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11. Statistical Models and Sufficient Statistics.

A statistical model (X, P) consists of a sample space X and a family
(11.1) P={Py|6eQ}

of possible probability distributions on X, where 8 is an unknown parame-
ter. The model is called parametric if 6 is finite-dimensional; otherwise the
model is called nonparametric. Given an observed data vector X € X'| our
goals are two-fold:'®

e Make inferences about the unknown P, that gave rise to X

e Assess the accuracy of our inferences.

11.1. Data reduction by sufficiency.

Often the data can be reduced to a simpler sufficient statistic T'(X) without
losing any information relevant to the goals of inference.

Definition 11.1 (broad). T'(X) is a sufficient statistic for P (i.e., for 0) if,
for any inference procedure based on X, there exists an equivalent procedure
based on T(X). That is, T(X) contains all the relevant information that
X provides about the unknown Fj.

Definition 11.2 (precise). T'(X) is a sufficient statistic for P (i.e., for )
if the conditional distribution of X given 1" does not depend on 6, i.e., if
for every event A C X, Py[X € A | T] does not depend on 6.

To see that Def. 11.2 = Def. 11.1, suppose that You observe X while
I only observe T'(X). But I can then generate a “pseudo-observation” X*
according to the conditional distribution Py[- | T}, which is known to me
because, by the sufficiency of T, it does not depend on the unknown 6.

Thus, regardless of 8, X* 4 x. Therefore, for every possible inference
procedure that You can apply to X, I can apply the same procedure to X™,

thereby producing a probabilistically equivalent inference. Since X dx *
I lose no inferential ability knowing only T rather than X.

16 We do not discuss here the important question of how to select the model.
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[In fact, the additional information in X that is not already contained
in T'(X) is extraneous and may be detrimental for inferences about Py. An
example is provided by the Rao-Blackwell theorem — see the Improvement
Lemma 12.2.]

Definition 11.3 (Bayesian sufficiency). Suppose that @ is itself random
with prior distribution 7 on P (or Q). T(X) is a sufficient statistic for P
(i.e., for 6) if, for every =, the conditional (posterior) distribution of 6 | X
depends on X only through the value of T'(X).

Theorem 11.1. Definitions 11.1, 11.2, and 11.8 are (usually) equivalent.
(This holds in all common cases where P is a family of pdfs or pmfs, but

may not hold in very large nonparametric families, such as the family of all
distributions on X.) (Proof omitted.)

Example 11.1. (Normal(0,0?)) Let X1, ..., X, beiid. Ny(0,0) rvs with
0 = 02 unknown. The joint pdf of X = (X1,...,X,,) is

_ - 1 —z2/20 1 —|lz||?/26 n

=

6 small 0 large.

Thus fp(x) is radial, i.e., has spherical contours, and the distribution of
X grows more dib;persed as 0 increases. If we represent X by its “polar
coordinates” (R, X) = (|| X|[, “—f(ﬁ), it follows from (6.37) — (6.42) that

(11.3) R 1L X; R2~0x2; X ~ Uniform on S, (the unit sphere in R™).

This suggests that all the information about 6 in X is contained in T(X) =

R, and that the unit direction vector X contains no information about 0,
i.e., this suggests that R is a sufficient statistic for 8.
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To verify this according to Definition 11.2, we must show that the
conditional distribution of X | R does not depend on 6. But X = R- X, so
it follows from (11.3) that X | R is uniformly distributed over the sphere
of radius R. Since this conditional distribution does not depend on 6, we
conclude that R is sufficient.

To verify that R is sufficient according to Definition 11.1, note that if
You observe X while I only observe R, I can generate a pseudo-observation

X*=R-USX by choosing U uniformly on S,,, independent of R. L

Remark 11.1. The sufficiency of R extends to the much larger nonpara-
metric model P consisting of all radial pdfs

(11.4) fo(z) =g(ll*),  zeR™

Here we can think of “g” playing the role of the unknown parameter 6. This
holds [verify!] because (11.3) remains valid with “R? ~ 0 x2” replaced by
(recall (6.39))

(11.5) R has pdf ¢, - 7™ 1g(r?).

Remark 11.2. Since R =% R?, R? is also sufficient for 6. The statistics
R(X) and R*(X) induce the same partitioning of the sample space X, that
is, have the same contour lines. Whether we are given R or R2 simply

specifies the sphere (centered at 0) on which X lies: |
N
Note: In general, if T is a sufficient statistic &\k J

and T i—_—-l-yV, then V is also sufficient.

Example 11.2. (Binomial(n,p)) Toss a coin twice (n = 2) with § =
p = P[Heads] unknown. Let Xi, Xy be the Bernoulli rvs indicating the
two outcomes, i.e., X; = 1(0) if H (T) occurs on the ith toss. Then X =
(X1,X>2) has pmf -

folws,wz) = 0% (1 — )11 . g2 (1 - )1==>
(11.6) = gmr+22(] _ )2~ (@1ta2)
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for (z1,2z2) € {0,1} x {0,1} = {0, 1}?. This suggests that T'(X) = X1 + X
is a sufficient statistic for 6.

To verify this according to Definition 11.2, consider the conditional
distribution of (X7, X3) | (X1 -+ X5). The range {0,1}? of (X1, X3) consists
of 4 points, and Xy + X5 partitions this range into 3 subsets:

(0.0 N
RQN\?B Of ('Y:,Xl)g ’ \ Q;\f ,Y‘-pj’v‘
Xi'PXZ:ON(yt : A
(0,0) )

The conditional distribution of (X1, X2) | (X1 + X2) is as follows:

Po[(X1,X2) =(0,0) | X1 + Xo =0] =1,
Po[(X1,X5) = (1,1) | X1+ Xo = 2] = 1,
Pp[(X1,X2) = (1,0) | X1 + Xo = 1]
Po[(X1, Xo) = (1,0)]
Pp[(X1, X2) = (1, )]+P9[(X1>X2) = (0,1)]

__6a-9
TO(1—0)+ (1 —6)8

N =

Because this conditional distribution does not depend on 0, T' = X1 + X5 is
sufficient for 6.

[Given the value of X7 + X9, how can we generate the pseudo-observation

X* " X without knowing g7]. W

This example extends to the case of n independent Bernoulli rvs
X1,...,X,, where T(Xy,...,X,) = X1 + -+ X, is sufficient for §. Here

(117) fe(wl, Ceey gjn) = 0$1+"‘+$n(1 . 9)71—(:731—1—--'_;.‘%")

for (z1,...,%s) € {0,1}". Then (X1,...,X,) | (X1 + - + X,,) has the
following conditional distribution: for ¢t = 0,1,...,n,
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PQ[(Xlw--)Xn):(xla-"axn)|X1+"'+Xn:t]

0 if x4+ 4 axn £t
— trqa _mn—t .
C%ga?mw4 ifzy 4oz, =t
t

0 ifxl‘i‘""l‘xn#t;
(—}Lj ife;+-- 4z, =1 -
t

Because this does not depend on 8, T is a sufficient statistic.

[Given that X7 +- -+ X, = t, how can we generate the pseudo-observation
X* M X without knowing 07].

Example 11.3. Let P be the nonparametric famlly of all symmetric pdfs
f on R!, that is, &:

(11.8) f(—z) = f(z) VzeR. | -
-X X
Let X be a single observation from an unknown f € P. Note that

(11.9) @)= i) vaernp), P

where f is the restriction of f to R} := (0,00), so “f.” plays the role of
. We will show that T(X) = | X]| is a sufficient statistic for P (i.e., for fy).
For this we will show that the conditional distribution of X | |X| does not
depend on f.,.

Represent X as |X|- VU, where (|X|, ¥ = sign(X)) are the one-dimen-
sional “polar coordinates” of X. The conditional distribution of X | | X|
is equivalent to that of ¥ | [X|. Here |X| and ¥ are independent: for all
t >0,

Pl0 < X <t

P[X > 0]

= 2P[0 < X <{]

= P[0 < |X| <t] by symmetry,

PO<|X|<t|¥=1]=
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and similarly P[0 < |X| <t |V =-1] = P[0 < |X| < t]. Thus the condi-
tional distribution of ¥ I | X| is the same as the unconditional distribution
of U, so

1
(11.10) PV =+1]|X|]=P[¥==1] = 5 by symmetry.

Since this conditional distribution does not depend on f, | X]| is a sufficient
statistic for fj.

[Given that | X| = t, how can we generate the pseudo-observation X* distn

without knowing f7].

O

Exercise 11.1. More generally, suppose that X1, ..., X, areii.d. rvs with
a symmetric pdf f on R!. Show that (|X1|,...,|Xx|) is sufficient for f.

Example 11.4. Contrary to appearance, it is not the symmetry (11.8) of
the pdfs f in Example 11.3 that leads to the sufficiency of | X|, but rather

the fact that the ratio L Jg(";") does not depend on f. To see this, generalize

Example 11.3 as follows. Let P be the nonparametric family of all pdfs f
on R! that satisfy

f(—=z) 1
11.11 =ho(z) >0 VzeR,,
( ) f(:c) 0( ) +
where hg is a known function on R}F. Note that
(11.12) f(z) = fr(jz]) - M(z) Yz e R'"N\{0},
where

h(z) = I(0,00) (%) + ho(—2)(~ 00,0y (),

so “f4” again plays the role of §. We show that 7T(X) = | X| is a sufficient
statistic for f; by finding the conditional distribution of ¥ | T,

Note that T' is continuous and ¥ is discrete. First we find the condi-
tional distribution of 7" | W: for all £ > 0,

P[0 <
P[U

P
A

PO<T<t|¥T=1]=

I
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Plo<T<t|w=—1]=t=X<0

PW = —1]
G e=1 = 52y
(¢ 0= —1) = “““”“—p[f;(jlu'

Then by Bayes formula (4.14) for the mixed case, for t > 0 we have,

fr(t| ¥ =1)P[¥=1] e

Plr=1T=1)= 720 /\
_ @ :

[verify!] ’

(11.13)

{;(f)

)+ f(-) -t

f(t)
O+ fWhe Y (L]
1

B 1+ho(t);

fr(t| ¥ =-1)P¥ = —1]
fr(t)
f(=t)
f(t) + f(=t)
f(t)ho(t)
f(t) + f(t)ho(t)
_ ho(t)
N 1+ ho(t) .

(11.14)

P(U=-1|T=t)=

(11.15)

Since this conditional distribution does not depend on fy, T' = |X| is a
sufficient statistic for f, .

[Given that | X| = ¢, how can we generate the pseudo-observation X* “2" x
without knowing f7]. 0

Remark 11.3. Note that (11.13) was derlved without any symmetry as-
sumptions on f whatsoever.
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Example 11.5. Let P be the nonparametric family of all ezchangeable =
symmetric = permutation-invariant pdfs f on R2, that is, | '[f“,;’ﬁa)

N Iy
(11.16) flzo,21) = f(z1,22) V(m1,32) € R* . l '(f‘bx")'

Let X = (X1, X2) be a single observation from some f € P. Note that
(11.17) flz1,32) = f<(@), @) Y (z1,32) € R*\{z1 = 22},

where X1y < X(9) are the order statistics and f< is the restriction of f to

R2 = {(z1,22) | —00 < 21 < 79 < 00},

so “f<” plays the role of . We will show that the order statistic T(X) =
(X @1y, X(2)) is a sufficient statistic for f.

To show that the conditional distribution of (X1,X5) | (X(1), X(2))
does not depend on f, represent (X1, X3) in terms of (X (1), X(2y) and the
random permutation IT = TI(X) = (II;,II3) defined by

(11.18) (X1, X2) = (X(my), X(112)),
that is,

. (1,2) if X1 < XQ;
(11.19) (I1;,119) = {(2,1) if Xy < X;.

The conditional distribution of (X1, X2) | (X(1), X(2)) is equivalent to that
of II ‘ (Xq1), X(2))- But (X(1), X(2)) and II are independent: for B C RZ,

P[(X1, X2) € B]
Pl = (1,2)]
= 2P[(X1, X3) € B]
= P{(Xq),X(2)) € B] by symmetry,

P [(X(l),X(Q)) € B ‘ II = (1,2)] =

and similarly P [(X (1), X(2)) € B | I = (2,1)] = P[(X(1), X(2)) € B]. Thus
the conditional distribution of IT ’ (X(1), X(2y) is the same as the uncondi-
tional distribution of II, so ‘

(11.20) P[II=(1,2) | (X, X)) = Pl = (1,2)] = % by symmetry.
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Since this conditional distribution does not depend on f., (X (1), X(2)) is a
sufficient statistic for f..

[Given (X, X(2)) € R2%, how can we generate the pseudo-observation
distn

(X1,X5) = (X1, X2) without knowing f7]. U

Exercise 11.2. As in Example 11.4, it is not the symmetry (11.16) of the
pdfs f in Example 11.5 that leads to the sufficiency of the order statistic

(X(1), X(2)), but rather the fact that the ratio % does not depend on f.

To see this, generalize Example 11.5 as follows. Let P be the nonparametric
family of all pdfs f on R? that satisfy

f(a:Q) $1)

(11.21) o1, 32)

:ho(fEl,ﬂjQ) >0 \7/ (3317:62) 6]2’2<7

where hg is a known function on R2<. Note that

(11.22) f(z1,22) = f<(z), T(2)) - h(z1,32) V (z1,72) € R?*\{z; = 2},

where, for 21 # xo,
h(z1,2) = Irz (x1,%2) + ho(z2, 21) IRz (21, 22),

so “f<” again plays the role of . Show that the order statistic T(X) =
(X(1), X(2)) is a sufficient statistic for f-.

[Given (X(1), X(2)) € RZ, how can we generate the pseudo-observation
(X7, X3) digtn (X1, X2) without knowing f7]. N

Example 11.6. (Extension of Example 11.5 to exchangeable pdfs on R™.)
Let P be the nonparametric family of all ezchangeable = symmetric =
permutation-invariant pdfs f on R™, that is, mz3:

(11.23) f(rz) = f(x) VzeR™and Vpermutations 7.

Let X = (X4,...,X,) be a single observation from some f € P. Note that
(11.24)

F@1 ey n) = Fe(@ayse s By) V(@1 @n) € R\ {23 = - = 1),
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where X(1) <+ < X(n) are the order statistics and f< is the restriction of

f to

RZE{(:cl,...,xn) | —o0 <31 < < Tn < oo},
so “f<” plays the role of 6. We will show that the order statistic T(X) =
(Xqys--- , X(ny) 18 @ sufficient statistic for f<.
To show that the conditional distribution of X | T does not depend on

f<, represent X in terms of T and the random permutation IL = (X) =
(M3, .., 1) defined by

(11.25) X = (Xl,...,Xn) = (X(Hl),...,X(Hn)) =1IT.

(Note that 1I; is simply the rank of X, among Xi,.-- . X,.) Thus the
conditional distribution of X \ T is equivalent to that of 1| T. But T and
1] are independent: for B & R” and any permutation T,

P{TEB\H:w]EP[w‘lXEB\H::w] [by (11.25)]

Plr'X € Bl ,

— C n

P = 7] [since B € RZ]
— n!Plr 7' X € B

= P[T € B] [by symmetry].

Thus the conditional distribution of II | T' is the same as the unconditional
Jistribution of I, so for any t € RZ,

| 1
(11.26) Pl=x|T=t] = P[ll=r|= o by symmetry.

Qince this conditional distribution does not depend on f<, the order statistic

T is a sufficient statistic for f<.

[Given T' = (X(l),...,X(n)) e RZ, how can we generate the pseudo-
: \ d : : -

observation (X¥,...,X5) = (X1,...,Xn) without knowing f7]. l

Exercise 11.3. (Recall Remark 11.8) If f is any pdf on R", use Bayes’
formula for the mixed case to extend (11.26) as follows:

(11.27) Pl=r|T="t= %
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where the summation extends over all n! permutations 7’.

Remark 11.4. In Example 11.6, suppose we replace the exchangeable
family P by the smaller (still nonparametric) family P; consisting of all
pdfs f on R™ of the form

(11.28) flzy,...,xn) = g(z1) - g(xn).

That is, assume that Xi,..., X, is an i.i.d. sample from some unknown
pdf g on R'. Note that

(11.29) flz,.. o, zn) = g9(z@y) - 9(2wm)) Y(z1,...,zn) € RT,

so “g” plays the role of . Because the order statistics are sufficient for P
and P; C P, clearly the order statistics are also sufficient for Py, i.e., for g,
by the following trivial lemma.

Lemma 11.1. If T(X) is a sufficient statistic for P and P; C P, then
T(X) is sufficent for P . [

Example 11.7. (Uniform(0,0]) Let Xy,...,X, be iid. Uniform(0,6)
rvs, where 6 € (0,00) is an unknown scale parameter. The joint pdf of
X = (Xl,...,Xn) is

fo(z) = H EI(O’G] (ﬂii)}

=1
1
(11.30) = 2 l0a(@m) Lo (@)

Because the family of pdfs in (11.30) is a subfamily of (11.28), it follows
from Remark 11.4 that the order statistic 7'(X) = (X(q),..., X)) is a
sufficient statistic for §. However, T' is not minimal sufficient, for (11.30)
suggests that further reduction to S(X) = Xy, still preserves sufficiency.
To verify this directly via Definition 11.2 requires finding the condi-
tional distribution of X | S. This can be done, but it is slightly compli-
cated, being a discrete mixture of several continuous distributions [think
about this]. Instead we can proceed in steps, using the following lemma.
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Lemma 11.2. Let P be a family of distributions for X and suppose that
T = T(X) is a sufficient statistic for P. Let Q be the family of distributions
of T induced by P and suppose that S = S(T) is sufficient for Q. Then
S = S(T(X)) is also sufficient for P.

Proof. For P € P let Q be the induced distribution of T'. Then for A C &,

P[X € A|S]=Ep{P[X € A| S, T]| S}

=Ep{P[X € A|T]|5} [$ = S(T)]
=Ep{ga(T) | S} [T is sufficient for P]
=Eq{ga(T) | S} [definition of Q)
=E{ga(T) | S}. [S is sufficient for Q]

-

Because this does not depend on P € P, S is sufficient for P.

Continuation of Ezample 11.7: Thus to show that S is sufficient for 6 w.r.to
X, it suffices to show that S is sufficient for 6 w.r.to T. '

The joint pdf of T' = (T, ... JTn—1,Tn) = (X@y,- - ,X(n;—l)>X(n)> is
obtained from (9.5) and (11.30):

n

!
(1131) fg(tl, e 7tn—~1>tn> — ”07;](0,9] (tn> 'I(O,oo) (tl) IRZ (t]_, e ,tn_l,tn).

Next, the pdf of S =T, = X(n) is given by
ntn—l
977,

Finally, the conditional distribution of 7" | S is equivalent to the condi-
tional distribution of (T%,...,Tn—1) | Tn, and from (11.31) and (11.32) this
conditional pdf is

(11.32) fo(tn) =

1(0’9] (tn) . [verify]

. f@(tlaw')tn—l;tn)
f(tla' . >tn—1 | tn) - fe(tn)

(n —1)!
(1133> = n—1 [(O,tn)(tn——l) ’ I(O,oo) (t1> ) I’R,Z‘1<tla v 7tn~—1)'

e}

Because this conditional pdf does not depend on @, we conclude that S is
sufficient for § w.r.to T', as required. U
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Remark 11.5. From (11.31) and (11.33), the conditional distribution of
(Xays- > Xn-1)) | X(n) is the same as the distribution of the order statis-

tics for a sample of size n — 1 from the Uniform (0, X)) distribution. This

L : X e .
implies that the n — 1 ratios 0 < le)) < < 3()—%?—)11 < 1 are independent

of X,y and are distributed as the order statistics for a sample of size n — 1
from the Uniform (0, 1) distribution.

'11.2. The Fisher-Neyman Factorization Criterion for sufficiency.
Consider a (parametric or nonparametric) statistical model (X,P), where

each Py € P is determined by a pdf or pmf fo(z).

Theorem 11.1. The statistic T = T(X) is sufficient for P (i.e., for 0) if
and only if fo(x) factors as follows:

(11.34) fo(@) = g6(T () - h(z)

where go(T(x)) depends on z only through T'(x) and h{(x) does not depend
on 6. |

Proof (sketch). CB Theorem 6.2.6 contains a proof for the discrete case.
There, (11.34) comes from the following factorization: if T'(x) = {,

(11.35) foz) = Po[X ==z, T(X) = t] = fo(t) - fo(z | 1),
since if T' is sufficient then fy(z | t) = h(z) does not depend on 6. [See
Bahadur Ann. Math. Statist. (1954) for a general proof. Wl

We have already encountered several examples of the factorization
(11.34) - verify that the following all have this form: (11.2), (11.4), (11.6),
(11.7), (11.9), (11.12), (11.17), (11.22), (11.24), (11.29), (11.30), (11.31).

Example 11.8. (Uniforml[f,605]) Let X1,..., X, be ii.d. Uniform[f;, 5]

rvs, where —oco < A1 < 63 < oo are unknown. The joint pdf of X =
(Xl, ca ,Xn) is

& 1
fﬁi': \: 112 i
o() g F— 161,6) (Ti)
1

(11.36) = Gy =g,y 1000 (B) L0002 (B) - 1
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This has the form (11.34) with 6 = (61,02), T(X) = (X@1), X(n)), and
h(z) = 1, so the pair of order statistics (X 1y, X(n)) is sufficient for (61,62).

Example 11.9. (Normal(y,0?)) Let Xi,...,X, be iid. Ni(u,0?) 1vs
with 6 = (i, 0?) unknown. The joint pdf of X = (Xy,...,Xy) is

1
f/vL,UQ(mly---awn): me 20 22(% w)?
n 2
- (_2“)_717276"#2“’?%52“‘557-1.
v o}

This has the form (11.34) with T(X) = (3° X;,> X?) and h(z) = 1, so the
pair (3 X;, 3. X?) is sufficient for (u,0?). Because

(S ) 2 (5 ),
the sample mean and sample variance are also a pair of suflicient statistics.

