the probability of the right side of (*).

512 Practice Exam Question.

Let Z_n be a sequence of random variables such that

$$\sqrt{n}(Z_n - \mu) \stackrel{d}{\to} N_1(0, \sigma^2)$$

for some constants μ and $\sigma^2 > 0$. Use results in MDP §10 to show that

$$Y_n \xrightarrow{p} \mu.$$

Solution. Apply MDP Theorem 10.6 with $X_n = \sqrt{n}(Z_n - \mu)$, $Y_n = 1/\sqrt{n}$, and c = 0.

Exercise 10.6. (i) Assume $X_{\lambda} \sim \text{Poisson}(\lambda)$. Find a variance-stabilizing transformation for X_{λ} as $\lambda \to \infty$. That is, find a function h and constant c > 0 s.t.

(10.52)
$$[h(X_{\lambda}) - h(\lambda)] \xrightarrow{d} N_1(0, c).$$

Use this to obtain an approximate $(1 - \alpha)$ -confidence interval for λ .

Hint: First, to find the form of the function h consider $\lambda = n\theta$ where $0 < \theta < \infty$ is fixed and $n \to \infty$. To obtain (10.52) for all values of λ , one approach is to use Slutsky's perturbation result in Theorem 10.4.

(ii) Let $X_{\lambda} \sim \text{Poisson}(\lambda)$ and $X_{\mu} \sim \text{Poisson}(\mu)$, where $X_{\lambda} \perp \perp X_{\mu}$ and λ and μ are both large. Based on (i), describe an approximate procedure for testing $\lambda = \mu$ vs. $\lambda \neq \mu$.

Solution. (i) From the hint, $X_{n\theta} \sim \text{Poisson}(n\theta)$ so $X_{n\theta} \sim Y_1 + \cdots + Y_n$ where the Y_i are i.i.d. $\text{Poisson}(\theta)$ rvs. Therefore the CLTh implies that

$$\sqrt{n}(\bar{Y}_n - \theta) \stackrel{d}{\to} N(0, \theta),$$

so a variance-stabilizing transformation is given by $h(\theta) = \int \frac{d\theta}{\sqrt{\theta}} = \sqrt{\theta}$. Because $h'(\theta) = \frac{1}{2\sqrt{\theta}}$ and $\bar{Y}_n \sim \frac{X_{n\theta}}{n}$,

(1)

$$\sqrt{n}(\sqrt{\bar{Y}_n} - \sqrt{\theta}) \stackrel{d}{\to} N(0, \frac{1}{4}),$$

$$\sqrt{n}\left(\frac{\sqrt{X_{n\theta}}}{\sqrt{n}} - \sqrt{\theta}\right) \stackrel{d}{\to} N(0, \frac{1}{4}),$$

$$\sqrt{X_{n\theta}} - \sqrt{n\theta} \stackrel{d}{\to} N(0, \frac{1}{4}).$$

Now consider general (non-integral) values $\lambda \to \infty$. Let $[\lambda]$ be the greatest integer $\leq \lambda$. Then from (1) with $\theta = 1$,

(2)
$$\sqrt{X_{[\lambda]}} - \sqrt{[\lambda]} \xrightarrow{d} N(0, \frac{1}{4}) \quad \text{as } \lambda \to \infty.$$

By the Intermediate Value Theorem with $h(\lambda) = \sqrt{\lambda}$, for some $\lambda^* \in ([\lambda], \lambda)$, $\sqrt{\lambda} - \sqrt{[\lambda]} = (\lambda - [\lambda])h'(\lambda^*) = (\lambda - [\lambda])\frac{1}{2\sqrt{\lambda^*}}$ (3) $< (\lambda - [\lambda])\frac{1}{2\sqrt{[\lambda]}} = \frac{1}{2}(\frac{\lambda}{[\lambda]} - 1) \to 0$ as $\lambda \to \infty$.

Next, $X_{\lambda} = X_{[\lambda]} + V_{\lambda}$ where $V_{\lambda} \sim \text{Poisson}(\lambda - [\lambda])$ and $X_{[\lambda]} \perp U_{\lambda}$. As in (3), if $X_{[\lambda]} > 0$ then for some intermediate value $X^* \in (X_{[\lambda]}, X_{\lambda})$,

(4)
$$\sqrt{X_{\lambda}} - \sqrt{X_{[\lambda]}} = V_{\lambda} h'(X^*) = V_{\lambda} \frac{1}{2\sqrt{X^*}} < V_{\lambda} \frac{1}{2\sqrt{X_{[\lambda]}}} \xrightarrow{p} 0 \text{ as } \lambda \to \infty,$$

because $V_{\lambda} \leq_{\text{stoch}} \text{Poisson}(1)$ (since $0 \leq \lambda - [\lambda] \leq 1$) and $\sqrt{X_{[\lambda]}} \xrightarrow{p} \infty$. Because $\Pr[X_{[\lambda]} > 0 \to 1 \text{ as } \lambda \to \infty$, it follows from (3) and (4) that

(5)
$$(\sqrt{X_{\lambda}} - \lambda) - (\sqrt{X_{[\lambda]}} - \sqrt{[\lambda]}) \xrightarrow{p} 0 \text{ as } \lambda \to \infty,$$

so by (2) and Slutzky's Theorem,

(6)
$$\sqrt{X_{\lambda}} - \sqrt{\lambda} \xrightarrow{d} N(0, \frac{1}{4}).$$