11.3. The Factorization Criterion and the likelihood ratio.

Asin §11.2, let P = {fa(x) | 0 € Q} be a general statistical model specified
by a family of pdfs/pmf. Suppose we know that 6 = 61 or 02 and wish to
decide between these two possibilities based on the data X. It is appropriate
[see p.223(a)] to base our decision on the value of the likelihood ratio (LR)

f92 (SU)
f91 (LU)

according to a decision rule of the following form : for a fixed constant c,

(11'37> L91,92( )

84 if Lgl,gz (.’13) > G
(11.38) decide 6 = ¢ 01 if Lg, 6, () < c;
arbitrary if Lg, o, (x) = c.

Such a rule is optimal for deciding between fg, and fa,, both in the Neyman-
Pearson sense (cf. Theorem 18.6) of maximizing the probability of selecting
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=

05 when 65 is true while controlling the probability of selecting 5 when 6
is true, and in the Bayesian sense of minimizing a weighted average of the
two error probabilities (cf. (17.11)). Here we emphasize the fundamental
importance of the LR by its dependence on any sufficient statistic T'(X).

This dependence is easily demonstrated by expressing the LR, (11.37)
according to the factorization criterion (11.34) as

. 992(T(m))h(w) ggz(T( ))
(11.39) Lorea(2) = T @Nh(@) — 9o, (T(@))

Thus, the LR depends on X only through the value of the sufficient statis-
tic T(X). Therefore the optimal decision rules (11.38) depend on X only
through T'(X). This is a further indication of the role of a sufficient statistic.

LR ]

F “vcflov

oF Tk x

i

i

‘ L
wéw
Choose®, chooseO

,ﬁm

1[“ (x)

= x—

Choose €, Chouse o

Example 11.10. In Case A, the observation x5 provides stronger evidence
for 02 than does the observation z;, because Lg, 9,(x2) > Lg, g,(z1). In
Case B, however, z; and x2 convey the same degree of evidence for 6,
since Ly, 9,(x2) = Lg, 0, (x1). Thus, in B we can reduce the data from X to
T(X) =1 11(X) without losing any relevant information for distinguishing
between fg, and fs,, so T(X) is a sufficient statistic for {61,0;}. In A,
however, this T'(X) is not sufficient, for relevant information would be lost
if only T(X ) were known, not X.
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11.4. Minimal sufficiency.

In both Cases A and B above, the statistic X itself is trivially sufficient for
{61,65}. In B, however, X can be reduced further to the sufficient statistic
Tp(X), whereas X cannot be reduced in A without losing sufficiency. Thus,
X is minimal sufficient in Case A but not in Case B.

Definition 11.4. T*(X) is a minimal sufficient statistic for P = {Py}
if T* is sufficient and if, for every other sufficient statistic T'(X), T is a
reduction of T', i.e., T*(X) = h(T(X)) for some function h. Ul

In (11.39) we applied the Factorization Criterion to show that
T(X) is sufficient = Lg, ¢,(X) is a function of T'(X) V 61, 05.
The converse is also true:
Lo, 0,(X) is a function of T'(X) V 61,0, = T(X) is sufficient.
For, by setting 6 = 6, and fixing 6,, we have

fo(x) = Lo, o(z) - fo,(z) = go(T(2)) - h(),
so T'(X) satisfies the factorization criterion. Thus:

(11.40) T(X) is sufficient <= Lg, 0,(X) is a function of T(X) VY 01,0,
< T**(X) is a function of T'(X),

where
(11.41) T**(X) = {Lgl,gz (X) l 01,92 € Q}

is the entire family of pairwise LRs. Thus (11.40) and Definition 11.4 show
that T** is a minimal sufficient statistic. This can be stated as follows: the
set of likelihood ratios is a minimal sufficient statistic. This again empha-
sizes the fundamental role of the LR in statistical inference.

Remark 11.6. Together with (11.39), this also suggests that the statistic
T(X) appearing in the factorization criterion is (usually) a minimal suffi-
cient statistic.
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Theorem 11.2 (Lehmann-Scheffe). Suppose that X has pmf or pdf

fo(x), 6 € Q and that T™(X) satisfies the following property:

for every pair of sample points x,y € X, the ratio fo(w) 4 0-free
fo(z)

(does not depend on 0) iff T*(z) = T™*(y).

Then T is minimal sufficient for 6.

Proof. By hypothesis,

T*(x) =T*(y) < % is f-free

fgl(y) . f@Q(y)
T Fo,(z) — fo,(x) A 91,92

; fon () _ fo,(y)
= @~ e ) V 01,0,

< Lo, 0, (z) = Lg, 0, (y) V 61,62
— T**(z) =T"*(y) by definition of T™*.

Thus T* and T** are equivalent statistics and 77 is minimal sufficient, so
T* is also minimal sufficient. \ L

Note: This proof is not completely rigorous for it implicitly assumes that

fo(z) > 0V z,0. Bahadur (1954) gives a rigorous proof via measure theory.

Example 11.11. (I-parameter exponential family) Let X1,..., X, be an
i.i.d. sample from a distribution with pdf (continuous) or pmf (discrete) of
the exponential form

(11.42) fo(z) = a(0) expl0T ()] - h(x),
where 0 € Q is a real parameter. Then X = (Xi,..., X,) has joint pdf

0> T(z:)

=1

I

3=1

(11.43) fo(x) = [a(6)]" exp

- so Y. T(X;) is a sufficient statistic by the factorization criterion. To see
that it is minimal sufficient, apply the Lehmann-Scheffe Theorem:

P =ew [ (L7100 - £760)] 33
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is O-free iff S"T'(y;) = Y. T(x;) (provided that the parameter space Q@ con-
tains at least two points). Note also that the LR

a(62)

(11.44) Ly, 6,(X) = [m

r exp | (0 — 61) SoT(x)]

is a strictly increasing function of Y 7T'(X;) for every pair 61 < 0s. Il

Many common 1-parameter families are exponential families [verify]:

Ni(u,1): 6 =, T(X;) = X
N1 (0,0?): 0= —ns, T(Xs)=X7;
Binomial(n, p): 6 = log 1—%;, T(Xs) = Xy
Poisson(A): | 0 =logA, T(Xi)=Xi;

Exponential(\): 6= -, T(X;) = X;.

Example 11.12. (I-parameter truncation family) Let Xi,..., X, be an

i.i.d. sample from a distribution with pdf of the truncation form = BCX)-

—1 |./B/;é\‘
(11.45) f@(.’lﬁ) = [B(@)] I(a,@] (CC) . b(m), T > a, AN

I/' e

PR

” I, s x
& o v

where —oo < a < oo is specified, 0 > a is a real parameter, b(z) > 0 on
(a,00),}" and B(f) = ff b(z)dz < oo ¥V 6 > a. (The Uniform(0, 6] pdf is a
special case with a = 0, b(z) = 1, and B(f) = 6.) Here X = (X3,... , Xn)
has joint pdf

(11.46) fo(z) = [B(O)] " I(a,0)(%(n)) - L(a,c0)(Z(1)) Hb(mi),

so T = Xy 18 a sufficient statistic by the factorization criterion. To see
that X, is minimal sufficient, apply the Lehmann-Scheffe Theorem:

fo@) _ IaoWm) Iiaoo) @) IT0(:)
fo(x) ~ Laeo(xm) Iaco)(T@)) [T0(z:)

17 1 b = 0 on some interval then 8§ would not be identifiable.
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is O-free iff T () = y(n) [verify!]. (We set § = oo and § = 1.)
Similarly, 7" = X 4y is minimal sufficient if (11.45) is replaced by

(11.47) “[B(Q)]_lf[g,a)(m) b(z), z<a,

where —co < a < o0 is speciﬁed 6 < a is a real parameter, b(z) > 0 on
(00,a), and B(6) = [, b(z)dz < co V6 < a. 0

Example 11.13. (k-parameter exponential family) Let Xi,...,X, be an
i.i.d. sample of rvs or rvtrs from a distribution with pdf (continuous) or
pmf (discrete) of the exponential form

a(f1,...,0k) expl01T1(x) + -+ + 0Tk ()] ’- h(x),

where 6 = (01,...,0;) € Q is a k-dimensional parameter. Then X =
(X1,...,X,) has pdf |

n

H h(mi)>

i=1

(11.48) fo(z) = [a(0)]" exp {91 ZTl (i) + -+ Ok ZTk(iUi)

i=1

so O T1(Xy),...,> . Te(X;)) is a k-dimensional sufficient statistic. To see
that it is minimal sufficient, apply the Lehmann-Scheffe Theorem:

is O-free iff > T (y;) = > Tj(z;) for j = 1,..., k, provided that the parameter
space Q@ C R* affinely spans R*. That is,  must contain a set of k + 1
affinely independent vectors 8%, ...,0%%1 ie., 61,... 65" are not contained

in any hyperplane of dimension < k — 1:
{
.6 | .
LINEARLY

NELY
WBEB AT e
AFENEL INDEP
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For example, let Xy,...,X, be anii.d. sample from Ni(u, o?). Write
the pdf of X = (Xi,...,X,) in 2-parameter exponential family form:

_np?

202 1
(149)  fuolo)= oo p<;’gzmi-—épzw3).

Here k = 2, while 6 = (01,0,) = (4, —515) are the “natural” exponen-
tial parameters ((u,0) and (u,0?) are not). Thus, in order for the pair
(X Xi, Y X2) &= (Xn, s2) to be minimal sufficient, the “proviso” con-
cerning the affine span of Q must be verified for (61,6,) rather than for

(1, 0) or (u,0?):

(i) If Q is the entire parameter space {(u, 0) | —00 < 4 < 00, 0 < o < oo},
then equivalently

(11.50) = {(61, 62) | —00 < 61 < 00, —00 < 0 < O}, ////J{i// e

so its affine span is R2 hence the 2-dimensional statistic (> X;, > X2)
(equivalently, (X, s2)) is minimal sufficient.

(ii) Now impose the restriction o2 = 2 (u#0) on , i.e., X; ~ Ny(u,u?),
so the parameter space is essentially 1-dimensional. However,

_ 8 ’
e 1T\ /1 1 2
600 = (i =52) = (3 ~3): /“‘\”"
SO Ve
Q

(11.51) Q:{(Ql,ez) 0, = —f 917é0}

Thus Q is a parabola in R? so its affine span is again R?, hence the 2-

dimensional statistic (5 X, >, X?) . (Xn, 82) remains minimal suffi-
cient, although the parameter space is only 1-dimensional! Reduction of the
data to either X,, or s2 alone will result in a loss of relevant information
for inference about u. (Also see Remark 11.7, p.181.)

Note: Case (i) is an ezample of a “curved” exponential family. O
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Example 11.14. (2-parameter truncation family) Let Xi,...,X, be an
i.i.d. sample from a distribution with pdf of the truncation form 7/

[B<91702)]—1I[91,62](m) ' b(Q?), —00 <z < 00,

where —oo < 07 < 6’9 < oo are real parameters, b(x) > 0 on (—oo,o:)),18
and B(61,02) = fe d:z: < 00V 01 < 3. (The Uniform[dy, 5] pdf is a.
special case with b( ) = land B(01,0;) = 0, —0;.) Here X = (X1,...,X,)
has joint pdf

(11.52) Jo(x) = [B(61,02)] " L 19, ,00) (T (1)) [(—00,65] (Z(n)) - Hb(xi),

50 (X(1), X(n)) is a sufficient statistic for (61,6;) by the factorization cri-
terion. To see that (X(1), X(ny) is minimal sufficient, apply the Lehmann-
Scheffe Theorem:

foy) _ 163,00 W) L(—00,00) (W)  TT0(w:)

Fo(z) ~ Ti01,00)(€(1)) L(~c0,00)(m(m))  [1(ws)

is (01, 02)-free iff (z(1),Z(n)) = (Y1), Yn)) [verifyl].

& D+
Exercise 11.4. (Uniform|d, 6 + 1]) In Example 11.14, take 6; = 6 and

02 = 0+1, where 6 € (—00,00) is a real-valued location parameter. For sim-

plicity set b(z) = 1, so each X; ~ Uniform([f, § +1]. Show that (X (1), X(n))
remains a 2-dimensional minimal sufficient statistic for the 1-dimensional
parameter 9.

‘Remark 11.7. (Ancillary statistics and conditional inference) Example
11.13(ii) and Exercise 11.4 show that we may find a 2-dimensional minimal
sufficient statistic (71,7%) for a 1-dimensional parameter 6. In such cases

there may exist an equivalent minimal sufficient statistic (U, V) (Tl ,15)
such that U,V are each 1-dimensional and V' is ancillary, i.e., the distribu-
tion of V' does not depend on 6 (see §12.1). In this case the joint pdf/pmf
of (U, V) must have the form

(11.53) fo(u,v) = fo(u | v)- f(v),

18 1t b = 0 on some interval then § = (01, 02) would not be identifiable.
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so the likelihood ratio is given by

— f@g('U:,'U) - f92(u I U)
(11.54) Lovor (W 0) =% o) = Forlu | 0)

This suggests that efficient inference about § might be obtained from the
conditional distribution of U|V. However the ancillary statistic V' may
not be unique, in which case there will be several to choose among and
some might work better than others. Furthermore, even if V' is unique, this
conditional distribution may not be simple (see Footnote 19). O

Exercise 11.5. For example, in Exercise 11.4, the minimal sufficient statis-
tic (X(1y, X(n)) s equivalent to the pair (X(1), Rn) where Ry = X(ny — X(1)
is the sample range. Note that 0 < X3y — 0 < 1 — Ry, so Ry, which is
clearly ancillary hence provides no information about 6 by itself, nonethe-
less governs the accuracy of X(1) as an estimator of 6. In fact, because 2,

is ancillary, we can base inference about 6 on the conditional distribution
of X1y | Rn.

(i) Find this conditional distribution. (See CB Example 5.4.7 for a related
discussion.) Use this conditional distribution to find an estimator 6, that
is conditionally unbiased for 6, thus unconditionally unbiased.

(i) Let 0, = X(1) — E—jl—q Show that §, is unbiased for 8, that Var(d,) <
Var(0,,) for all n, and that lim, Var(0,,)/Var(6,) = 1.

(iii) Find a confidence interval for ¢, centered at 0, whose conditional and
unconditional confidence coefficient is (1 — ). Il

Exercise 11.6. In Example 11.13(ii), show that t2 = %i is ancillary.

Clearly the minimal sufficient statistic (X,, s2) JmiN (X, t2), hence con-

tains the nontrivial ancillary statistic t2. Thus, as stated in Remark 11.7,
inference on p can be based on the conditional distribution of Xy, | 2190

19 However, this conditional distribution is not simple, see D. V. Hinkley (1977) “Con-
ditional inference about a normal mean with known coefficient of variation,” Biometrika
64 105-108.
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12. Ancillarity and Invariance; Sufficiency and Completeness;
Minimum-Variance Unbiased Estimation.

In Remark 11.7 we noted that a minimal sufficient statistic T = T'(X) may
include an ancillary statistic V' = V(X), in which case inference based on
the conditional distribution of T' | V is suggested. In §12.1 we show that an-
cillary statistics commonly arise as invariant statistics in a group-invariant
statistical model, i.e., one generated by applying a group of transformations
to a single standard distribution.

In §12.2 we focus on the case where T' is also complete, i.e., contains
no ancillary information, so inference should be based on the unconditional
distribution of T". Here Basu’s Theorem 12.1 implies that 7' 1l V' for any
ancillary statistic V, so V' is truly irrelevant for inference.

In §12.3 the Rao-Blackwell-Lehmann-Scheffe approach to minimum-
variance unbiased estimation based on a complete and (minimal) sufficient
statistic T is presented. Here it is shown that use of ancillary information
can actually be detrimental. In §12.4 these results are extended to general
convex loss functions.

12.1. Ancillary statistics and group-invariant families.

Definition 12.1. A statistic V = V(z) on X is ancillary for P = {Ps} if
its distribution does not depend on 8; i.e., for any A C X and any integrable
gon X, Py[V €A] and Eg[g(V)] are f-free (do not depend on ). L

Any location-invariant statistic in a location-parameter family is ancil-
lary, as is any scale-invariant statistic in a scale-parameter family. These
are special cases of a group-invariant statistical model:

Definition 12.2. Let X, (unobservable) have a specified distribution Py
on X and let I' = {7} be a group of 1-1 transformations v : X < X. The
group-invariant model Pr is the set of distributions of the random variates

(12.1) (X, =~vXo |7 €TL}.

Here ' (= Q) is the parameter space, v (= 0) is the unknown parameter,
P, (= P)) = Pyoy™ !, and X = X, is observed. U

183



Lemma 12.1. Let V = V(X) be a I'-invariant statistic on X, that is,
Viyz)=V(z) Ve e X, VyeTl.

Then V is ancillary for Pr.

Proof. V(X) = V(X,) = V(yXo) = V(Xo), so the distribution of V(X)
is y-free.

Example 12.1. (location family) Let Py be determined by a pdf fo on
X = R! and let T = {y} = R! be the group of all translations x of R*
given by

WYX — X+

Then Pr is the location-parameter family of pdfs on R! given by
{fu@) = folz —p) | p € R}

More generally, if X7,...,X, is an iid. sample from this family of
pdfs, then X = R™, P, is determined by the joint pdf [[;, fo(z:) on R™,
I' = {u} = R! is the group of all translations of R™ given by

JU (xl,---)xn)_}(371+M>"'>mn+:u),>

and Pr is the location-parameter family determined by the family of pdfs

(12.2) {fﬂ(wla-”:xn)EHf0<xi”“/~‘> 4MER1}

on R™. By Lemma 12.1, any location-invariant statistic
(12.3) Ve, .. yzn) =V @1+ ..., 20+ p) Vi e R!

is ancillary. Examples include:
o the set of sample spacings (X(2) — X(1), -+ X(n) — X(n-1)),
e the sample range X(n) — X(1),

. n v
e the sample variance s2 = -n—i—l m (X = X)2 U
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Example 12.2 (scale family) Let Py be determined by a pdf fo on & = R!
and let T = {o} = R be the group of all scale transformations of R! given
by

. — 0.

Then Pr is the scale-parameter family of pdfs on R! given by

{f-(z) = o fo (07 ) ‘ ceRL}.

More generally, if Xi,...,X, is an i.i.d. sample from this family of
pdfs, then X = R"™, P, is determined by the joint pdf [T fo(z;) on R™,
'={o}= R_llr is the group of all scale transformations o of R™ given by

o:(T1,. .. Tn) — (OT1,...,0Zn),
and Pr is the scale-parameter family determined by the family of pdfs
n
(12.4) {fa(acl, ey Ip) =0 Hfo (0_1:1:i) ] o€ Ri}
i=1
on R™. By Lemma 12.1, any scale-invariant statistic

(12.5) V(zi,...,on) =V(oz1,...,0%,) Vo€ R

is ancillary. Examples include:

. X X
o the set of sample ratios <?<'(%> e )({(;))s

X

X, = sample median).
(%)—X(%) (Xn p )

e the t-statistic t = 25% or robust t = %

Example 12.3 (location/scale family) Let Py be determined by a pdf fo
on X = R! and let ' = R! x RL be the group of all location-scale trans-
formations (u,0) of R given by

(n,0) sz — oz + [i.
Then Pr is the location/scale-parameter family of pdfs on R! given by
{fuo(@) =07 o (07 (@ =) | (m,0) €RI XRL}.
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More generally, if Xi,..., X, is an i.i.d. sample from this family of
pdfs, then X = R™, Py is determined by the joint pdf [];_; fo(z;) on R™,
I' = {g} = R! x RL is the group of all location-scale transformations of
R"™ given by

g=(p,0): (z1,...,20) = (0T1 + fhy. .., 0%p + 1),
and Pr is the location/scale-parameter family given by the family of pdfs
(12.6) {fmd(:cl, X)) =0 Hfo (07 Nzi — ) | (m,0) € R' x Ri}
, i .
on R™. By Lemma 12.1, any location/scale-invariant statistic
(12.7)  Vi(zy,...,zn) =V(oz1+p,...,08, +p) Y(u,0) € R' x R}

is ancillary. Examples include:

’

. . X(ay—X Xy =X (n—
e the set of normalized sample spacings (—-—@—& —(1‘—)——(7-1——1—’>

Xmy=X@? " X=X

- X=X -
e the sample range/sample s.d. ratio —=—=. W

12.2. Completeness, sufficiency, and ancillarity.

Definition 12.3. Let (X, P = {Fy}) be a statistical model. A statistic
T =T(X) is complete for P if

(12.8) Ey[g(T)] is 6—free = ¢(T) = constant (a.e.). 0
Contrast this with the definition of ancillarity: V is ancillary if
(12.9) V g, Eg[g(V)] is §—free.

Thus completeness and ahcillam’ty are antithetical properties. In fact:
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Theorem 12.1. (1) If T is complete for P, then no (non-constant) function
of T is ancillary.

(ii) (Basu) If T is complete and sufficient for P, then for every 8, T is
independent of any ancillary statistic V.

Proof. (i) g(T) ancillary = Eg[g(T)] is 6-free = ¢(T") = constant by the
completeness of T'.

(ii) V ancillary = Fy[V € B] = P[V € B] is 0-free V B.
T sufficient = Py[V € B|T|= P[V € B|T]is 0-free V B.
Thus: g(T)= P[V € B|T|— P[]V € B] is 0-free V B,
that is, g(T") is an actual statistic (not involving ). But
Eolo(1)] = Bo{PIV € B| 7] - PV < B])
= P[V € B] — PV € B]
=0V,
hence g(T') = 0 by the completeness of T. Thus P[V € B |T] = P[V € B],

so V is independent of T L
Exercise 12.1*. Prove the following theorem, suggested by Theorem 12.1:
Theorem 12.2. If T is complete and sufficient, it is minimal sufficient.

Usually, sufficiency of T' can be verified by the Factorization Criterion
(§11.2) while ancillarity of V often can be verified by invariance (§12.1).
Conditions for completeness of T" are now presented. Note that the com-
pleteness condition (12.8) is equivalent to

(12.10) Eglg(T)]=0V0 = ¢g(T)=0 (ae.).

Example 12.4. (i) (Example 11.2 contd.) If T' ~Binomial(n, ), 0 < 0 < 1,
then T is complete. To verify this via (12.10) suppose that

Bolo()] = Y- 000 )2 - o

. (1—9)“29(75)(7;) <1—_9_—0>t =0 Vo

187



Thus the polynomial

Zg(t)(n>azt =0V0<x<oo,
t=0 t
hence its coefficients g(0) = --- g(n) = 0, so (12.10) holds.

(ii) By a similar argument, 7" is complete if T' ~ Poisson(d), 0 < 6 < oo
[verify]. (Both (i) and (ii) are special cases of the next result.) N

Proposition 12.1. (i) (I-parameter exponential family.) Let T have pdf
(continuous) or pmf (discrete) of the exponential form

(12.11) folt) = a(0)e®h(t), 6¢€QCRL

If Q contains a nondegenerate interval (a,b) then T is complete.

(i) (k-parameter exponential family.) Let T = (T1,...,T)) have pdf (con-
tinuous) or pmf (discrete) of the exponential form

(12.12)  folty,. .. tx) = a(@)ePrtitFOstep(ty . ty), 6€QCR,

where 0 = (0y,...,0r). If Q contains a nondegenerate k-dimensional rect-
angle then T s complete.

Proof. (i) Apply (12.10): if Eg[g(T)] = [ g(t) fe(t)dt = 0V 0 then for any
fixed 6y € (a,b),

(12.13) / (=00t gfot o+ (1) (1)t = / 600t 0t o= (Nh(t)dt V0 € O,

where ¢ = g — g~. This implies that the moment-generating functions
of the two (nonnormalized) pdfs e?’g™ (t)h(t) and g~ (t)h(t) agree on
(@ — 8p,b — 6p). By the uniqueness of the mgf, this in turn implies that
efotgt (t)h(t) = e%tg™ (t)h(t) a.e., hence gt (t) = g~ (t) a.e., hence g(t) =0
a.e., as required. (In the discrete case, replace | by >_.)

(ii) The proof is similar, using the uniqueness of the k-dimensional mgf. U
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Proposition 12.2. (General k-parameter exponential family.) Let X have
pdf (continuous) or pmf (discrete) of the exponential form

(12.14) fo(z) = a(@)ehrTi@t+0T@h(z), 0 e Q C R,

where 0 = (01,...,0k). If Q contains a k-dimensional open rectangle then
T(X) = (Ty(X),...,Tk(X)) is complete.

Example 12.5. (Univariate normal distribution) X1,...,Xn are Lid.
~ Ny (,U“a 02)'

Case 1: —o0 < p < 0o is unknown, o2 = o§ is known.

This is a location family of the form (12.2) with fo(z) = —é—}rze—xz/ 205 Tt

is also a 1-parameter exponential family (12.14) with 6 = p/ o2 and

T(X)=> X

Thus ¥ X; is complete and sufficient for x while the vector of residuals

V = (Xl —~Xn,...,Xn——Xn)'

is location-invariant, hence ancillary. Thus s2 is ancillary, so Basu’s The-

orem implies that X, 1L S%, which was proved by a direct argument in
© §8.4.2. Tt also implies that X, is independent of

o the set of sample spacings (X(2) — X(1), -+ -» X(n) — X(n-1))s
e the sample range Xy — X 1),
o X, — X (X, = sample median),

e the set of standarized residuals <—-—“‘X1;)X oor, ToEn (;OX >7

each of which is location-invariant hence ancillary. These independences
would be harder to prove directly.

Because the distribution of the residuals does not depend on the parameter
1 and is independent of the statistic S~ X; used for inference about u, these
residuals can be used to independently test the model, i.e., the assumption
of normality N (-,c8) (e.g., via Q-Q plots).
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Case 2: 1= o 8 known, 0 < g* < 00 is unknown.

The distribution of (X1,...,Xy) is not a scale family of the form (12.4)
(unless po = 0), but that of Y = (V1,...,Yn) = (X1 — pio, ., Xn — o)
does have this form with fo(y) = \/—12=7;e—y2/ 2, The latter distribution is also

a l-parameter exponential family (12.14) with 0 = —1/ 202 and

(12.15) TY) =) V7= (Xi—po)

Thus S (X; — uo)? is complete and sufficient for ¢ while the vector of
standardized residuals

X1 — Mo Xn—o\ _ (Y1 Yo
Sn Sn T \sn T sn

is a scale-invariant function of (Y1,...,Y,) [verify] hence ancillary, as is the
centered t-statistic

Xn - Y?’L
(12.16) fo= 2n " HO = Tn
Sn Sn
Thus
d Z(XZ — /U“0>2 AL <Xls;“0 Y an: O>;

® Z(X’& — /,L0)2 AL to.

Because the distribution of these standardized residuals does not depend
on o2 and is independent of the statistic > (X; — po)” used for inference
about o2, these residuals can be used to independently test the model, i.e.,
the assumption of normality Ni(uo,-) (e.g., via Q-Q plots).

Note: In Case 2 the sample variance s2 is not sufficient for 0% because
X, ~ Ni(uo,0%/n) also contains relevant information about o2.

Case 3: —o0 < 1 < 0o and 0 < o < co are both unknown.

This is a location-scale family of the form (12.6) with fo(z) = Wores
It is also a 2-parameter exponential family (12.14) with

_ _(r L
(1217) 0= (01)02) — <0_27 202) )
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natural parameter space R! x R!, and sufficient statistic

(12.18) T(X) = (Tu(X), T:(0) = (X, Yo XD).

Since the parameter space R! x Rl contains a nondegenerate rectangle,
(OOF, Xi, 5o | X2) or, equivalently, (Xp,,s;), is complete and sufficient
for (u,0?), while the set of standardized residuals

(12.19) . (—i—-—— o -————-—)
. Sn

Sn

is location-scale invariant, hence ancillary for (u,0). By Basu’s Theorem,
therefore,

o (Xn,s2) AL (Xl-Xn,...,Xn—Xn).

Sn Sn
Also:
- X(ny—X .
o (Xp,s2) I ==L (the sample range/sample s.d. ratio);
5 o X=X Xiny—X(n_1 L
o (X,,s2) 1L <3(—((—T%j(id);,,—)((—(il—)~:3‘(ﬁ—l (the set of normalized sample

spacings).

Because the distributions of the standardized residuals and the normal-
ized spacings do not depend on (p,0?) and is independent of the statistic
(X, s2) used for inference about (u,0?), either set can be used to inde-
pendently test the model, i.e., the assumption of normality Ni(-,-) (e.g., via

Q-Q plots). W

Exercise 12.2. Consider the normal model Nj(u,u?) treated in Example
11.13(ii). In Exercise 11.6 it was shown that the minimal sufﬁc1ent statistic

2
(X, s2) contains the nontrivial ancillary statlstlc t2 = ):2”, so Theorem

12.1(i) implies that (X,, s2) is not complete. Give an alternate proof of
the non-completeness of (X,,s2) by finding another nontrivial function

9(Xn, s2) (essentially different than ¢2) such that E,[g(Xn,s2)] is u-free.
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Exercise 12.3. (i) Suppose X ~ Gamma(e,), ¥ ~ Gamma(S, ),
X 1l Y. Use Basu’s Theorem to show that

12.20 X+Y) 1 :
(12:20) (X+Y) L -

Show in turn that

X \  EX)
(12.21) E <X+Y> ~ EX 7

(ii) Suppose that X; ~ Gamma(o,A), ¢ = 1,...,n, and X1,..., Xy are
mutually independent. Show that (recall Exercise 6.3)

X1 Xn—l
X1+"'+Xn7.”,Xl+"‘+Xn .

(12.22) (X1+--+X,) 1L <

Proposition 12.3. (i) (I-parameter truncation family.) Let Xi,...,Xn
be an i.i.d. sample from the truncation pdf

(12.23) fo(x) = [BO) a0 (z) - b(z), z>a,

where a € [—00,00) is specified, 6 € (a,00) is a real parameter, b(x) > 0
on (a,00), and B(0) = ff b(z)dz < oo ¥ 0 > a (see Example 11.12). The
sufficient statistic T(X) = X(n) is complete, thus minimal sufficient for 0.

Similarly, the sufficient statistic T(X) = X(1) s complete, hence min-
imal sufficient for 0, if I q.0/(2), T > a, is replaced by Ijp,q) (), z < a.

(i) (2-parameter truncation family.) Let X1,...,Xn be an i.4.d. sample
from the truncation pdf

(1229)  for0u(e) = [BO1, 0] T 00)(x) - b(2), —00 <@ < 00,
where —oco < 01 < 0y < 00, b(z) >0, and B(01,02) = 9012 b(z)dx < co (see

Example 11.14). The sufficient statistic T(X) = (X(1), X(n)) 18 complete,
hence minimal sufficient for (01,02).

Proof. (i) The cdf of T'= Xy, is

Fo(t) = PolXny < 1] = (PolXs < H))" = (——) Ca<t<o,
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so its pdf is fo(t) = MEEIE O 1 o) (2). Thus, if

0 n—1
Eglg(T)] = / g(t)n[B[(;)(]e)]nb(t> dt =0 V0 > a,

then
0

0
/ g OB b(t)dt = / o~ (OBOIb(0)dE V0 > a.
This implies that g7 (t) = g~ (¢) for a.e. t > a [why?],ie., g=0ae,s0T
is complete. ' O

Exercise 12.4*. Prove part (ii).

Hint: One method begins by finding the joint pdf of X1y, X(»). A second
method is to find the conditional distribution of X1y | X(n), then iterate
Eo,,6,19(X (1), X(n))] by conditioning on X(xy, then apply part (i). U

Exercise 12.5. (Uniform|, 6+1]) In Exercise 11.4, show that the minimal
sufficient statistic (X (1), X(ny) is not complete. U

Example 12.6. (Uniform(0,6]) Suppose that X1,..., X, are ii.d. obser-
vations from the scale family Uniform(0, 6], 6 > 0 unknown. Then T' = X(5)
is sufficient and complete for § (Example 11.7 and Proposition 12.3(i)) and

Xay  Xn-n)
12.25 V= .

is scale-invariant, hence ancillary for ¢ (Example 12.2). Thus the joint
distribution of these ratios does not depend on 6, in fact they are distributed
as the order statistics based on a sample of size n — 1 from Uniform(0,1)
(see Remark 11.5, p.173). Because

' Xa X(n—1
(12.26) X(n)_li_< @ -—(-—l>

by Basu’s Theorem, these ratios can be used to test the assumption of
uniformity independently of any inference about 6 based on X ). [How? -
justify any reasonable method].
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Exercise 12.6. (Uniforml|01,02]) Let X1,..., Xy be iid. rvs from the
location /scale family [verify!] Uniform[f0:,0;], where —co < 01 < 02 < 00
are both unknown. Then T = (X(1), X(»)) is sufficient and complete for
(61,05) (Example 11.8, p.173 and Proposition 12.3(ii), p.192) and

(12.97) V= (X@) X Xeen— X<1>>
X — X Xm =X

is location/scale-invariant, hence ancillary for (61,0z). Show that they are
distributed as the order statistics based on a sample of size n — 2 from
Uniform(0, 1). Because

Xigy — X X1y — X
(12.28) (X(l),X(n))JL< 2 — X (n—1) <1>>

Xy —Xay 7 Xy — X

by Basu’s Theorem, show how these ratios can be used to test the assump-
tion of uniformity independently of any inference about (61,62) based on
(X(1), X(n)) - justify any reasonable method. U

Example 12.7. (The location/scale family Exponential (u,0)) The follow-
ing location-scale family combines the features of a 1-parameter exponential
family and a truncation-parameter family: Let fo(z) = €7 I(0,00)(®), S0 by
(12.6) on p.186),

fu,a(wla . ,:pn) = Hj:l 0‘16—(951"‘“)/"[[%00) (sz) l [\_

e ACAA P AR RSICIEN | M

Then (X(1y, > Xi), or equivalently (X(1),>> X(;)), or equivalently

(12,30) T = <X(1), ZX(i) — nX(1)> = <X(1), Z(X(i) - X(l))) )

=1 =2

is sufficient for (u,o) (by the factorization criterion). To show that 1" is
complete for (u, o), proceed as follows:

First fix o, so (12.29) is the joint pdf of a sample from a 1-parameter
truncation family with pdf of the form (11.47) with 6 = u, a = oo, and
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b(z) = e~*/?. Note that this is also a location family with ¢ = . From
(12.29) T1 = X (1) is sufficient for u, while by Proposition 12.3(i), 11 is com-
plete for p. Furthermore, Th = >.i o (X0 — X(l))) is location-invariant
hence ancillary. Thus by Basu’s Theorem, 17 1L T V u,0.

Next, for fixed p, (Z1,...,Zn) = (X1—4, ..., Xp—p) is an iid. sample
from Expo(Z) and

d

(1231> (X(1)7 s 7X(n)) = (Z(l) + e Z(n) =+ /-L>
By the memory-free property of Expo(-), Zi2y — Z(1),- -+ 4(n) — Z(1) have
the same distribution as the order statistics Uy, ..., Un-1) from a sample
Ui,...,Uy,_1 of size n — 1 from Expo(%), SO

7 4 n—1 n—1 1

12.32) Tp = Ziy — Zy) = Uy = U ~G -1, =),

(12:32) T ;(m ) ; © ; amma(n — 1, —)

a 1-parameter exponential family. Thus T is complete for o by Proposition
12.1(i), p.188.

Now apply (12.10) to verify the completeness of (71, T2): suppose that
0=Epolg(T1, T2)] = Bpo {Eo [9(Th, T2) | TA] } VY 1,0

Since 7} is complete for u with o fixed, this implies that
Eo" [g(tl,T2> ‘ T1 = tl] =0 for a.e. tl

for every o. Since Ty 1L T, and T3 is complete for o, this implies that for
a.e. fixed t1, g(t1,t2) = O for a.e. tz. Thus g(t1,tz) = 0 for ae. (t1,t2),
hence (Ty,T3) is complete for (i, o) as claimed.*

Now apply the location/scale-invariance [verify] of

X)) — X X(n-1) — X(l))

(1233) VE(VQ,...,Vn_1>E < yoees
Xy — Xq) Xm) —Xq)

20 A completely rigorous proof would require consideration of exceptional null sets.
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to see that V is ancillary for (i, o). By Basu’s Theorem, therefore,

(12.34) (Xand_, K - X)) AL V. 0

Exercise 12.7. Since the distribution of V = (Va,...,Va—1) in 4(12.33)
is (u,o)-free, these ratios can be used to test the model assumption that
fo() = €7®I(0,00) (). Show that the joint pdf of (Va, ..., Vn-1) is given by

(12.35)
| (n—1)!(n —2)!
ey Upo1) = < 1.
fvz,.. ,n-1) ot Fona LT 0<vy < o+ <Upo1 <

*Justify any reasonable method based on this pdf that uses V to test the
model assumption Exponential(:, ). O

Remark 12.1. We have seen that for an i.i.d. sample from an exponential
family or truncation family, the dimensionality of the minimal sufficient
statistic does not vary with the sample size n. The same is true for the
combined exponential /truncation family in Example 12.7. Under mild reg-
ularity conditions it can be shown that only exponential families, truncation
families, or a combination of the two, have this property. (E. B. Dynkin,
L. D. Brown, O. Barndorff-Nielsen, etc.) In most other cases the order
statistics or their multivariate extension are minimal sufficient. U

Example 12.8. (Some non-normal location parameter famalies). Let
Xi,..., X, beiid. r.v.s, where either X; ~ Cauchy(6), X; ~ double expo-
nential (9), or X; ~ logistic (6). Then the order statistics X1y, ..., X(n) are
minimal sufficent but not complete, since V := X ) — X(1) is a nontrivial
ancillary statistic. (See CB Exercise 6.9.) O

Exercise 12.8. Let Xi,...,Xm, Y1,...,Yn be independent with
X; ~ Ni(p,02), Yj ~ Ni(u,72),i=1,...,m, J=1,...,n. Show that

(12.36) ORI RHORDY v?)

is a minimal sufficient statistic for (u,0?,7%); hence so is the equivalent
statistic (Xm, 82, Ya, 33) However neither is complete: g := X —Y is an
unbiased estimator of 0; recall condition (12.10) for completeness.)
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[Note: This is the null model for the Behrens-Fisher problem of testing u = v
based on samples from two normal populations Ni(u,0?) and Ni(v, 72)
when both variances are unknown and unrelated. No simple ancillary statis-
tic is known when p = v, so no simple conditional inference procedure for
the common mean is available.] L

Example 12.9. Let ()}fll ), ceey (iﬁ:) be an i.i.d. sample from the bivariate

normal distribution

(12.37) N, {(’:) <"02 702” .

Thus X; Il Y; so this constitutes a 4-parameter exponential family model
in which the sample means and sample variances (X, s2,Y,,t2) together
constitute a sufficient and complete statistic for (u,o?,v,7%) [verify via
Proposition 12.2]. This can also be viewed as the combination of two inde-
pendent location/scale families, so the sample correlation coefficient

(12.38) T 00 — X)L (Y; — Va2

being location/scale-invariant, is ancillary. Thus by Basu’s Theorem,

(12.39) rn AL (Xna 3121) Ym t%)’

so the ancillary statistic 7, can be used to test the assumption of indepen-
dence, assuming normality. [How? Justify any reasonable method.] L

Exercise 12.9. (Complete sufficient statistics in nonparametric models)

(a) P = {all symmetric pdfs f(—z) = f(z) on R'} (see Example 11.3). The
sufficient statistic T(X) = |X| is complete for f, [verify!], hence minimal
sufficient, and ¥ = sign(X) is ancillary by symmetry, so |X| 1. ¥ by Basu.

(b) P = {all exchangeable pdfs f(rz) = f(z) on R™} (see Example 11.6).
The sufficient statistic 7(X) = (X, - - -, X(n)) is complete for f< [verifyl],
hence minimal sufficient, and II = (rank(X3),. .., rank(X,)) is ancillary by
exchangeability, so T' 1L IT by Basu. :

(¢) P = {all radial pdfs f(z) = g(||=|) on R"} (see Remark 11.1). The suf-
ficient statistic R = || X|| is complete for g [verify!], hence minimal sufficient,

and X = Wf;'(—m is ancillary [verify!], so R 1L X by Basu. U
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12.3. Minimum-variance unbiased estimation via a complete suf-
ficient statistic.

Suppose that we wish to estimate a real-valued function 7 = 7(6) of the
parameter @ based on the observed data X ~ P,. For example:

1 0
(12.40) r(0) =6 or 5, 7(61,02) =01 or 6 — 0z or 51
2

An estimator of T is any real-valued statistic 7 = 7(X) with the same
range as 7. It is customary and mathematically convenient to evaluate the
performance of 7 by its mean-square error (MSE) function

(12.41) MSEy(7) = Eq[7(X) — 7(0)]°.

Notice that this depends on the unknown 6.
As in (5.4) we have the basic MSE decomposition

MSEq(7) = Varg(7) + [Eo(7) — 7(0)]?
(12.42) = Vary(7) + [Biass(7)]*.

Definition 12.4. (i) 7 is an unbiased estimator of 7 if Eg(7) = 7(0) V 6,
i.e., if Biasg(7) = 0 V 6. In this case,

(12.43) MSEg(7) = Vary(7).

(ii) An unbiased estimator 7 of 7 is a uniformly minimum-variance unbiased
estimator (UMVUE) if, for all other unbiased estimators 7,

(12.44) Varg(7) < Varg(7) V0.

If it exists, 7 thus has smallest MSE among all unbiased estimators of 7.0

Note: There may exist biased estimators with smaller MSE — see Examples
12.10 and 12.11 and Exercise 12.10.
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Lemma 12.2 (The Improvement Lemma). Suppose that T = T(X) is a
sufficient statistic for 0. If ¥ = 7(X) is an unbiased estimator of T = 7(0)
then

(12.45) # = #(T) = EBo[7 | T| = B[ | T

does not depend on 6 by sufficiency, hence is also a bona fide estimator of
7(0). Furthermore, 7 is also unbiased for T and satisfies (12.44), hence has
smaller MSE than 7; in fact, strictly smaller unless T s a function of T.

Proof. The estimator 7(T') = E[7 | T] is unbiased for 7(#) because 7 is
unbiased:

~ (12.46) Eg[7(T)] = Eg{E[T | T]} = Eg[7(X)] =7(0) V6.

Then (12.44) follows from (5.11) and (12.45):

(12.47) Varg(7) = Eg{Var|[7 | T]} + Varg(7) > Vare{7}.

Strict inequality holds unless Var[7 | T] =0, i.e., 7 = E[T | T, for all T". [

Lemma 12.3 (The Uniqueness Lemma). If T' = T(X) is complete, then
7(0) admits at most one unbiased estimator 7(1') depending on T

Proof. If 7(T) and 7(T') are two unbiased estimators of 7(6) then

(12.48) Eo[#(T) — #(T)] = 7(6) — 7(6) =0 V6,

so 7(T) — 7(T) = 0 by completeness, i.e., 7(T') = 7(T) as required. N

Theorem 12.3 (Rao-Blackwell-Lehmann-Scheffe (RBLS)). Let T = T'(X)
be complete and sufficient for 6. If there exists at least one unbiased esti-
mator T = 7(X) for 7(0) then there exists a unique UMVUE 7 = 7(T') for
7(0), namely,

(12.49) #(T) = E[F(X) | ).

Proof. Clearly 7(T') is unbiased for 7(#). Let 7(X) be any other unbiased
estimator for 7(9) and let #(T') = E[¥ | T], so 7(T") is also unbiased for 0,
hence 7 = 7 by the Uniqueness Lemma. But

(12.50) Varg(7) = Varg(7) < Varg(7) V40

199



by the Improvement Lemma, so 7 is the UMVUE for 7(6). 0

Corollary 12.1 (The UMVUE Supermarket). Let T =T(X) be complete
and sufficient for . Then any function ¢(T') is the UMVUE of its expec-
tation Eo[¢(T)] = 7(6) (provided that this expectation is finite ¥ 0 ).

Example 12.10. Let X1,...,Xn be iid. ~ Ni(u,05) with o2 known.
This is a 1-parameter exponential family, so T = X, is complete and suffi-
cient for u. Thus by the UMVUE Supermarket:

(a) ¢1(Xy) = X, is the UMVUE of u, because E,.(Xn) = p.
(b) ¢2(Xp) = X2 — %3 is the UMVUE of u?, because

2
_ _ _ o
E,[X7] = Var,(X,) + [Eu(Xn>]2 = 7? + .

Here, however, the UMVUE ¢2(X,,) has the undesirable property that
$2(X,) < O with positive probability, so it is not a valid estimator of
4?2 > 0. A more reasonable estimator would be ¢3 = max(¢2,0), which
is no longer unbiased for y?, but has smaller MSE, since obviously

(12.51) (63 — 1)? < (g2 — )%

This shows that unbiasedness is not particularly desirable under quadratic
loss when the parameter space is truncated. (Also see Example 12.11.) O

Example 12.11. Let Xi,..., X, be iid. ~ N1 (po, 0%) with po known, so
T = S (Xi — po)? ~ o2x> is complete and sufficient for o2. Thus by the
UMVUE Supermarket:

(c) ¢3(T) = L = L (X, — po)? is the UMVUE of 0.

- n n

However, ¢35 does not have the smallest possible MSE — there exists a biased
estimator whose variance is small enough to reduce the overall MSE (12.42).

To see this, consider estimators of the form aT, where ¢ > 0 is a
constant. The UMVUE ¢5 is of this form with a = 1. Then from (12.42),

MSE, (aT) = Var, (aT) + [Bias, (aT)]?
= a?0*(2n) + (ac?n — 0?)?

= o*[2na® + (an — 1))
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The last expression is a quadratic function of a that is minimized when

a = —— regardless of o2, Thus the estimator 5{—2, although biased, has

n-t2
smaller MSE than the UMVUE %

In fact, H%é has a downward bias:

T n
E, | —= ) = ? <o’
<n+2> (n+2)a <

Why should an estimator with downward bias be preferable to the UMV UE
(i.e., have smaller MSE)? This can be explained by the fact that the trunca-
tion restriction {02 > 0} on the parameter space introduces an asymmetry
in the quadratic loss function

(12.52) Lo(6%,0%) = (6% — 0?)?
that MSE uses to measure the accuracy of an estimate &2
o0 (27 o0
La L
Y
T 4
R .
0,}. {;2 4 _,Tz. [T:?

Note that for fixed 02, Lg is bounded for underestimates (Lg(52,0%) < o*
as 62 — 0) but Lg is unbounded for overestimates (Lg(62%,02%) — oo as
62 — o00). Thus underestimates are not penalized as severely as overes-
timates, which explains why an estimator with downward bias can have
smaller MSE than the best unbiased estimator.

In my opinion, however, the solution is not to use a biased estimator
but to use a loss function that penalizes underestimates as much as overes-
timates. One such loss function that is appropriate for the estimation of a
positive scale parameter is Stein’s loss function

(12.53) Lg(62,0%) = (g;) — log <9~2-> ~ 1.

For fixed 02, Lg is unbounded for both underestimates and overestimates:
Lg(6%,0?) — oo as 2 — 0 or co. When Stein’s loss function is used, the
UMVUE %— performs better than the minimum-MSE estimator n—%
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In fact, £ is optimal among all estimators of the form o7, a > 0:

n

B, [Ls(aT,0%)] = Eo [<%§> _log <%€-> _ 1}

— an —loga — E,(log x2) — 1,

which is minimized by a = ;1; regardless of o2,

Note: This is why I prefer the unbiased sample variance s2 =
X'i"'Xn 2 . i—X’n 2 s :
to the MLE Z_ﬁ_n___?_ or the minimum-MSE Z%;l——)— for estimating

o2 based on Xi,..., Xn ~ Ni(u,0?). O
Example 12.12. Let Xq,..., X, beiid. ~ Ni(p,0?), 50 T = (Xn,s2) is
complete and sufficient for (u,0?). Thus by the UMVUE Supermarket:
(d) ¢a(Xn,s2) = X, is again the UMVUE of 4.

(e) ¢5(Xn,s2) = s2 is now the UMVUE of o2,

[But (%;:%) s2 has smaller MSE! - why?]

(f) ¢6(Xn,s2) = cpsy is the UMVUE of o, where ¢, = ,/'”51 1“[(1111[7—1/1%]/2].

(8) ¢7(Xn,s2) = Xpn & ycnsn is the UMVUE of & vyo (tolerance limits).
(h) s (K, s2) = X2 — %2 is the UMVUE of 42,

[But @3 is better — see Example 12.10b, p.200.] O
Example 12.13. Let Xi,...,X, be iid. ~ Poisson(\). This is a 1-

parameter exponential family, so T' = Y X, is complete and sufficient for
M. Thus by the UMVUE Supermarket:

(a) L is the UMVUE for \.

(b) L=

T is the UMVUE for A\? [verify!].
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Note: T=0 = L5L 0. [This makes sense.]

T =1 = L5T = 0. [This doesn’t make sense: T =1 = X > 0]

T>2 = T - ), [This makes sense.]

Moral: The UMVUE criterion may not lead to sensible estimators!

(c) Suppose we wish to estimate
(12.54) r=7()\) = e = P\[X; = 0] = P[no events occur].

(For example, we may wish to estimate the probability that no accidents
occur in a unit time.) To shop at the UMVUE Supermarket, we’'d have
to guess a function of T' that is unbiased for e~*. Instead, we can use the
constructive approach of the RBLS Theorem, as follows.

An obvious unbiased estimator of 7 is 7(X1, ..., Xy) = I{0}(X1). Thus,
by the RBLS Theorem, the UMVUE 7 is found via (12.49): fort =0,1,...,

7(t) = B[f (Xq,...,Xn) | T =t

PlXi=0|> X; =1
PX1=0,Xo+ -+ X, =1
PXi+ -+ X, =t
PXi=0]P[Xs+  + X, =1
PXi+ -+ X, =1
e e~ (DA [(n — 1)A]E /¢!
- e~ "M (n\)t /]

(12.55) = (n; 1>t.

Thus 7(t) = (P—g—l)l is the UMVUE of e™*.

Question: How does (ﬂ—g—-l—)T compare to the natural estimator e~T/"? Be-
cause % — X by the LLN, the ratio

(5" _ [u— )}

e—T/n e—1




so the two estimators are asymptotically equal. L

Example 12.14. Let Xi,..., X, be iid. ~ Uniform(0,6]. This is a 1-
parameter truncation family, so T' = X,y = max(X1y, ... , Xn) is complete

and sufficient for §. Since Eg(X()) = (ﬁ_f> 6, the UMVUE Supermarket
tells us that ¢(X(,)) = (2t) X(,,) is the UMVUE of 6.

Suppose instead that we apply the RBLS constructive approach. One
unbiased estimator of § is 8(Xy,...,X,) = 2X7, so (12.49) tells us that
E[2X; | X(»] is the UMVUE of §. To evaluate this, recall from Remark
11.5 that the conditional distribution of (X(y,...,Xn-1)) | X(n) is the
same as the distribution of the order statistics Uy, ..., Up—1) for an i.i.d,
sample Uy, ..., U,_1 from the Uniform (0, X(,)) distribution. Therefore

E[Xy | X)) = zB[ X1+ + Xo | X)) [by symmetry]
= ;B[ X+ + Xen) + Xy | X))
= 2BUq) + + U1y | Xl + 7 Xm)
= %E[Ul + o+ Upot | Xyl + %X(n)
—1 X n X n
_ <n > m  Xw
n 2 n
_(rt1\ X
N n 2’
so the UMVUE E[2X7 | X)) is (Z2) X(n) = ¢(X(n)), as before. U

Remark 12.2. In the truncation-parameter Example 12.14, the variance
of the UMVUE is

v (242 ] = (222 [t - @t
e () [ ()
_ 02
S n(n+2)’
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which is O(1/n?). This contrasts with the exponential family Examples
12.10 - 12.13, where the variance of each UMVUE is O(1/n) (also see Re-
mark 13.4). This exhibits a fundamental difference between truncation
families, where the support of the distribution Py depends on the unknown
parameter 6, and “regular families” (including exponential families), where
the support of Py is the same for every 0. (The asymptotic variance of the
MLE in regular families is always O(1/n) — see Theorem 14.9.) U

As in Example 12.11, however, ¢(X(,)) = (1‘—%) X(n) does not have
the smallest possible MSE — there exists a biased estimator whose variance
is small enough to reduce the overall MSE (12.42):

Exercise 12.10. (i) In Example 12.14, find that @ > 0 such that the
estimator @7 minimizes the MSE Ey[(aT — 0)?] for all > 0. Show that aT
is not unbiased, so is not the UMV UE.

(ii) If the Stein loss function (12.53) is used instead of quadratic loss (12.52),
show that the UMVUE (ﬂin’—l) X(n) is the optimal estimator of § among all
estimators of the form aX,), a > 0. L

12.4. Extension to general convex loss functions.

As in Section 12.3, suppose we wish to estimate 7 = 7(0) based on the
observed data X ~ Py. Instead of the MSE criterion based on quadratic
loss, suppose we evaluate the accuracy of an estimator 7 = 7(x) by a convexr
loss function L(7,T), i.e., one that satisfies the following properties:

(i) L(f,7) >0V 7,7, L(r,7)=0.

(ii) L(7,7) is a convex function of 7 for each fixed 7.

By (ii), for each fixed 7, L(7,T) increases as 7 moves aways from 7.
Examples of such convex loss functions include [verify!]:

(a) general power loss: L(7,7) = a(7) - |7 — 7|* for o > 1 and a(7) > 0;

(One example is ordinary quadratic loss (7 — 7)?. Another is relative
quadratic loss: (L — 1)2 for 7 > 0.)

(b) Stein’s loss function: L(7,7) = (Z) —log (Z) — 1.
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Definition 12.4(ii) is now generalized as follows:

Definition 12.5. Let L be a convex loss function. An unbiased estimator
# of T is a uniformly minimum-loss unbiased estimator (UMLUE) w.r.to L
if, for all other unbiased estimators 7,

(12.56) E[L(7,7)] < BolL(%,7)] V0.

The Improvement Lemma 12.2 is generalized as follows:

Lemma 12.4 (The Improvement Lemma for conves loss). Suppose that
T = T(X) is a sufficient statistic for 0. If T = 7(X) is an unbiased estima-
tor of T = 7(0) then

(12.57) +=7(T)=Eo[7 | T) = E[F | T

does not depend on 0 by sufficiency, hence is also a bona fide estimator
of 7(0). Furthermore, 7 is also unbiased estimator for T and has smaller
expected loss than T, i.e., satisfies (12.56).

Proof. The proof is essentially the same as that of the original Improvement
Lemma, except that the variance inequality (12.47) must be replaced by
Jensen’s inequality applied conditionally on T"

Bo[L(7,7)] = Eo[L(E[7 | T],7)]
< Eo{Eo|L(T,7) | T} [Jensen]
— Bo[L(7, 7)) §

The Uniqueness Lemma 12.3 remains unchanged, as do the RBLS The-
orem 12.3 and the UMVUE Supermarket Corollary 12.1 with UMVUE
replaced by UMLUE in both. Thus if a complete and sufficient statis-
tic T exists, any function ¢(T) is the UMLUE of its (finite) expectation
Eo[(T)] = 7(0) for all convez loss functions.

Note: As seen in Examples 12.10 and 12.11 and Exercise 12.10 for the case

of quadratic loss, there may exist biased estimators with smaller expected
loss than the UMLUE.
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13. The Information Inequality.

We now present the Cramér-Rao-Frechét (CR) lower bound for the vari-
ance of an unbiased estimator in a regular = smooth statistical model.
This bound is called the Information Inequality, since it depends on the
Fisher Information Number (FIN) which measures the intrinsic accuracy
of a parametric statistical model.?! The Information Inequality provides
an alternate approach to determining UMVUEs. Although it is less widely
applicable than the RBLS Theorem approach, it is ultimately of greater
importance because, as we shall see in Section 14, the FIN determines the
asymptotic variance of the MLE in any regular statistical model.

13.1. Variance bounds.

Consider a statistical model (X, P = {Py | 8 € Q}) where each P is
determined by a pdf (continous case) or pmf (discrete case) fyp(z) and where
QCR* s06=(01,...,0;). In the special case where X1,..., X, are i.i.d.
with X; ~ fo(x;), we have fo(z) = [[;—; fo(x;). We impose the following
basic regularity assumption:

Definition 13.1. The family {fp(x) | § € Q} is regular if Q is an open set
and fg(z) is a smooth = differentiable?? function of § for (almost) every z.
(Note that truncation families are not regular — recall Remark 12.2.) L

First consider the one-parameter case where 0 is real-valued. Let T'(X)
be any real-valued statistic such that Eg|T'(X)| < oo V¥ 6. The Information
Inequality gives a lower bound for Varg[T'(X)] in terms of Ey[T'(X)] and
the FIN Ix(6), an intrinsic characteristic of the model {fo(z)}: for k = 1,

(13.1) Ix(0) = Eq { [ﬂ’%%—(x—)] 2} > 0.

21 Actually it measures the intrinsic accuracy of the particular parametrization chosen
to represent the model — see Remark 13.5.
22 We will also assume the existence of higher derivatives as needed — for example,

second derivatives are needed in Remark 13.4.

207



Theorem 13.2 (The Cramér-Rao-Frechét Lower Bound, £k = 1).
Assume that Ix(0) > 0. Then

{%EG[T(X)]}Z
Ix(0) .

Equality holds in (13.2) iff {fo(z)} is a I-parameter exponential family of
the form (13.8).

Proof. Set Y = Y3(X) = El——l—o—g—fe—e@. By the Cauchy-Schwartz inequality
(5.3),

(13.2) Varg[T'(X)] >

{Cove(T,Y)}?
Varg(Y)
which we now show is equivalent to (13.2).
First note that [, fo(x)dz =1 (replace [ by > in the discrete case),
take ?1% of both sides, and blithely assume we can exchange % and [:

(13.4) 0= —C-l%/fg(a:)da:

(13.3) Varg(T') >

_ 5‘% fo()da

< fo(x)
d(}e(w> fo(z)dz

:/{dlogdgg(x)} fo()da
= Eo(Y),

S0

(13.5) Cove(T, V) = Eo(T'Y)
= [ 1) | 2R fy (o)

_ , L fo(x) , . .
_ / 7(a) B2 fo(w)i

= — [ T(x)fo(x)dx




Finally, again apply (13.4) to obtain

(13.6) var,,(Y):Eg(W)zEg{[éb%f__m] }_:_ < (0).

Thus (13.2) follows from (13.3) - (13.6).

Next, equality holds in the Cauchy-Schwartz inequality (5.3) iff the
variables X,Y are linear related (see §5.1(c)), so equality holds in (13.2) iff
T(X) and % log fo(X) are linearly related, i.e., iff

(13.7) log fo(x) = a(0) + b(B)T (2)

for some constants a(f), b(6) not depending on z. Equivalently,

log fo(z) = / a(6)d0 + T'(x) / b(0)d6 + c(x)
= A(0) + B(6)T(z) + c(=),

hence
(138) fe(w) — GA(Q) eB(())T(:v)ec(m)’
so {fo(z)} is a 1-parameter exponential family as asserted. U

Corollary 13.3. Suppose that T(X) is an unbiased estimator of 7(9), a
smooth function of 8. Then

q [~ (0)]
(13.9) Varo[T(0] = 0,

an intrinsic lower bound depending only on the function 7(6) to be estimated
and on the model {fo(x)}. Fquality holds in (13.9) iff {fo(x)} is a 1-
parameter exponential family of the form (13.8).

Proof. Apply Theorem 13.2.

Remark 13.4. An alternative formula for Ix(6):

(13.10) Ix(0) = —E, [dz 1029];9(‘)()} .
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Proof. First note that

(13.11)

[verify!]

Plogfo(X) _ ffo(@) [&fe(@)]
T folw) | fol@)

Thus (13.10) follows: B |
B, [d21oigj;e(X)] ___/ [dg(;”ggi)}?g ;d —/ [d"f?())} o(z)dz
o(x

Yy

ZO—Ix(HE). L

Remark 13.5. Let 6 = 0(v) be a smooth function of v, so g, (z) = foq)(2)
is a smooth reparametrization of the model (not necessarlly 1-1). Then

the information number I,(v) for the model {g,(z)} parametrized by v is
related to I;(6) for the model {fs(x)} as follows:

N [ dlog g, (X)]?
B " dlog foy(X)]?
=By { I dv ] }

~ rdlog fau)(X) do7” .
=E, { w7 = [Chain Rule]

Ifw(z;» - (gﬁ) .

For example, if § = e” (so v = log#), then I,(v) = Iy(e”) - e,

(13.12)

Thus: the information number depends not only on the statistical model (the
family of distributions) but also on the particular parametrization chosen to
represent the model! W
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Remark 13.6. Suppose that X = (Xi,...,X,), a set of n i.i.d. obser-
vations with X; ~ {fo(z)}, a regular 1-parameter family. Then fo(z) =
17, fo(zs), so the information number for the data X is

[d1 X
Ix (0) = Vary | B0 by (13.6)
[ n dlo Xz ]
e
n 1 X :
— Z'—1 Varg {d ogé”g( ) [by independence]
(13.13) = nlx,(0), — [by identical distributions]

where Ix, is the information number for a single observation. Thus the CR
lower bound (13.2) or (13.9) is O(1/n) for estimation in a regular family
(recall Remark 12.2, p.204). L

Example 13.7. Let X ~ Binomial(n,8), 0 <6 <1,soforz=0,1,...,7n

fota) = ()=

(13.14) log fo(x) = log <Z> +zlogf + (n — z)log(l —0),
SRS S
d?log fo(x) = n—x
(1316) = T G
g Plogfo(X)] n0 n(1-0) n
9{ d6? ]—_55~(L~@2__OG—OY
SO
(13.17) 1X(9>::0(17;9> by (13.10)].

Thus the CR lower bound for the variance of an unbiased estimator of

7(0) =0 is

[r'(0)]* _ 6(1—9)
(13.18) VanolT(X)) 2 7 = =
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Because 7(X) = 2 attains this lower bound, this provides an alternative

proof that the unbiased estimator % is the UMVUE of 6.

Notice from (13.14) that the Binomial(n,#) model is an exponential
family with T'(z) = =, so Corollary 13.3 already guarantees that 7(X Y= £
attains the CR bound for the variance of an unbiased estimator of 6.

Now suppose instead that we wish to estimate 7(¢) = (1 — 0). Since
T(X) = X is sufficient and complete for ¢, the UMVUE Supermarket
(Corollary 12.1) provides the UMVUE: if we can find a function ¢(X) that
is unbiased for 7(0), then #(X) is the UMVUE. An obvious guess leads us

to consider
w3 (=502 () = ()]
=0 — ;Varg (—5—) + 92}
(1 - 9) +02]
- ("; 1) o(1 - 0),

s0 p(X) = (n—ﬁ-i-> X (1 - X is the UMVUE of 8(1 — §). However, ¢(X) is

n

not a linear function of T(X) = X, so its variance will not attain the CR
lower bound for the variance of an unbiased estimator of (1 — ). L

Exercise 13.8. In Example 13.7, find the CR lower bound for the variance
of an unbiased estimator of #(1 — #). Find the variance of the UMVUE
¢(X) and show that it strictly exceeds the CR bound. U

Note: The Bhattacharya bounds By < Bg < --- are a sequence of sharper
variance bounds, where the CR bound is By and B, depends on the deriva-

tives ii—l‘”fl-—gf—()—(—), i =1,...,r. Here the variance of the UMVUE ¢(X) for
0(1 — 0) attains the second Bhattacharya bound Bs.
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Remark 13.9. As in Remark 13.6, let Xi,..., X, be i.i.d. observations
with X; ~ {fo(x;)}, a regular 1-parameter famlly, and let §,, be the MLE
of 0. If 7(8) is a smooth function, then it follows from Theorem 14.9 that

(13.19) alr(6n) — 7(0)] 5 Ny (0, %%) .

This shows that estimators based on the MLE asymptotically attain the CR
variance bound, so are asymptotically efficient = asymptotically optimal. U

Now consider the multi-parameter case where 8 = (61,...,0;). For any
/
smooth function g(6), let Vy g(0) = (aaeﬂ e -(%’t) : k x 1. Here we let
(13.20) Ix(0)={L;0)|4,5j=1,...,k} :kxk

denote the Fisher Information Matriz (FIM), where

(13.21) 10 :Ee{[alo%i(x)] . {mogagi(x)}}

Note that Ix(6) is positive semidefinite because
(13.22) Ix(0) = Eq {[Vs log fa(X)] [V log fo(X)]'} .

Theorem 13.10 (The Cramér-Rao-Frechét Lower Bound, k > 2).
Assume that Ix(0) is positive definite. For any real-valued statistic T'(X)
such that Eg|T(X)|? < 00 V 0,

(13.23) Varg[T'(X)] > {Vo Eo[T(X)]} [Ix(0)] " { Ve Eo[T'(X)]} .

Proof. Set Y = Y3(X) = Vp log fo(X) : k x 1. Then

T Varg(T)  Cove(T,Y')\
(13.24) - Cove [(Yﬂ (COVg(Y, T) Covg(Y)
is psd. Furthermore, as in (13.4) on p.208,

(13.25) Eg [V log fo(X)] =0 [verify],

213



so from (13.22),
(13.26) Cove(Y) = Ix(6) [compare to (13.6)].

Thus Covg(Y) is pd and the Cauchy-Schwartz inequality (5.3) extends as
follows (recall (8.30) - (8.34)) :

(13.27) Varg(T) > [Cove(T, Y")][Ix(8)]*[Cove(Y, T)).

But

(13.28) Covg(Y,T) = VgE@[T(X)] ‘ [verify; recall (13.5)],
hence (13.27) is equivalent to (13.23). : N

Note: If equality holds in (13.23) then T must be a linear combination of Y
(the score vector) [verify!], but this does not imply an exponential family.

Corollary 13.11. Suppose that T(X) is an unbiased estimator of 7(0), a
smooth function of . Then

(13.29) Varg[T(X)] > [Vo 7(8)) [Ix (8)) ™" [Ve 7(6)]-
Proof. Apply Theorem 13.10.

Exercise 13.12. (An alternative formula for I;;(6) in (18.21).) Show that

0% log fo(X)
56:00;

(13.30) I;(6) = —Eq [ [recall (13.10)].

Remark 13.13. As in Remark 13.6, the FIM I(6) for n i.i.d. observations
(X1,...,X,) is just nlx,(8). More generally, information is additive for
independent data. That is, suppose that

X=UV), ULV, UNQG('U»), V ~ hg(v).
Then
fo(z) = folu,v) = go(u)he(v),
SO
Olog fo(z) 0log go(u) + Olog hg(v)
392’ 807, (9&5 ’
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hence
Vo log fo(x) = Vi log go(u) + Vi log ho(v).

Thus by (13.26) and the independence of U and V, the FIM is additive:

Ix(0) = Iy v (0) = Covg[Vy log fo(X)]
= Covy[Vy log go(U)] + Covy[Vy log ho(V)]
(13.31) = I () + Iy (6). N

13.2. The role of nuisance parameters.

Suppose that 6 = (61,...,0;) but that the quantity 7 = 7(6;) to be esti-
mated depends only on ;. In this context, (o,...,0;) are considered to
be “nuisance parameters”.

First, if (6a,...,0x) are known then the 1-parameter CR bound (13.9)
is appropriate and here assumes the form

(da;)*
13.32 Varg[T(X)] > ~401_
(13.32) T C0) = 12
for an unbiased estimator T of 7. However, if (0q,...,0) are unknown

then the k-parameter CR bound (13.29) is appropriate. Here V7 =
/
(jlgT ,0,. 0) , 50 (13.29) becomes

Varg[T (E@Z > O <5—;,o, . ,0>/
(13.33) (‘Id_T( ) [verifyl],

where the information matrix is now partitioned as
1 k-1

1 I1(0) Ii2(0
Ix(0) = (Izng; 122E9§>

and
(1334) 111.2(«9) = 111(9) - 112(9){122(9)]_,1[21(0>.
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Clearly I11.2(6) < I11(8), so

() _ ()

I11(0) ~— Li12(8)

(13.35)

Thus, for estimating any (smooth) 7(61), the presence of the unknown
nuisance parameters (0y,...,0;) leads to a reduction of (asymptotic) effi-
ciency given by the ratio

111.2(9)

(13.36) T2 (0)

<1

No reduction of efficiency is incurred, i.e., this ratio = 1, iff I11.2(6) = I11,
which occurs iff
(13.37)

I12(6) = Covg [

dlog fo(X) <8logfo(X) 8logfe(X>>}_0
06, 062 7 0bg o

If (13.37) holds, we say that the parameter 6; is orthogonal to the nuisance
parameters (02, ...,0k). [Also see §14.6.]

Example 13.14. Let X = (Xi,...,X,) be i.id. ~ Ni(01,602) where
(01,62) = (u,0?). Calculate the information matrix Iy, (61,62) as follows:

For 00(@) = e S
Z;) = € 2
01,02 m
1 i — 1)
(13.38) log fo, 0, (x;) = log V21 — 3 log 6 — @_2_5_12_,
2
0%log fo,0,(s) _ 1 0% log fo,,0,(:) _  wi— 06
06?2 9, 56,80, 0z
0%log fo,,0,(%i) _ % — 061 0% log fo0,(xs) _ 1 (@i —01)°
56,00, 0z 5632 262 PR
Thus by (13.30), the FIM is [verify!]
L0
(13.39) Ix,(61,602) = <%‘2 . ) = Gll ?2) .
362 21 la2



Because 15 = 0, the parameters 61 = p and 0z = o? are orthogonal, so the
CR bound for each is the same whether the other is known or unknown.

For example, the CR, lower bound for the variance of an unbiased esti-
mator of 7(61) =01 = p is

1 2
(13.40) 1l
nIll n n
while the CR lower bound for the variance of an unbiased estimator of
7(02) = 02 = o2 is

1 _ 265 _ 20°

13.41 = .
( ) TLIQQ n n

The former is attained by the UMVUE X, of u, and when pu = po is known

the latter is attained by the UMVUE 2 S7(X; — pio)® ~ -‘iji of o2 (recall
Example 12.11(c) on p.200):

1 ot 204
(1342) V&I‘MO’02 ‘:?}, Z(X,L — ’LLO)le = -n—z . (27’2,) = T’L—

When 4 is unknown, however, the bound (13.41) is not attained by the
UMVUE s2 ~ E‘I—f-l-xi_l of o2 (recall Example 12.12(e) on p.202):

4 4 4
2\ o 20 20
(13.43) Var, ,2 (s7) = o [2(n —1)] = >

n—1 n

[(n—1)s2 =S X2 —n~ () X;)? is not a linear function of X, > X2)

[In fact, Charles Stein (1964) has shown that when u is unknown, s
is snadmassible as an estimator of o2 with respect to quadratic loss. His
idea is to select and fix an arbitrary po and use X,, to test p = po; if this
hypothesis is accepted, use 5%2— SO (X; — po)? to estimate 0%, otherwise use
E’1+_1 S (X; — X)?. His estimator has smaller MSE for all (i, 0?) than any
estimator of the form as2. Because pg is arbitrary, however, I would not
seriously consider such an estimator unless I had some prior knowledge that
provided a reasonable choice for po, in which case the Bayesian formulation
would be more appropriate anyway.] U
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13.3. Information and sufficiency.

Theorem 13.15. Let X ~ {fo(z)}, a regular family of pdfs on X. Let
T = T(X) be a statistic with induced pdf family {ge(t)} on the range T.
Then T provides no more information about 0 than does X, that 1s,

(13.44) Ix(0) > Ip(6), e, Ix(0) — Ir(9) is psd V 6,

where Ix(0) and Ir(0) are the information matrices based on X and T,
respectively. Equality holds, i.e., Ix(0) = I7(0) ¥V 0, iff T' is sufficient.

Proof. Let Y = Yy(X) = Vg log fo(X) and U = Up(T') = Vp log go(T).
Then
0<Eg[(Y - U)(Y = U)] |
=B (YY) + Eg(UU") —Eo(YU') — Eo(UY")
(13.45) = [X(Q) -+ IT(9> — E@(YU/> — Ee(UY’). [by (13.26)]

The 4j-th entry of Eo(YU ') is

., [9log fo(X) 9logge(T)] _ 8log fo(X)|,,,] 9logge(T)
6”““E{ o0, o8, | Bl =0, ']~ a9, '

However, for all (measurable) A C T,

Olog go(t) [ 0ge(t)
(13.46)//1 ["'—a’éz—“‘} 99(t>dt_[4 8@' dt
L /A go(t)dt

_ 9 5
= 3_9:'P9[T<X) - A]
0
06,

88& /IT—l(A) () fo(z)dz

0
:/IT—l(A)(LU) 'gee(ju)da?
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- it [2555) os
By {IT oy (X) [——-——-mogf@( )]}

[P
s )
= [ &, [HeEhlX) X>‘ t| w(ort,

Ologgo(t) _ o [9log fo(X)
90, o 0,

il

so from (13.46),
(13.47) ‘T = t} . [why?]

This implies that

_p [2loggs(T)  Blogge(T)
CA T 86; |’

which is the ij-th entry of I7(#), hence Eo(YU') = Ip(f). Similarly
Eo(UY") = Ir(0), so (13.45) becomes 0 < Ix(#) — Ir(6), proving (13.44).
Finally, equality holds in (13.45) iff Y = U a.e., that is, iff

dlog fo(x)  Ologge(t)

13.4 = €. =1,...,k.
(13.48) 2, 2, a.e. (z,t) fori=1,...,k
By integrating w.r.to 6; this implies that for a.e. (z, t),

(13.49) log fo(x) = log gg(t) + ci(z,t,0—;), i=1,...,k,

where 0_; = (01,...,0;—1,0i1+1,...,0k). Now take 55- ae for j # i to obtain

dlog fo(x)  Ologge(t) N Oci(x,t,0_;)
00, 06, 0
By comparing (13.48) with i = j to (13.50) we see that c;(z,t,0_;) cannot

depend on 6; for j # i, hence ¢;(z,t,0_;) = ¢;(x,t) cannot depend on § at
all. Thus from (13.49),

(13.51) log fo(z) =log gg(t) + ci(z,t), i=1,...,k,

(13.50) a.e. (z, t).
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so ¢;i(z,t) = c(z,t) cannot depend on 4 either. Therefore

fo(z) = go(t) - eV = go(t) - h(a,1),
so T is sufficient for 6 by the Factorization Criterion. L

13.4. A rigorous proof of the variance bound (13.2).

Our proof of the 1-parameter (k = 1) Information Inequality (13.2) blithely
assumed that % and [ could be interchanged in (13.4) and (13.5). Because
the latter involves the function T' = T'(X), our subsequent lower bound
(13.9) for the variance of an unbiased estimator 7" of 7(0) is not applicable
for all unbiased T" but only for those allowing the interchange of é—ié and |
The following method of proof avoids this restriction.

We continue to assume that X ~ {fo(z) | @ € 2}, a regular family of
pdfs (or pmfs). Also assume that the support Sx(6) = {= | fo(z) > 0} of
X does not vary with 6. (Again this does not hold for truncation families.)
For ¢ # 0 € 2 define

(13.52) A(¢,0) = Vary {%é—j{(% — 1j| < o0

Lemma 13.16. Suppose that 7(0) = Eg[T(X)] is finite V 0. Then

(13.53)  Varg[T(X)] > sup 0k ) S R 4 o O

¢ A(¢> 9) ¢—0 A(¢7 9)
Proof. Note that
(13.54) Eg [f"jgi - 1} z/ Hﬁgg - 1] Fo(z)dz =0,
fo(X) ] _ fo(X) .
Covs [T(X), (e 1} #/T( )[fe(X) 1| fo(@)d
- / (@) f5(X)da — / T(@) fo(2)dz
(13.55) =7(¢) — 7(0).




Now (13.53) follows from (13.52), (13.55), and the Cauchy-Schwartz In-
equality:

Varp[T(X)] > T{8) TOF v, 0

Our rigorous version of the Cramér-Rao-Frechét Theorem 13.2 requires
the following additional boundedness condition on the model {fs(x)} (not
on the unbiased estimator 7'(X)):

Condition B: For each 6 € 2, 3 an open neighborhood U(#) C Q of § and
a function G(z; 6) > 0 such that Ey[G(X; 0)] < co and

(13.56) H‘;—% — 1} < (p—0)*-G(z; 0) Ve U®). N

This condition holds if [verify!]

2
(13.57) sup {M} < G(z;0) YoelU(@®).
$cU(6) d¢

In particular, (13.57) holds in an exponential family
(13.58) fo(z) = a(0) - DT ()
provided that w(#) is differentiable [verify!].

Theorem 13.17. Suppose that 7(0) is differentiable and that the model
{fo(x)} satisfies Condition B. Then

)
¢—0 A(¢> 9) B IX ('9)

(13.59) S, @) —TO)F [T

Thus by (18.58), for any unbiased estimator T = T'(X) of 7(0),

[~ (0)]*
Ix(6)
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(13.60) Varg[T] >

[recall (13.9)]



Proof. Use Condition B to apply the Dominated Convergence Theorem:

_f¢,(m) -1 2
A o (T
lm ¢(j’f’9))2 = 1y | -f(;’_e)J fo(w)dz by (13.54)
- 2
Jim [ ]
- | S e
2
[
= I(0)
Thus (13.59) holds:
OO R () N o = e N L ())&
MA@ e AB ()
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14. The Role of the Likelihood Ratio in Statistical Inference; the
Method of Maximum Likelihood.

Again consider a statistical model (X, P = {FPy | § € Q}) where each Py
is determined by a pdf (continous case) or pmf (discrete case) fo(x) with
respect to a dominating measure du(z) (e.g., dz) . Recall our two goals of
statistical inference: given the observed data X = =,

e use z to make inferences about the unknown P, that gave rise to z;
e again using x, assess the accuracy (reliability) of the inferences.

In §11.3 we argued that all relevant information for inference about Fp
is contained in the collection of likelihood ratios

(e =)

0y, 0, € Q} .

Properties of Ly, o, ():

(a) Lo, 0, () is invariant under the choice of dominating measure for the
family {fo(z) | 6 € Q} and is the only such invariant quantity: For any
measurable A C X and any h(z) >0,

pix e A= [ fiuto) = [ |72 h@anton = [ 79 (o)

so the statistical model P can be represented equally well by the family of
pdfs {fg(a:) = J;f((;)) | 6 € Q} w.r.to the measure dv(x). The likelihood ratio

Ly, 0, () is the only comparison criterion §( fg,, fo,) that is invariant under
all choices of dominating measure, i.e., under all choices of h(z). That is, if

S fan o) = 873 15 =8 (265 LYy oy >0,

then & depends on fg, and fp, only through Ly, g, (take h(z) = fo,(x)):

6(f90> f01) = 5(17 L90,91)'
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(For example, fp, — fa, is not a function of Lg, ¢, and is not invariant.)
Therefore, since inferences about 6 should not depend on the choice of dom-
. inating measure, they should be based on the likelihood ratio.

(b) To test 6 =0y vs. 8 = 01, the decision should be based on the likelihood

ratio Lg, g, using the method of mazimum likelihood: If X = x is observed,

Jo, (z)

0 =20, if Lgo,gl (:13) = f@o(m) > 1;
infer : 0 =00 if Lg,p,(z)= —%l—g—% < 1
0
either if Lg, g, () = ;Zl Eg = 1.
. . 0
>
. 6“90 — ﬁf}*‘M ¢ !.90,9:'
{ i ™ . 2 3 !
I # | {sTzoawntallo Lo
IR B J
: LV}'))‘BI", : X X
> - . . ¢ A—>
X infer 929,  iafer.g=6 X
II: U/ “6'9)
:.
IL L‘e‘pﬁ(:(' 1 )(' xl
: > — et
X infer =90  afee 926, X

(c) |Le, 6, (x) — 1| indicates the reliability of our choice of 0o vs. 01:
In Case I, |Lg, 0, (x1) — 1| = |Lay,0, (x2) — 1| = same reliability at 1 and x5

for our decision that 8 = 6.

In Case I1, | Lg, g, (1) — 1| < |Lg,,6, (x2) — 1| = greater reliability at x5 than
at x1 for our decision that 6 = 6;. ' '

Thus, before observing X, Eg,|Le, 0, (X) — 1] or Eg,[(Lgg,e, (X) — 1)?] mea-
sures the expected accuracy = reliability of inference about 6 (when 6 = 6;).
These are intrinsic measures of the precision of the model.
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(d) To test Oy vs. 61, base the decision on the log likelihood Tatio lg, o, =
log Lg, 0, using the method of mazimum likelihood: If X = x is observed,

6 =20, iflg, e (z)=log ;Z;Eg > 0;
infer : 0 =0y iflg,e,(z)=log ;Z;Eg < 0;
either if Iy, ¢, (x) = log ;z;gz; = 0.
) 0*9\9,9)?@
I: 0 : ) ,’s ‘ E N IT: 0 -
N S AR a ._..7‘ ﬂ.@é%( 0
ﬂ@o)gl <Q LA

(e) |log.0, () — 0] = |lg, 6, (x)] indicates the relz'dbz’lz’ty of choosing 0y vs. 0;:

In Case I, |lg,.0, (1)| = |loy,0, (z2)| = same reliability at x1 and x5 for our
decision that 6 = 6.

In Case II, |lg,.0, (1) < |log,0,(x2)| = greater reliability at x5 than at xq
for our decision that ¢ = 0,.

Thus, before observing X, Eg,|lg,,0, (X)| or Eg, {[lgy,0, (X)]*} measures the
expected accuracy = reliability of inference about 6 (when § = y). These
are intrinsic measures of the accuracy attainable in the model. Two differ-
ent models {fp} and {go} can be compared on the basis of Eg, {[lg,,0, (X)]*}:

'

: l,é rol
A1F . (X ak9
Eeg u«%, ,{X)J SW)H E%MG‘G@‘ )) |

0 - | L, :

I‘Ia: | T, IIh: | /./ﬁl/ X
X

I

Ta:

.

L

L
—
o

XV
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The decision rule for choosing 6y vs. 0y is the same in la and Ib, and the
same in Ila and IIb. However, Eq, {[lg,,0(X)]?} is greater in Ib (IIb) than
in Ia (IIa), reflecting the fact that the expected accuracy = probability of
a correct decision is greater in Ib (IIb) than in Ia (IIa).

(f) Let {fe} be a regular family with a I1-dimensional parameter 0. Then
for 6 = 6y, Eg, {[l@o,g(XﬂQ} is approzimately proportional to the Fisher
Information Number Ix(6p):

(14.1) Eo, {[l60,0(0)]*} = (8 — 00)*Ix(60), 0= bo.

Thus Ix (0@), like Egy {[loo,0(X)]?}, is an intrinsic measure of the sensitivity
of the model { fo(z)} to local changes in 0.

Proof. Apply the first-order Taylor expansion of log fo(z) about 6 = fo:

Eg {llo0(X)]?} = / llog f () — log fou ()12 fao () da

~ / [(9 - Qo)é‘@%fé‘g'(m—)lezeor foo(z)da
=0 - 00)* Ix (6o)-

(9) Other measures of the intrinsic precision of a model {fo}:
Let G be any function on (—o0,00) satisfying |

1
(i) Gly) > 0 if y # 0, G(0) = 0; Gy

(ii) G(y) /* as y moves away from 0 (in either direction);

(iii) G(y) is smooth (= differentiable).

Then Eg, {G[lo, 0(X)]}, like Eqq {[lo5,0(X)]?}, is a measure of the intrinsic
precision of the model {fe}. However, the second-order Taylor expansion
of G(y) about y = 0 is |

G(y) = G(0) +yG'(0) +¥*G"(0)/2 + O(y?)
(14.2) = y2G"(0)/2 + O(¥*) [since G(0) = G'(0) = 0).
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Thus by (14.1) and (14.2),

B, {Glloo,6(X)]} ~ Eg, { [lao,0(X))*} - G"(0)/2
(14.3) ~ (0 — 00)*Ix(60) - G"(0)/2,

so the precision measure Eg,{Gllg,,0(X)]} is again approximately propor-
tional to the FIN Ix(fo).

An important example of a precision function G is the Kullback-Letbler
function

(14.4) GKL(?J) =e¥ — Yy — 1. : %y
This satisfies (i), (ii), (iii) and in fact is convex in y. Here Gy, (0) = 1, so
by (14.2), Gk (y) ~ y?/2 for y ~ 0. Thus by (14.1),

Eg, {GxLll60,6(X)]} & B, { [lo0,0(X)]*} /2
(14.5) ’ ~ (0 — 00)*Ix(60)/2-
But |
Egy {Gicwllay 0 ()]} = B, [e/%02%) — g, o(X) 1]

_ :Eeo [ ]{EO(@)}/_EQO‘[ZQO,Q(X )] -1
(14.6) = —Hey {log {go(é))} }
(14.7) = K(00,0),

the Kullback-Leibler (KL) distance between fo, and fg. Thus .by (14.5),
(14.8) K (6, 0) =~ (6 — 60)*Ix(60)/2 for 0 = 0o,

so the KL distance is also approximately proportional to the FIN Ix(fq).
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(h) K (80,60) = 0; K(60,0) > 0 if 0 is identifiable: 0 # 0o = fo % fo,-

" Proof. Because — log(+) is convex, Jensen’s inequality yields

K (6o, 0) = —Egy, {mg[ X)H

1as) ‘ _bg{EgO[ 911

—log(1) = 0.

Furthermore, by identifiability, ;; 9((XX)) is a non-degenerate rv [verifyl], so
; (X, ;
since — log(-) is strictly convex, strict inequality must hold in (14.9). U

Thus, for a general reqular family { fo}, K (0o, 0) has a unique minimum

at 0 = 00.‘
\./\

K(s0,):
©

(This also holds if 0 = (64, ...,0k) is k-dimensional.)

¢\r’

Examiale 14.1. fo = N1(0, o) (08 knoWn). Here fg(:i) = \/517—“70 e 6,
so for 8 # 6y,

lo,,0(z) = log L{?((:C))] sé)ofa "f"i

x ﬁe (x) : [
- (o= 60— (= - / \

(14.10) _ ?go 290) [m (M%)} /,J

Op

This is a linear function of z (as in the examples II above) with slope (9 %0),

The magnitude of this slope, and hence the “distance” between fy and foo,
increases if either [0 — 6| increases or 03 decreases:
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This behavior is reflected in K (Ao, 0) and Eo, {{lg,,0(X)]? }:

K (6o,0) = —Eq, {bg [1@0(&))} }

e (152

(6 — 00)*
202
(6 — 6p)?

(14.11) = = Ix(60) [by (13.39)]

so (14.8) is exact in this example. Also from (14.10),

s s - 90, [ (25)])

_ (_9_;‘_%9223 {Vargo(X) + (9;00>2}

- (5]

. 2
~ M [for 8 =~ 6]
90
(14.12) = (6 — 60)” - Ix (6o),

in agreement with (14.1). This confirms that both distance criteria K (0o, 0)

and Eg, {[lg,,0(X)]?} increase if either |6 — | increases or ol
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14.1. The maximum likelihood estimator.

Definition 14.2. Suppose that X = x is observed. We say that 0 = é(az)
is the mazimum likelihood estimator (MLE) of 0 if

(14.13) 3 max fo(z) = f3(z). U

The MLE may not exist (i.e., the maximum may not exist®?), and if 0 does
exist it may not be unique. However, if it does exist then it does not depend

on the choice of dominating measure for the family of distributions {Fp},
for (14.13) can be expressed equivalently in terms of the likelihood ratios:

(14.14) 30 st Lygla) 21 VOeQ.

Thus, if the MLE exists, it is a function of the minimal sufficient statistic
T** = the set of all likelihood Tatios (recall (11.41)).

Example 14.3. X = (X3,...,X,) ~ Uniform(0, §]. Then

|
1 :
fol@s, . @n) = 5o lo0.0(@m) 10,00y (%(1)) X‘

1

(14.15) = iz 00 () - 10,00 (2(1)); Xem

so the MLE is § = X(,y. Note that 6 differs from the UMVUE % X,y (Ex-
ample 12.14) and the minimum MSE estimator 242 X, (Exelclse 12.10).

Example 14.4. X = (X1,...,Xy) ~ Ni(p,0%), n > 2. Then

nlog(2m nlog o
l0g f0n(z) = — 12T o8 022

n log o _
(14.16) = const. — g 202 Z Tn,) —2—;—2—(:15” — ).

2 Eg.,let X ~ Ni(u, 02) (a single observation) with [1, o2 both unknown [verify!].
However, the MLE does exist for . > 2 observations — see Example 14.4.
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For fixed o2 > 0 this is maximized at fi = &, and the partial maximum is

nlog o2 1 @ _ 9
_Oonéah}ioolog fuo2(T) = const. — 5 T 352 Z‘:1(331 T
1 - o 1
(14.17) =c+ 5 nlogA—)\;:l(xi—xn) set A = =

Because [verify!] y(A) = [nlogA— A3 (2 — Zn)?] is a strictly concave

function of A > 0 and has its unique maximum at A = —2——, the
Z(mi_mn)Q

partial maximum is itself maximized at 6% = L5 (i — &n)?, so the MLE
of (11, 0?) is given by

~ 1 _
14. = Xn, 52 = — X — X.)%
(14.18) p 5 = =) (= K)

Thus the MLE [ coincides with the UMVUE X,, of u, but the MLE 42
differs from the UMVUE s2 = 157" | (X; — X,,)? of 0% (recall Example

12.12). Thus, although MLEs are asymptotically optimal for regular models
(Theorem 14.9), they need not be optimal?* for finite samples.

Note: If 4 = po is known, then the MLE of o2 is 6% = L 3°(X; — po)?,
which s the UMVUE of 02 in this case (see Example 12.11). , N

Example 14.5. Let X = (Xy,...,X,,) ~ i.i.d. Cauchy(6). Here

1 e 1
(14.19) folz) = — 1., [1 + (2 — 9)2]
(14.20) log fo(z) = ~nlogm — 3" logll + (z: = 6)°
Ldlog fo(z) v _ @i—0
(1421) =D T (zi —0)%

24 This statement is somewhat misleading. By the “MLE” we really mean (/l, 5’2)
considered together, not considered separately. It would be of interest to study the joint

performance of (/:L, 5’2) for some reasonable loss function L[(/fb, 52), (/J,, 02)].
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Thus there is no simple expression for the MLE 0 — it is (one of!) the roots
of a polynomial equation of degree 2n — 1. [See Examples 14.17 and 14.34.]

14.2. Strong consistency of the MLE.

Example 14.3 (Uniform) is a truncation family, which is non-regular. Ex-
ample 14.4 (Normal) is an exponential family, hence regular, while Example
14.5 (Cauchy) is non-exponential but also regular. The first basic property
of the MLE is consistency, which holds for both regular and non-regular
models.

Definition 14.6. Let X = (Xi,...,Xp) ~ iid. fo(x), § € Q. For each
n let 6™ = 0(X1,...,X,) be an estimator for . We say 0(™) is consistent

in probability = weakly consistent if, for each 0p € {2, ™) 2, 0y asn — oo
when 0 = 6. We say 0™ is strongly consistent if 6™ 3 9y when 0 = 6. -

Theorem 14.7. (Abraham Wald, 1949.) Suppose that 0 is an identifiable
parameter for the family {fo |0 € Q}. Let X = (X1,..., Xy) consist of i.1.d.
observations from fo(xz;), so fo(x) = [y fo(z:). Suppose that 6 = bp.

(i) If Q= {64, ...,0,} is finite, then the MLE 0(") always exists, is unique
for sufficiently large n, and is strongly consistent for 6p.

(i) If Q is not finite, assume that fo(x;) is (upper semi-)continuous in 0
and that these global dominance and identifiability conditions are satisfied:

X;)
14.22 Eg < sup log™ [—IG—(—'L—-}} < 00;
( ) % {eeg & | Foo(X0)
(14.23) 11013(}9ng(90, 6) > 0.

Then with Py, -probability 1 the MLE (") erists and is unique for sufficiently
large n, and is 6(m) strongly consistent for 0.

Proof. (i) Because ( is finite, the maximum in (14.13) is always attained,
so the MLE always exists. Let K (6, 0) denote the KL distance

(14.24) K (60, 0) = —Ea, {bg [%} }
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for a single observation. By identifiability (recall (b)), K (6o,0) > 0if 6 # 0o,
so in this case the SLLN implies that

(14.25) Py, Z{ [ )}}A—K(90,0)<0a3n—>oo =1,
=1 v feO )
hence
(14.26) H fo(X5) < H fo, (X;) for sufficiently large n} = 1.
i=1

Because 2 is assumed to be finite, this implies that

(14.27) Py,

n n
a X;) < X;) for sufficiently large n| = 1,
gz 110X < [ oo (X)) for suficently I }

~ hence, as asserted,
(14.28) Py, [é(") =y for sufficiently large n] = 1.

(ii) (sketch) If  is not finite, (14.25) and (14.26) remain valid for each
individual @ # 6y, but the maximum in (14.27) must be bounded by means
of the global assumptions (14.22) and (14.23), as follows [see figure).

B r?m &
H,(00,0)= 13", {1og [ ;;90(@]} —K (6, 9)

By (14.25), the random function Hy, (6o, 0) “> —K (6o, 0) pointwise for each
6 € Q. Assumption (14.22) lets us apply the Dominated Convergence The-
orem to show that —K (6, 6) is (upper semi-)continuous in 6 and that?®

(14.29) H,(60,0) 5 —K (6o, 6) uniformly in 6 € Q.

25 Actually, it only shows that 1imsupn_.,ooHn(90, 9) < —K(QO, 9) a.s. uniformly
in @ € (Q, but this is enough for the remainder of this argument.
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Furthermore, by the continuity of K (6, #), (14.23), and a compactness
argument, for any open neighborhood U (6y) of 6y,

(14.30) sup [—K (6, 0)] <O,
6¢U(6o)

so by (14.29) and the definition of H, (6o, 8),

1="PFy, | sup Hp(bo,0) <0 for sufficiently large n}

| 0¢U (o)
(14.31) = Py, | sup H fo(X;) < H fo, (X;) for sufficiently large n} :
0¢U(00) j—1 i=1

But this is equivalent to

(14.32) Py, [9(”) € U(6y) for sufficiently large n] =1,

for all open neighborhoods U(fp), which in turn is equivalent to g(n) 43 Bo.

Thus the MLE 6 is strongly consistent for 6y, as asserted. L

14.3. Asymptotic normality and asymptotic efficiency of the MLE.

The second basic property of the MLE is its asymptotic normality as
n — 0o, which holds when X = (Xy,...,X,,) consists of n ii.d. ob-
servations?® from a regular family of pdfs {fo(z;) | § € Q} with com-
mon support, ie., Sx(0) = {z | fo(z) > 0} of X does not vary with 6.
Furthermore, its asymptotic variance is essentially the CR lower bound
1/Ix(6p) = 1/nlx,(0y), so the MLE is said to asymptotically efficient.

First consider the case where 6 is a single real parameter and Q =
(a,b) € R! is an open interval, possibly infinite. The likelihood function

26 The i.i.d. assumption implies that the FIN [x (9) = nIXi (9) - 00 as 1 —» OQ.
More generally, asymptotic normality and asymptotic efficiency continue to hold without

independence (e.g., the observations could be serially correlated) as long as  x (9 ) — 0OQ.
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(LF) L, () and log likelihood function (LLF)1,(8) are given by

(14.33) Ln(0) = Ln(0; w1, o) = [ ] fo(w0),
(14.34) 1,(0) = 1,005 z1,...,2,) = Zlog fo(z;).

The MLE é(”), if it exists, maximizes L,(@) or, equivalently, maximizes
1,(6). Because [,(0) is smooth, we may try to find the MLE by finding the
roots of the likelihood equation (LEQ)

dln 9>Eii@§_ﬁ&@

(14.35) e -

= 0.
i=1

The LEQ?7 can have no real roots, one real root, or multiple real roots
in Q = (a,b), and such a root may correspond to a local maximum, local
minimum, or inflection point of [,(#). If we solve the LEQ and find a real
root A we still must determine what kind of root it is. Even if we find
it to be a local maximum, we cannot yet conclude that it is the MLE 9(”)
which is a global maximum of the LLF'

Thus, determination of the MLE () requires global maximization, a
harder task than finding a root 8(™ of the LEQ. Well before Wald’s 1949
strong consistency result for 6(") Fisher and Cramér already established
the existence, asymptotic normahty, and asymptotic efficiency of any weakly
consistent root 6() of the LEQ. Of course, if the conditions for Wald’s strong
consistency theorem hold then the actual MLE 0(") must itself be a weakly
consistent root of the LEQ (since a global maximum over an open set {2
must be a local maximum), hence 6(n) itself must be asymptotically normal
and asymptotically efficient.

We now present the results of Fisher and Cramér for a single real
parameter §. Throughout the discussion, let 8y denote the true value of 6.

27 As in Remark 13.5,let 6 = 0(1/) be a smooth monotone function of v/, so g, (a;) =
fg(,,) (x) is a reparametrization of the model. Since leng;(w’) dlogdjg(wi) 35’ if
in addition % # 0 Vv then the roots of the LEQ (14.35) correspond exactly to the

roots of the LEQ Y | __l_o_g__g_l,_@c_z_ = 0 expressed in terms of V.
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Proposition 14.8. There exists at least one strongly consistent sequence

{6} of roots of the LEQ (14.35).

Proof. For each k = 1,2,..., it follows from (14.29)-(14.30) that there
exists ny such that n > ng = Hy (60,00 + k1) <0, 50 In(-) has a local
maximum 6, j in (6 + k~1). Because l,,(-) is smooth, 6, must be a root
of the LEQ. If we define

(14.36) 6 =8, for ny <n < ngyi,

then 6™ — 6y as n — oo, so {8} is strongly consistent. Il

Theorem 14.9 (Fisher-Cramér). Let {#(™} be any weakly consistent
sequence of roots of the LEQ (14.85). Assume®® that forr =1 andr = 2,

d" log fo(Xs)
dor

< 090,

(14.37) Eg,
0=0¢

and that for r =3 3 an open neighborhood U(6y) of 0y such that

d’ log fo(X:)
de3

(14.38) Eg, | sup

0eU(60)

} = Q(Qo)\< 00.
If the information number 1(0y) = Ix,(00) > 0, then

(14.39) Jn ((5(“) = 90) 4 Ny [0, _I_(%o_)] ,

S0 {5(”)} is a (weakly) consistent, asymptotically normal, asymptotically
efficient (CANE) sequence of estimators of 6p. Thus if the conditions for
Wald’s Theorem 14.7 holds so that the MLE sequence {é(”)} 18 a consistent
sequence of roots of the LEQ), then {6} is CANE for 6.

28 Actually, (14.39) holds under much weaker conditions: only (14.37) for the first
derivative (1 = 1) is needed (Lecam (1970) Ann. Math. Statist.). In fact (14.39) holds
for an i.i.d. sample from the double exponential distribution, which is not fully regular.

Here the MLE is the sample median, which is asymptotically normal by (10.79).
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: ~ 5(n) g(n)
Proof. Since #(™ is a root of the LEQ, %—(%——) = (0. Now expand fll”—%——l
in a 2nd-order Taylor expansion about 6 to obtain

dly (0™ dln(00) | iy 5 B2ln(B0) | (67 —60)® d*1a(0},)
(14.40) 0= —* 72— = — +(O"—b0)— 03
for some 0% € (6y,0(™). Thus |
_dla(60)
a(n) _ —do__
(1441) (@ %) = ey L (B —00) &1 (0;)
do? 2 des

SO

e “\/ﬁ{%Z-—Ef—iQ:Q}
V(0™ — 6y) = °

d?lo i g(n) g i
x| ]G [1y St
_ —vn [ 2 Uil
- [l sz] (G(n) 6o) { ZW*] ’
Since Eg, (U;) = 0 [why?], the Central Limit Theorem yields

9——-9;]

(14.42)

(14.43) — [ Z U] 1 [0, Varg, (U;)] = N1 [0, I(6o)]  [why?],
while the WLLN yields
(14.44) LSV DB (V) = —1(60) by

Furthermore, since 8™ % 6, Pgo [0* c U(0o)] — 1 (U(Bo) in (14.38)), so
(6 — 60) 5~ yp 6o| d* log fo(X:)

im1 GEU(GO) do?
But (14.38), the WLLN, and the weak consistency of {6(™} imply that

Py,

|0<n>— fo| d®log fo(Xi)| B
()= =2 sup 1=—ggr | = o) Q) +op (] = op(L)
hence also

j(n) _ n
(14.46) (9—2-7-1—90-2 > Wi =op(1).
1=1

237



Thus (14.39) follows from (14.42) - (14.46) and Slutsky’s Theorem [verify!].

Note: Assumptions (14.37) and (14.38) in the Fisher-Cramér Theorem are
called the Cramér conditions. These are local conditions, since U(fy) is
an arbitrarily small neighborhood of . By contrast, the Wald condition
(14.22) is global, since the supremum is taken over (2.

Exercise 14.10. The asymptotic normal approximation (14.39) can be

. . _ _ . ~('n,) 1 o
used to obtain an approximate (1 — «)-confidence interval 6 + \/nl_w)z?

for 6. In general, however, this cannot be used because ¢ is unknown.
Instead, show that under the Cramér conditions, () is continuous in ¢
and that for any weakly consistent estimating sequence 6(™) for @,

~ ‘ 1
(14.47) M) £ ———— 22 and

nl (")

is also an approximate (1 — a)-confidence interval for 0.2% [Alternatively,
one might try to find a variance-stabilizing transformation.] L

Exercise 14.11. Let (Ny, Ny, N3) ~ Trinomial(n; 6, 62,1 —6 — 6?). Specify
the allowable range of 6.

(i) Find a minimal sufficient statistic. Is it complete?

(ii) Specify the asymptotic distribution of 0,,, a CANE root of the LEQ.
(iii) Now let (N1, Na, N3) ~ Trinomial(n;8,0,1 — 26). Repeat the above
analysis for this model, and compare the asymptotic efficiencies of 8,. U

14.4. The possibility of multiple roots of the LEQ.

Under the Cramér conditions, there is a unique weakly consistent root of
the LEQ (we only prove this for the case where 6 is a single real parameter):

Proposition 14.12. There ezists € = €(6y) > 0 such that

(14.48) Py, [3 > 2 roots of the LEQ in (g = ¢€)] — 0 as n — oo.

29 Efron and Hinkley Biometrika (1978) recommend replacing 1. (g(n)) by the ob-
served information —len (Q(n)) /392.
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Proof. Choose € > 0 small enough that 6y € € U(fy) and € < 2%?83) (for

definitions, see (14.38)). For all § € (6 +¢), 3 0 € (0o, 0) such that

ldzln(ﬁ) ~ 1d%1,(60)| _ 10— 6ol ' d31,(6%)
n df? n d#2 | n de?
€ - d 1Og f@(Xz)
< = sup
n ;GEU(GO) do®
Thus by (14.44), (14.38), and the WLLN,
1d?1,(0) _ 1d%1,(0 . d31 Xi
p 1RO 1) | S| los ()
0e(fote) n do n df n im1 6cU(6o) dé
= [=1(00) + 0p(1)] + € - [Q(6o) + 0p(1)]
I
(14.49) < - (20) + 0p(1)
Thus
(14.50) Py, [1n(+) is strictly concave on (6p €)] — 1 as n — oo,
which implies (14.48). L

By combining Propositions 14.8 and 14.12 we conclude that under the
Cramér conditions, there exists a unique weakly consistent root of the LEQ.
Therefore, if the LEQ has a unique root, it must be the uniqgue CANE root.

If the pdf fo(z) is strictly log concave in 0 (i.e., log fo(x) is strictly
concave), then the LLF 1,,(8) = Y7, log fo(z;) is strictly concave on Q, so
the uniqueness fact (14.47) can be greatly strengthened: for alln, the LEQ
can have at most one root in the entire parameter space §2, which therefore
must be the unique CANE root. This occurs, for example, when {fy(z;)} is
a l-parameter exponential family:

Proposition 14.13. (i) Any ezponential family pdf fo(z) = a(0)eT® h(x)
1s strictly log concave in its natural parameter 6.

(i1) If the equation
(14.51) Eo(T) = T(z)
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has a solution 8 = 0(z) then this solution is unique and 0 is the MLE of 6.

(iii) Tx (0) = Varo[T(X)].

Proof. (i) First, [ fo(z) = a(f) [ efT@) h(z)dz = 1 implies that

(14.52) a(f) = fef’TflL(x)dw’
dloga(9)  [Te’Th(z)
a9 [ efTh(z)
= — /T - a(0)eT h(x)
(14.53) = _Eo(T),
Ploga(f) [ Th(@) [ T2 h(z) - [[ T’ h(z)]’
do? B [f e”h(m)]Q
2
= — /T2 - a(0)e?T h(z) + l:/T : a(@)eHTh(:U)}
(14.54) - = —Vare(T).
Thus

(14.55) log fo(z) = loga(0) + 0T (x) + log h(x),
dlog fo(xz)  dloga(0)

(14.56) +T(x) =T(x) — Eo (1),

do N df
d?log fo(z)  d*loga(f) |
(14.57) B0 - S — —Varg(T) < 0.

Thus the LLF is strictly log concave.
Parts (ii) and (iii) now follow from (i), (14.56), and (14.57) [verify!]. U

Exercise 14.14. Suppose that X ~ Binomial(n, p) with 0 < p < 1 un-
known. This is an exponential family with T'(X) = X and § = log =,
so Proposition 14.13(iii) implies that Ix(0) = Varg(X) = np(1 — p). This
appears to be different than (13.17) (where 6 « p). Explain and resolve
this apparent contradiction. [See Remark 13.5.] L
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Exercise 14.15. Show that the Cramér conditions in Theorem 14.9 are
satisfied for n i.i.d. observations from any 1-parameter exponential family

{folz:) = a(0)eTEIh(z;)}. [Use (14.52) - (14.57).] 0

Non-exponential families must be considered on a case-by-case basis.
Here are two well-known examples where the LEQ may have multiple roots.
Further discussion appears in Kendall & Stuart Vol. II and Perlman (1983).

Example 14.16. Let <)§1> ey )5” be an i.i.d. sample from the
1 n
bivariate normal distribution Ny {(8) , <F1) [1)>:|, where the means and

variances are known but the correlation p is unknown (p € Q = (—1,1)). It
can be shown (see Example 14.30 Case B) that:

(a) the LEQ is a cubic equation in p, hence has either 1 or 3 real roots;

(b) At least 1 root occurs in (—1,1);

¢) P,|exactly 1 root occurs in (—1,1)| — 1 as n — o0. ~t i = VA
p v

Fact (c) is stronger than the asymptotic local uniqueness result (14.48) and
can be expressed as follows: there is an asymptotically globally unique root
of the LEQ, which must therefore be the CANE root.?9 This is not entirely
satisfactory in practice, however, since P[3 roots in (-1,1)] > 0 for any finite
n and we don’t know which of the 3 to choose. Several ways to treat this
uncertainty are discussed in Example 14.30 Case B and Exercise 14.32. L

Example 14.17. Let X1, ..., X, be i.i.d. observations from a Cauchy pdf

1 1

Jol@i) = i @ — )7

with —oo < 0 < oo unknown. As seen in Example 14.5, the LEQ is a
polynomial equation of degree 2n — 1, hence may have as many as 2n — 1
real roots. By Proposition 14.12 exactly 1 of these roots is consistent, hence
is CANE by Theorem 14.9, but again we don’t know which of the multiple
roots to choose. Here, unlike Example 14.16, the “extraneous” roots do
not cease to exist (with high probability) as n — co. Perlman (1983)

30 which exists by Proposition 14.8 and Theorem 14.9.
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proved that the extraneous roots 2, +00, then Reeds (1980) proved the

remarkable result that the number of extraneous roots <, Poisson(A = 1/m).
In particular, as n — oo,

P[3 > 1 extraneous roots] — 1 — e 1™ 2 0.273. U

Several methods to deal with the uncertainty caused by multiple roots
of the LEQ have been proposed. The first two (I, IT) aim to find the CANE
root, while the last two (III, IV) produce approximations to this root that
are also CANE estimators:

I. Start with some consistent but possibly inefficient estimator 0 () such as
the sample median, then select that root 6" of the LEQ that is closest to

6™, By Proposition 14.12 and Theorem 14.9, this 6(™) must be the unique
CANE root of the LEQ.

II. Among all roots of the LEQ), select that root 6(") which gives the largest
value of the LF. If Wald’s condition for strong consistency of the MLE 6()
is satisfied, then (™ must be the unique CANE root of the LEQ.

III. Use the first Newton-Raphson approximation for the LEQ. Start with
some (perhaps inefficient) estimator 956‘)) that is v/n-consistent for 0o, i.e.,

egg)) — o = Op(nml/Q)-

Using Gég’)) as a starting point, begin to solve the LEQ by the iterative

Newton-Raphson method. Then the first iterate 02?)) is a CANE estimator:

Newton’s method for solving g(8) = 0 for a smooth function g.

Let (o) be an initial guess and consider the first-order (linear) Taylor ap-
proximation for g about 6 = 60):

(14.58)  g(0) =~ g(6(0y) + (6 —0(0)) g'(O(0)) = h(0).

Now solve the linear approximating equation h(f) = 0O: L

/
/

y

®) Z
Do — Oy — g(0(0)) 9\) /\/
W =00 T 0 y) N/

e

9249 g @

4

#



If this procedure is iterated, using 61y as a new starting point to obtain
R | g ( )
0(2), etc. then 6y converges to some root of g(f) = 0 at a geometric rate.)

Theorem 14.18. Suppose that fo(x;) satisfies the Cramér conditions and

that OEQ)) is v/n-consistent for 6g. Then the first Newton-Raphson iterate

din (983))
(n) — p(n) _ do
62
for solving the LEQ %@— = 0 is a CANE estimator, i.e.
(n) _ d 1
(14.60) v (00) = 60) % My (0, T 90)) .

The result (14.60) remains true if 087’)) is replaced by

(n)
dln (9(7)

(14.61) 0‘83) = 953)) 4 de(n) [note the “+” sign],
nl (9(0)

N—

which may be easier to compute.3!

dln(66)) .
Proof. (sketch) In (14.59), expand ——;~— twice about 6y and expand
d%n(egg)))
o2

once about 8y to obtain

Aa(00) | (p(r) _ g0y PlalOn) 4 OG0 a'tu(or)

_ An o (0) 62 3 d63
(14.62) 67 =6 - - - P TMCIT
W © : ?9(200) + (QEO)) — o) 2{53 )

for some 0, 0>* € (6o, Hgg))). Therefore, as in the proof of Theorem 14.9,

(n) .
1 4?1, (60) n (60y —00) 1 d®1,,(6%)

Jn (6 _90> _ \/ﬁ(g(n) _90> | _ _n__do? R dg°__
( (1) (0) ?_%L_dZZélo(zHo) + (9%0)) . 90)% d3lzégn )

31 E.g. in a location family f(:c — 9), 1(0) does not depend on 0 (Example 14.34).
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1dl, (60)
\/ﬁn do

%dzlge(zeo) N (953)) _ 90>%d3l§(§2**)

B —1(60) + 0p(1) Vg 2 Us
= 0p(1)- [1 ~ T1(6) +op(1)} - —I(60) + op(1)

(0 1)

1=

by (14.43) and Slutsky’s theorem, where U; = g—lgg—g-;gg—(—il ” W
Exercise 14.19. Show that (14.60) still holds if 9™ is replaced by 6™ .0
(1) (1)

IV. Introduce nuisance parameters that actually simplify solving the re-
sulting system of LEQs. Because the values of these nuisance parameters
are known, their estimates can be used as covariates to adjust the estimate
of @ in order to produce an estimator that is fully efficient, i.e., CANE.

For example, if we begin with a location parameter model with pdf
f(z — 0) (e.g., the Cauchy location family in Example 14.17), we can in-
troduce a scale parameter o, resulting in a location-scale family 1r(=2).
The resulting set of two LEQs (obtained by differentiating w.r.to both 6 and
o) may actually be easier3? to solve, producing a joint CANE 0, 5(m)
with asymptotic covariance matrix [I (8,0)]~! given by the inverse of the
information matrix — see Theorem 14.21. Because we know that o =1, 6(m)

can be adjusted according to its approximate regression on (™) — 1. The
resulting adjusted estimate®? 6™ will be CANE for 0 — see §14.6.

Thus, Method IV requires the extension of the Fisher-Cramér result to
the multiparameter case, presented in §14.5. Discussion of Method IV will
be continued in §14.6. (Also see Cox and Reid (1990) Biometrika, Fosdick
and Perlman (2013) Statist. Prob. Letters.)

32 In the Cauchy case this system actually has a unique solution (é(n), 5'(n)) (cf.
Copas Biometrika (1975)).
33 In a location-scale family %f(g:_;_@) with f(:U) = f(——a:) , the parameters f and

O are orthogonal, i.e., I1o = 0 (recall (13.37), so o) = o(n) (see Example 14.35(ii)).
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14.5. The multiparameter case.

Let 0 = (01,...,0k) be k-dimensional with {2 an open subset of R*. The
likelihood function (LF) L, (0) and log likelihood function (LLF) 1,,(0) are
given by (14.33) and (14.34). Here we may try to find the MLE o) =
@™, ... ,OA](JL)) by finding the roots of the set of likelihood equations (LEQs)

i=1,...k

8ln(6) — - 0dlog f9<wl>
(14.63) 59, Zl T 0,
Again the LEQs can have no real roots, one real root, or multiple real roots
in 2, and such a root may correspond to a local maximum, local minimum,
or saddle point of I,,(0). If we solve the LEQ and find a real root (™), we
still must determine what kind of root it is, and even if we find it to be a
local maximum, we cannot yet conclude that it is the global MLE o),

We again denote the true value of 6 by 0o = (P10, - - -, Ok0)-

Proposition 14.20. Suppose that 3 an open nesghborhood U (6o) of 0o s.t.

+ fe(Xz')}
(14.64) oy {9:(111(1?90)1% {feo (X:) } =

Then there exists at least one strongly consistent sequence {ON(”)} of roots
of the system of LEQs (14.63).

Proof. Similar to the proof of Proposition 14.8, except that the Wald-like
condition (14.64) is used to show that forallk=1,2,...,dnx 2 n 21k =
SUP)||9— o || =k~ 1,(6) < 0, hence I, (-) has a local maximum 0y, in the ball

~

16 — 6| < k1. Because I (+) is smooth, 0r,; must be a root of the LEQ. U

Theorem 14.21 (Fisher-Cramér). Let {6 be any weakly consistent
sequence of roots of the LEQs (14.68). Assume that forr =1,2,3, the r-th
order partial derivatives of log fo(X:) w.r.to 01,... .01 satisfy boundedness
conditions corresponding to (14.87) — (14.89). If the information matriz
I(60) = Ix,(00) is positive definite, then

(14.65) NG (é<”> —~ 90> < Nk (0, [1(60)] 1),
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so {0} is a CANE sequence of estimators of 0o. Thus if the conditions for
Wald’s Theorem 14.7 holds so that the MLE sequence {0} is a (weakly)
consistent sequence of roots of the LEQ), then {9(”)} is CANE for 6y. [l

Under the multiparameter Cramér conditions, there is a unique weakly
consistent root of the LEQs. Let B(fg;¢€) be the ball {6 : |6 — 6| < €}

Proposition 14.22. There exists € = €(fp) > 0 such that

(14.66) Py, [3 > 2 roots of the LEQ in B(fp;¢)] — 0 as n — oo. L

Thus, under the conditions of Proposition 14.20 and Theorem 14.21,
there exists a unique weakly consistent root of the LEQs. Therefore, if the
LEQs have a unique root, it must be the unique CANE root. L

Again, if the pdf fp() is strictly log concave in 6 then the LLF [,,(0) =
S log fo(z;) is strictly concave on ) (now assumed to be an open and
convez subset of R¥) and (14.66) can be greatly strengthened: for all n,
the LEQ can have at most one root in the entire parameter space 2, which
therefore must be the unique CANE root. This occurs when {fo(z;)} is a
k-parameter exponential family with natural parameter space {1:

Proposition 14.23. (i) An exponential pdf fo(z)=a(0) exp[d_ 0;Ti(x)]h(x)
is strictly log concave in its natural parameter § = (61,...,0x) € 2.

(i) The LEQs (14.63) are equivalent to the system of equations
(14.67) EQ(TJ - Tz(:r), 1= 1, ceey k.

If this system has a solution 0 = 0(z) in Q then this solution is unique and
0 1s the unique MLE of 0.

(i) Ix (8) = Cove[(T1(X), . .., Ta(X))'] U

Exercise 14.24. Prove Proposition 14.23 by establishing the following
facts: for 4,5 =1...,k,
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dloga(9)

(14.68) 26, —Eo(T3);
02 loga(0)
4. allias i 2 S 5 T5);
(14.69) 5655, Cove(T3, T5)
(14.70) Olog fow) _ D108 all) | 4y = 13(z) — By(T),
90; 80,
02log fo(z)  O*loga(f) _
. - — _Cove(T,, T}). 0
(14.71) 86;00; 00,90; Covo(T:, T5)

Example 14.25. (Multinomial) Let (X1,...,Xg) ~ My (n; p1y. -, Dk)s
where 0 < p; < 1, py + -+ +px = 1, 50 Q is (k — 1)-dimensional. From
(7.21) the pmf can be written as follows: for z1 + .-+ +zx =7, '

n! - .
3’)1! v .’L’].C! P1 Pr
_ n! e log pr | 6531 log %+"'+xk—1 log Pl;;l
21! x!
(14_72) _ nl . 1 _ e$191+“'+$k——19k-—1)
mll...mk! (691+...+69k—1+1>
o). — Pi g _ Pk — 1 i i —1)-
where 0; = log Zt, since pr = o095 = @i gt Thisis a (k—1)
parameter exponential family with natural parameters 0 = (01,...,0k-1),
sufficient statistics (T1,...,Tk-1) = (X1,..., Xk-1), and normalizing con-

stant a(0) = (€% + -+ + €%t + 1)"". Thus

(14.73) ~loga(f) =nlog (601 4ot 4 1),
_ Ologa(l) ne’s _
(14’74) EG(T’L> - 801 - 691 —l— . + eekz—l + 1 - np’&?
0% loga(f ,
(14.75) Cove (T}, Tj) = "‘55%5&2 — [verify] = n(pidi; — pipj),
00
o 1 ifi=g
forz,]fl,...,k-i,where&J—{0 i .

247



By (14.67) and (14.74) the MLEs ﬁgn), - ,ﬁl(cn_)l are given by

) _ Ti L _ s _ Tk
(14.76) pi = i=1,...,k—1. [Alsopk —n.]

Thus p™ = ,...5",)" is the MLE of p = (p1,...,pr-1)"-
By Proposition 14.23(iii) and (14.75), the information matrix is

(14.77) Ix(6) = n(Dy —pp') : (k= 1) x (k= 1),

where D, = diag(p1,...,pr—1) (recall (7.33)). Also, recall ((%) p.91) that
D, —pyp is nonsingular since 0 < p; < 1 for each ¢. Thus the multiparameter

Fisher-Cramér Theorem 14.21 implies that the MLE 6(n) of 0 satisfies

(14.78) VA0 —6) % Ne_1 [0, (D, —pp') ']

But from (14.74) and (14.75) we have for 4,7 =1,...,k -1,

. o0
pi=pil0) = G 1

Opi _ Ops(0)

a0; —  96; it mpib,

so the (k — 1) x (k — 1) matrix of partial derivatives is given by

_ ops
A= {593'

Thus, by extending the multivariate propagation-of-error formula (10.31)
to the vector-valued function p(8) = (p1(6),...,pk—1(0))’, (14.78) yields

i,jzl,...,k—l}:l)p—pp’.

Vi [p(E™) = p(0)] 4 Nt [0, AD, — ) AT,
or equivalently,
(14.79) Vi (5 = p) S Niws (0, Dy — )

(Note that (14.79) is equivalent to (7.34), which we obtained directly from
the multivariate Central Limit Theorem.) U
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Exercise 14.26. Apply Proposition 14.23(ii) to find the MLEs /i and &2

when X = (Xi,...,X,) consists of n ii.d. observations from N; (u, %)
with o and o2 unknown. Specify the natural parameters 61,602 and use
(14.68) to find Ey(T3). | L

Exercise 14.27. Show that the Cramér conditions in Theorem 14.21 are
satisfied for n i.i.d. observations from any k-parameter exponential pdf

fo(x;) = a(0) exp[Z?zl 0,1 (x;))h(z;). [Use (14.68) - (14.71).] L

Remark 14.28. In Proposition 14.23, the assumption that {2 is an open
subset of RF is critical. If Q is a curved surface in R* of dimension d < k
(e.g., recall the Ny(u, u*) Example 11.13(ii), where d = 1 < 2 = k) then

the model is a curved expo family with 0y, ..., 0y expressed as functions of
d actual parameters 1y, ...,nq. In this case the actual system of LEQs is
ol, (0
(14.80) —ﬂ—@:o, j=1,...,d,
on;

and this system may have multiple roots. Drton and Richardson Biometrika
(2004) show that this occurs in an apparently simple Gaussian seemingly
unrelated regression model, contradicting earlier assertions in the economet-

rics literature. L

The Wald and Fisher-Cramér theorems show that for sufficiently reg-
ular models with ii.d. observations, the MLE (") = (égn), . .,é,gn)) is a
consistent estimator of = (01,...,0) as the sample size n — oo. Here £,
the number of unknown parameters, remains fixed as n — co. However, if
k = k(n) — oo as n — oo then §(™) need not be consistent for #. (Note that
0 =0, = (01,...,0kn)) now depends on n.) Here is a classical example:

Exercise 14.28. (Inconsistency of the MLE in the presence of many nui-
sance parameters: the Neyman-Scott example, Econometrica (1948).) For
n=12...let X(n)={X;; |i=1,...,n, j=1,...r} consist of nr inde-
pendent rvs with X;; ~ Nl(,ui,o2). Suppose that » > 2 is fixed while
n — oco. Here the parameter is the (n + 1)-vector (u1,...,fn,02), SO
k(n) =n+ 1 — oco. Suppose that we wish to estimate o2 when p,..., in
are unknown nuisance parameters.
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(i) Show that the (unique) MLE of (02, p1,...,pun) is (62, X1.,..., Xn.),
where

(14.80) 62 = 1 ZZ(XZ-J- - X)) X = }-inj .

ii) Show that 62 5 =152 ags n — oo, so the MLE-based®* estimator 62
n r

mn
is not consistent for o2. Of course this is easily adjusted: the MLE-based
estimator —£762 is consistent for o2, U

14.6. The effect of nuisance parameters on asymptotic efficiency.

Asin §14.5, let 6 = (01, ...,0;)" be k-dimensional with €2 an open subset of
RF. Let (") = (égn), . ,élgn))’ be any CANE sequence of estimators of 6:

(1481)  n (éw - 9) < Ni (0, [1(0)]7Y) [recall (14.65)],

where I(0) = Ix,(0) is the information matrix for a single observation.

The results of §13.2 readily apply to determine the asymptotic efficiency
(SO NI : . : :
of 6, for estimating 6; when 0y, ..., 0k are unknown nuisance parameters:

(1482) V(B —61) S Ny (O’ TE%@) |

where
(14.83) L11.2(0) = I11(0) — I12(0)[I22(0)] " 121 (6)
with I(6) partitioned as

1 k-1

(14.84) 1(0) = llﬁ_ , (?1&2 ?ZEZ;)

34 Wwe say “MLE-based” rather than “MLE” to emphasize that the MLE refers to an
estimate of the entire underlying pdf fo (:C) that gave rise to the observed data . That
is, “the MLE” refers to an estimate of the entire parameter vector 0, = (01, R Qk(n)),

not merely to an estimate of one its components.
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We know from Theorem 14.9, however, that the optimal asymptotic vari-
ance for estimating 61 when 0y, ... ,0) are known is 1/I11(), not 1/I11.2(6).
Thus the presence of the unknown nuisance parameters leads to a reduction
of asymptotic efficiency for estimating 0 given by the ratio

I11.2(0)
0 < 1.

(No reduction of asymptotic efficiency is incurred if the parameters 6; and
(03, . ..,0%) are orthogonal (see (13.37).)

(14.85)

Now suppose that the true values (620, . ..,0k0) = %o are known. Then
as in Method IV in §14.4 (p.244), the estimates (é’én)) . ,ONI(cn))’ = (") can

be used as covariates to adjust 61" in order to produce an estimate that is
fully efficient, i.e., CANE, for 6;. Here are the details:

From (14.81) and (14.84) we have the approximation

n(n) — () 0 1 I (0 7¢0) I12<01)¢0)>w1
(n) = ~ 1 1/ 131(01
= <%51(n)> ~ Nk (‘PO) "n (—721(91>¢0) T2 (01, %0)

| _ (6, Y1 212
(14.86) = N _<¢0>’ <221 222” .

Thus the approximate conditional distribution of 9N§n) | (™ is given by

o) | ™ ~ Ny [01 + S0 555 (B = o), 211'2]

(recall (8.72)), so conditionally and therefore unconditionally,
0 — S35 (5 — o) & N1 61, Pav.a

But [verify! — (8.33) provides one approach]

(14.87) $19855 = —[I11(61,%0)] " T12(01,%0),

1
14.88 S = ,
( ) EE R S RD]

SO

5 = 68 4 1461, o)) 12 (01, o) (™ — o)

\ 1
14.89 ~ Ny (61, ,
( ) ! ( ! nf11(91,¢0)>
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hence \/n (é(n) — 01> attains the optimal asymptotic variance 1/I11(61,%o).

However, 9( ") depends on the unknown value of 01, hence ¢; must be

replaced by some consistent estimate 9( Yof 04, (e.g. 0( )) (recall Exercise
14.10). Thus Method IV finally leads to the adjusted estimate

(14.90) 0 =6 + IO o) T2 (68, o) (%™ — tho).

Exercise 14.29. Show that é§“> is a CANE estimator for 0y, i.e.,

. | 1
(14.91) n <0§”) . 91> 4 N, <0, T

—_— recall Exercise 14.10].
01 y ¢0) > [ ]

Example 14.30. Case A: Bivariate normal distribution, p,02,0% un-

zyYy
known. Let X1 e ey Xn be an i.i.d. sample from
Yl Y;z

0 02 pogoy
o w02 )

The joint pdf f,o2,02(- ) of the sample has the exponential form [verify!]

1

‘ oy T
(2m) [0202(1 — p2)] % exp{ 2(1— p? { 5oy 2T T o o> et ZZyz
= (23()” (40,05 — 67)% - exp {01 S wiyi+02) w7 +0s Zyg}

(14.93) = a(0) - exp {0111 + 02T + 0313},
where
6 = (61,02,03),
(14.94) 6, = P P S N S
(1= pHowoy’ 2(1 - p?)o 2(1 - p?)o;
1

(14.95) a(6) = (40205 — 67)%,

(2m)™
(14.96) T1 = Zmiyi, T2 = Zm?, T3 = Zy?
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By Proposition 14.23(ii) and (14.67)-(14.68) (cf. pp.246-7), the MLE (™) =
(égn), ég”), égn)) is the unique solution to the system

B _ Ologa()  nby
T =Bo(T) = =357 = 49,0, 62’
B _ Ologalf) 2n03
To=Eo(l2) = =55 = “ 46,6, — 62’
dlog a(h) 2nby
Ty = Fo(T3) 805 46,05 — 02

More dlrectly, E¢(T1) = npozoy, Eg(1h) = no2, Bg(T3) = na , so the MLE

of (p, 02, 5) is obtained from the usual moment equations:

2 2
(14.97) p™ = LI g 2T 52 — LYi
VOO n n

By Proposition 14.23(iii) and (14.71), the information matrix I(0) for
the parameter § = (1,02,0;) based on a single observation (X;,Y;) can

be obtained from the partial derivatives 6—671;—%‘2—(9—) with n = 1, then the

asymptotic normal distribution of 6™ is given by (14.65). However, we
are more interested in determining the asymptotic distribution of the MLE

(™, 52 AQ(n)) This can be done via the multivariate propagation-
of—error method (recall (10.31)), since p™, &3 2() " and 67 2(") are smooth
functions of §(™ = (é%n),één),één)), found by inverting (14.94). Alter-
natively, and more easily in this case, we can apply (14.65) directly to
(p™, 52, &Z(")) to obtain

I{)(n)_ ] 0 .
(14.98) vl a2™ o2 | AN (| 0], [I(po2,00)] |,
~2(n) o2 0
)

where I(p, 02, y) is the information matrlx for the parameter (p, o2, 5

based on one observation. To find I(p,03,02), apply (13.30) on p.214 to
log f,02 Uz( \) with n = 1, where the partial derivatives are taken w.r.to p
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and 02,02 (not o, 0y). After some calculation (Exercise 14.31), we obtain
2 — ja—
1——i—p2 20p2 20l02 1 2
o2 L —;p) op? o | _1(In I
(14 99) I(ﬂ) 02,0 )__ 1 __pg 202 4o 40202 ) Iy Ioo :
—p —p? 2—p?
202 40202 doy

It follows from (14.99) that I1o # 0 if p # 0, so the parameters p and

(02,02) are not orthogonal unless X; 1L Y5. O

zr Yy

Exercise 14.31. Verify (14.99), then express the efficiency ratio %—;-1-2— in

terms of p, o2, 05 What is the minimum value of this ratio? [0.5] W

Example 14.30. Case B: p unknown, o2 = O’Z = 1 known. This case

was introduced in Example 14.16. The joint pdf of <)§1> yeees <§(,”> is
1 n

fo1,1(0) =
[2vr<1—1—p2>]%'e"p{ 2<1 [2’)2”*% (in“zyfﬂ}'

This is a curved exponential family with 1-dimensional parameter p but
92-dimensional minimal sufficient statistic [verify!]

(14.100) (51,52) = [Zm@/ <Zm2 +Zy§)] '

Therefore
o m ey 92205
(14.101)  log fr1(-) = ¢ — 5 log(l —p7) 21— p?)
dlog fo1 () np‘ S1 p(Sy — 2p51)
. 2 2 — —
(14.102) 95 1—p2+1—,02 (1—p22

so the LEQ is equivalent to the cubic equation [verify!]
(14.103) h(p) = np(l —p*) + S (1 + p?) — Sap=0.
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Thus the LEQ has either 1 real root or 3 real roots. Note that

h(—l) = 251 + .57 = Z(LUZ +yi)2 > 0,
h(l) =251 — Sy = — Z(CI% — y¢)2 < 0,

so the LEQ has at least 1 real root in (=1, 1). By Theorem 14.9 we know
that there exists an asymptotically unique CANE root oM, e,

o (=) 4 (0. 57) = (0 )

14 p?

where I;; is obtained from (14.99). However, P,[3 roots in (-1,1)] > 0 for
any finite n (see Exercise 14.32), so we now illustrate Methods I-IV for
dealing with this uncertainty.

I. The standard estimator A" in (14.97) is consistent for p, so select that
root ™ of the LEQ that is closest to 4™, By Proposition 14.12 and
Theorem 14.9, this ,'0'(”) must be the unique CANE root of the LEQ.

II. Select that root (™ which gives the largest value of the LLF (14.101).
By Wald’s Theorem 14.7, 5™ must be the unique CANE root of the LEQ,

III. Use the standard estimator p(™ in (14.97) as the starting value in
the Newton-Raphson algorithm for finding a root of the LEQ h(p) = 0 in
(14.103). Since p™ is in fact /n-consistent, Theorem 14.18 implies that
the first iterate ,081)) (or ,0'2711)), cf. (14.61), p.243) is a CANE estimator of p.
IV. Lastly, we can apply the asymptotic covariate-adjustment method in
(14.81) - (14.91) to obtain a CANE estimator 5™ for p. Begin with (14.97)
in the role of (14.81) and (14.99) in the role of (14.84) (cf. p.250), then apply
(14.90)-(14.91) (p.252) with the correspondences

0 < (,0,0'3;,0'5), I<0> = I(p,O'GZC,Uz),
G o 5, P o (52, 52y,

01 < P Ilpo A (09%070-50> = (1>1>>

1+ p - -
111(017"700) « '(_1_—_—!_—_;%5'57 112(017'¢)0> A <2<1 _pp2>7 2(1 __pp2>> >
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thereby obtaining from (14.90) the adjusted estimator [verify!]

a(n ~2(n) | ~2(n)
(14.105) PONEPOD PP P2 (o + 6y L
[1+ (p))?] 2

From (14.91), (™ is a CANE estimator for p:

3 1 (1—p?)?
14.1 m _ ) 4N —~ V=N P

(Compare to (14.104).) By contrast, from (14.82) the unadjusted estimator
p(") satisfies [verify!] |

1
" 119

(14.107) Vn (,6(”) — p> 4Ny <o ) =Ny (0, (1—p*?).

(recall Exercise 10.7), so p™ is inefficient unless p = 0. U

Exercise 14.32. (i) Verify that P,[3 roots in (-1,1)] > 0 for all finite n.
(ii) Verify that P,[exactly 1 root occurs in (—=1,1)] — 1 as n — co.

(iii) Use both (14.59) and (14.61) (cf. p.243) to provide explicit formulas
for the first iterates pg%) and pg?)) of the Newton-Raphson algorithm as
approximate solutions of the cubic LEQ (14.103).

(iv) Verify (14.105) and (14.107).

(v) Verify that (Si,S2) in (14.100) is minimal sufficient. Show that T, and
Ts (given in (14.96) on p.252) are each ancillary, but Sy = T3 + T3 is not
ancillary:

(14.108) Sy =To+Ts ~ (1+p)xa + (1 - p)xa,

where the two y2 variates are independent. [Ezplanation: although T ~ X2
and T3 ~ x2, they are not independent so the joint distribution of (T2, T3)
is not determined by the marginal distributions of T3, T3.]

(vi) Show that (S1,S2) is not complete. [Hint: use (14.108); or use (14.110)
to show that S; = T3 is not independent of the ancillary statistic Ts.]
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(vii) Show that

S2+251 1+p
S2 —231 1—p e

(14.109)

Use this to obtain an exact (1—a)-confidence interval for p based on (Si, Sa).

(viii)* Let (T, T%,T3) be the complete sufficient statistic for (p,02,07) in
Case A. Assume that Case B holds. Show that
(Ty,Ty) AL Ty — TET5 7,
(14.110) Ty | Ty ~ Ny (pTs, (1 — p*) T2) , To ~ 03 X
Ty — T2Ty ' ~ (1= p%) X1
Conclude that

T, s _ 5 [T
—pViIy P P/ T
(14.111) B = -

e ~ t —1
T3 —T2T; " 1—(p(m)2 neh
n—1 n—1

Is |, n 1— (pt)?
[ s o [L 0 t/}

SO

14.112 —
( ) T2 n—1

is an ezact (1 — a)-confidence interval for p. (Note that it is not a function
of the minimal sufficient statistic (S1, S2).)

(ix)** From (14.106), an approximate (1 — a)-confidence interval in Case B
is given by
e LG
VT4 (pM)?
Compare the accuracies = widths of the confidence intervals for p obtained

via (14.109), (14.112), and (14.113) (cf. Fosdick and Perlman (2014) Comm.
Statist. Stmul. Comp.). O

(14.113)

Exercise 14.33. Recall that the MLE of p in Case A: 02, 02 unknown, is

~(n ' ZiYi
5 2.

VY
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In Case B: 02 = 02 = 1 known, this suggests the estimator

/5(”) = % Zﬂfzyz

Find the asymptotic distribution of \/n (f)(”) — ,0). Is 5™ asymptotically
efficient? Why might your answer be expected a priori? [Consider the
range of §(™ and also consider minimal sufficiency.] L

Example 14.34. (The general location-scale family) Let Xi,..., X, be
iid. rvs from the pdf 1f (2£) on (—00,00), where —oco < p < 09,
0 < o < 0o. Assume that f is smooth, strictly positive on (—o0,00), and

known.®® Our goal is to estimate p.
Case A: o is unknown.

The log likelihood function and two LEQs are obtained as follows:

n i —
( ) ln(p,0) = —nloga + > ogf( - )

i=1
Al (u,0) - f’ (m )
14.115 Pt 0) _ —0,
n(Bog) pr(Bss
aatie)y o) m -1- o ;cf G2 o
do o 0= J “)

If the assumptions of Proposition 14.20 and Theorem 14.21 hold then the
unique consistent root (/j(”),&(”)) of the two LEQs is CANE and satisfies
(14.117)

A(E0) - ()] 2 [ () o= (B 7))

Here <§’“‘“ ff‘") is the information matrix for (u, o) based on a single
oW oo

observation X;. It is proportional to c~2 and does not depend on u; its

35 This is a “parametric” model with parameters u,o. If f is unknown also, the
model is called “semi-parametric” with i, 0, f all to be estimated.
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entries are given by [verify — Exercise 14.35(i)]

1 [ [f )
14.118 1, = -—/ dy,
( ) Pl ST M
1 [ ylf' W)
14.119 Lo=1s,=— T~ dy,
( ) g BT )
L[ vl W)? }
14.120 Ijo = — / L 2 dy—1].
( ) | o? { e f)
Therefore
(14.121) Vi (37— ) 4 N (o, ! )
Tupo
where '
Iﬁa
(14122) IM/J,'O” =lpp — j_‘; S IM.U«'

The parameters p and o are orthogonal iff I, = 0. This holds, for example,
if £ is symmetric about 0, i.e., f(z) = f(—z) [Exercise 14.35(ii)].
Case B: 0 =1 1s known.

From (14.114) and (14.115) the log likelihood function and single LEQ are

(14.123) In(u) = _log f (@i — w);

aln(:u’) i f/ (mz - :U“) —0

(14.124) T Ton & fwi—w

Under the Cramér conditions of Theorem 14.9, the unique consistent root
(™ of the LEQ is CANE and satisfies

(14.125) Jn (ﬂ(”) — u) 4N (0, —1—> .

T

As in (14.122), -1 < 21— with strict inequality unless [,o = 0, 50
T p

B Tupo
the optimal estimator 4" from Case A may be suboptimal in Case B.
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However, the optimal estimator (™) may be difficult to determine, whereas
2™ may be easier to obtain (recall Footnote 32). In this case Method III
or IV (using 6(™ — 1 as a covariate) may be used to adjust (™ to produce
a CANE estimator for p in Case B.

However, if f s symmetric about O as in the Cauchy case, then p and
o are orthogonal parameters so no adjustment is needed: i{™) 4s also CANE

in Case B! (See Ezercise 14.86 for another CANE estimator.) U

Exercise 14.35. (i) Verify (14.118) — (14.120).

(ii) Show that I,, = 0 if f is symmetric about 0.

Exercise 14.36. Let Xi,...,X, be an ii.d. sample from the Cauchy
location family with scale parameter o = 1. (See Examples 14.5 and 14.17 )

(i) Show that I, = 1. Thus in Case B (¢ = 1 known), the asymptotic

variance of any CANE estimator (™) is 2. Recall from (10.83) that the
asymptotic variance of the sample median is 217% ~ 2—'31. What is the asymp-
totic variance of the sample mean X,,7

(i) Use both (14.59) and (14.61) to provide explicit formulas for the first

iterates 1™ and 4™ of the Newton-Raphson algorithm as approximate
alty (1)

solutions of the LEQ (14.124). Use the sample median as the starting
value.

(iii*) Show that the LEQs (14.115)-(14.116) have a unique root (5, 6(n))
[see Copas Biometrika (1975).] (Thus (") is a CANE for p in Case B.)

Exercise 14.37**. Let X1,..., X, be an i.i.d. sample from the univariate
normal location-scale family Nj(u,0?). The MLEs of u when o? is known
and when o2 is unknown are both X,,, so trivially have the same asymptotic
efficiency. This also follows from the fact that the N1(0,1) pdf is symmetric
about 0, so 4 and o are orthogonal parameters. For a finite sample size n,
however, different confidence intervals are appropriate for the two cases:

o2 known: X, % % Za/2) o2 unknown: X, & —5\/-% tn—1;a/2-

n

Show that the width of the first confidence interval is smaller than the
expected width of the second, so that knowing o? actually improves the
accuracy of inference about 4 (on average).
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15. The EM Algorithm for the MLE when Data is Missing.
Data structure: Xcomplete = (Xobserved> Xmissing)
X = <Y> Z) ~ f9(y>z>'

The missing data Z may be “observable but missing” or “unobservable”
(latent = hidden variables). We seek the MLE based on the data Y actually
observed (assuming that 6 is identifiable based on Y'):

= b(y) = argmax fo(y) = argmax / foly, 2)dz.

Basic premise:
e It may be hard to find fp(y) — the integral may be complicated.

e It is easier to find arg maxg fo(y, 2), the MLE based on the complete data,
or equivalently, to find

for any fixed 0.

f9<y7 ) }
f9o(y> )

Because z is missing, the EM algorithm, formalized by Dempster, Laird,
Rubin (DLR) JRSSB 1977, optimistically proposes to replace the target

function h(6) = log [-er—"%%] by its conditional expected value given Y = y:
0 ?

arg max log [

1st E-step: Let 6o = 0o(y) be an initial estimate (or guess). Compute

fg(Y,Z)

(151) Eéo {log m

lY ::_y} = J(9 | éO(y)> y)

1st M-step: Find

(15.2) 01

Hl

b1 (y) = argmax J (0| o(v), v).
(Note that J (61 | fo, v) = J(fo | b0, y) =0.)

(k+1)-st steps: For k = 1,2, ..., repeat the E-step and M-step with 0o, 61
replaced by Qk, 0k+1 We hope that 0k+1 — 0 the actual MLE.
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Cause for hope : The actual likelihood increases at each iteration:

(15.3) oo W) = 15, (y)-

Proof. Trivially,
7=}

log [————-—fé’““(yq =Eg, {1og fon 1)
—E; <1 ML — —Es {1 ML I
E%{%_mgxm}ly %’E%{%[mgmw

fo.®) - f5,(Y)
= J(ék+1 | O, y)+ KZ;Y(élmékJrl)-

)

>0 >0
(Here Ky is the conditional KL distance.) U

However: The EM algorithm is not guaranteed to always converge to a
limit, and if it does converge, the limit may not be the actual MLE but
instead may be another stationary point of the actual likelihood function.

Furthermore, convergence may be slow and sensitive to the choice of start-
ing point 0. See the DLR paper and accompanying discussion (e.g., by
Murray), also Wu (1983) Ann. Statist. Various improvements to EM have
been proposed to speed up convergence, e.g., ECM, EMCM, ECMC, etc.
(cf. X.-L. Meng, D. Van Dyk, Balakrishnan/Wainwright/Yu (2017), etc.)

Relation between EM and “imputation” of missing data in an
exponential family. The EM algorithm assumes a relatively simple form
in an exponential family, where it can be interpreted as “imputing” the
value of the missing data Z based on the observed data ¥ = y:

Suppose that the complete data X = (Y, Z ) has pdf of the canonical
k-parameter exponential form

(15.4) foly, 2) = a(0)e? T . h(y, 2) = folT(y, 2)] - h(y, 2),

where 0 and T'(y, z) are k x 1. Then

o)) o [e®] L o v s
(155) 10g [fé()(y,z)} =1 g [a(é()):‘ + (0 90) T<y> )9
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S0

50160, v) =log | “OL| 4 (0 — b)Y B, [TV, 2) | ¥ =4
_a(90> N ~ v/
=T1(y)
_ ' f[T1 ()
15.6 =1 ] ,
(15.6) ¢ %, )]

which is just the complete-data LLR using the imputed value Ty = Tl(y).
Thus the (k 4 1)-st E-step consists simply of imputing T'(y, 2) as

(15.7) Tor1 = Trpa(y) = B, [T(Y, 2) | Y =],

then the (k4-1)-st M-step chooses 041 to maximize the complete-data LLR
based on the imputed value Ty 1.

This shows that the EM algorithm can be expressed very easily for
multivariate normal models or multinomial models with missing data, where
the regression functions are simple, in fact linear. (In these cases, the EM
approach was known long before 1977.)

Example 15.1. (Multivariate normal (MVN) model with missing data)

Suppose that the complete data set is
T Vi Va
) Um ’ Wl Yoot Wn )

=ni(5)(5) (@)
=p\s ) \s ) o)

an i.i.d. sample of size [+m+n from the (p;+p2)-variate normal distribution

> by
(15.8) Ny, +ps [,u = (Z;) , = (E.}zi 2;2)} , ¥ known.

Suppose that the U’s and V’s are missing, so the observed data is

r=(5) e (5) (7)o (%) () o (o)
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and the missing data is

o= () () () (7).

Set 6 = (gl> = Y1y, so the complete-data pdf is given by [verify!]
2 .

(15.9) |
folz) = a(0)e 0T+ 2ot + 2 00) + 05 (s 2w 2 wi) ()

)

~ which is of the exponential form (15.4) with

(15.10) T =T(y,z2) = <%ST:_F%5 i %Z) .

Thus from (15.7) the (k + 1)-st E-step simply imputes T'(y, z) by

A . St D> D
(15.11) Tk+1(y)—EMk[T(y7Z)|Y—y]_ <ZS¢+Zﬁi,k+1+Zwi ,

where, from the usual MVN regression formulas,

(15.12) iger = BEp, [Us | Ti = ti] = fiog + Zo1 27 (6 — fink),
(15.13) By pr1 = B [Vi | Wi = wy] = i + S12555 (s — fig k),

fiz,k(y)
Now the (k + 1)-st M-step chooses fi+1 to maximize the complete-data LF
based on the updated statistic Tx1. For this MVN case,

and where [ix = fix(y) = (M’k(y) > is the estimate from the k-th M-step.?

1510) = (B ) o L (Zrb T i )
+ fi2 k41 L+m+n \ D si+ 2 U1+ w;
The algorithm is very easy to program in this case. LI

36 The initial estimate /10 may be based on the observed data: use the sample mean

vectors /11,0 = l_—'}—l_m-(z i + Zti), //)12,0 = T—&—n(z S; + sz) .
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Exercise 15.2%. If (15.14) is used with the initial estimates in Footnote
36, find limg_co fi1,5 and limg_o fl2,k without electronic assistance. U

Remark 15.3. Suppose the observed data pattern is monotone = nested:

(15.15) _Yz(gll), <§;>(T1>(Tm>

Then the actual MLE (f, 2) is easy to obtain explicitly in one step, even
when ¥ is unknown, as follows. Since

(1516) SZ | RZ = Tz' ~ sz l:éLQ - 2321—11M1/+§321§1‘117“E, 222.1]

« Bri A

the joint pdf of the observed data can be factored as
(15 17)

Hfﬂ, Ti, Si) Hful,En Hfa,ﬂASzl'rz Hfm,En TZ)HflJJI,Ell

The first factor on the right is the joint pdf of a linear regression model, for
which the MLEs & ﬁ , A coincide with the least squares estimators. (See the
solution to CB Exercise 7.18). The second and third factors on the right
together constitute the joint pdf for a sample of size [+m from Np, (n1,211),
for which the MLEs uq, 311 are simply the pj-dimensional sample mean
vector and sample covariance matrix.

This simple factorization method for finding the MLEs obviously ex-
tends to any MVN monotone missing data model, where the observed data
has the form

* ¥
*

(15.18) Y =

This factorization method also applies to non-monotone MVN missing data
models, provided that one is willing to impose certain conditional indepen-
dence constraints on ¥ determined by the observed data pattern. (Anders-
son and Perlman, Stat. Prob. Letters 1990; Perlman and Wu, JSPI 1999.)
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This is closely related to the theory of Gaussian graphical Markov models‘
for acyclic directed graphs (Andersson and Perlman, JM VA 1998). W

Standard errors for the MLE with missing data. The observed data
Y usually does not consist of n i.i.d. observations, so the MLE 0( ) based on

Y may not satisfy the usual asymptotic relation y/n (=) 4N O, [,
where I(0) is the Fisher information number or matrix for a single complete
observation. Instead it is usually the case that

(15.19) b—0~N(0, Iy ()]

if Iy (8) — oo, where Iy denotes the information number or matrix for Y.

Calculation of Iy can often be simplified as follows:

f@(y> )

o) = % 1wy
) =
)

(15.20) log fo(y) = log fo(y, z) —log fo(2 | y),
9% log fo(y) _ 0°log fo(y,2z) _ 0%log fo(z | y)
56;90; 06,90 50:00;
SO
(15.21) Iy (0) = Iy z(0) — Eo [Izv(0)] -

Here Iy 7(0) = Ix(0) is the complete-data information, while

9?log fo(Z 1Y) ‘Y
96,00,

(1522) IZ|Y<0> = —Fog

denotes the conditional information in the missing data Z given the ob-
served data Y.

Example 15.4. We illustrate the use of (15.21) in Example 15.1 (3 is
known). The information matrix I(u) for 4 in a single complete observa-

tion X; ~ Ny, 4py (1, %) is B [Exercise 15.5(1)], so by the additivity of
information,

_ 211 212
(15.23) Ix(p) = (+m+n)¥ 1z(l+m+n)<221 }322>.
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Next, as in (8.72),
Us | Ty ~ Ny, (a0 + S1 577 Ty, $22.1),
where a = o — 22121“11 (1 is unknown, so
Ty, (@) = 21 -

Thus, by extending Remark 13.5 (p.210) to the multiparaméter case,

(32)

IUi|T¢(/'L) EIUiITi(/'Lb:LQ) = / IUiiTi(a) (8_8/%7 58/_?5)
()
YDy _
(15-24) - < }; 12) 22 1 ( E212111> Ipz) )

and similarly

I, _ _
(15'25) IVzIWz (,LL) = IV»;|W¢ (:ula ILLQ) = <__E2—I2)11221> 2111.2 (Ip17 _2122221) '

Furthermore, by the (conditional) independence of Uy,...,Un, Vi,..., Va
and the additivity of (conditional) information,

(15.26) Iz1y (0) = mIu,r, (1) + ndv w, (1)
By (15.24) and (15.25) the right side of (15.26) does not depend on Y, so
Eo [Iz)y (0)] = mIy, 1, () + nlv,w, (1)

as well. Thus we conclude from (15.21) and (15.24)-(15.25) that the infor-
mation in the observed data Y is [verify! Exercise 15.5]

Iy (p) = Ix(p) — mily,r, (k) —nly, |W (1)

= ({l+m+ n)E"l —m (Z E12222 12212f1 —21'112_11222“21_1>

_222 122121—1 22-1
—n ( Efw X —211 2212252 >
5 D ISD DD S D TR T v
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11 g2 125122\ —13:21  y12
:(l+m+n)<2 > >—m<E (7)7xT 2 )

221 222 221 222
211 212
n y21 221(211)—1212
l211+m211'2 lElQ
:( (321 [5722 +n222'1>
-1
(15.27) =1I% +< 0 n22_21>.

This shows the contribution of the partially observed data Ti,...,7Tm,

Why,..., Wy, to the overall information about g = (g1, 2). [

Exercise 15.5. (i) If X ~ Np(u, %), show that Ix(u) =

(ii) Verify the algebra leading to (15.27). Give a direct (shorter) derivation
of (15.27), using the facts that T; ~ Np, (11, X11) and Wy ~ N, (12, Y92).

Example 15.6. (A mizture model) Suppose that Y = (Y7,...,Y,) is an
i.i.d. sample from the mizture pdf o g

| h
(15.28) folyi) = 0g(ys) + (1 — O)h(y:), 0<0<1, m

where g, h are known pdfs (or pmfs) and 6 is unknown. The pdf of YV is

n

(15.29) foly) = | [[6g(w:) + (1 = 0)h(ys)].

t=1

This is log concave in 8, so the LF has at most one mode (a maximum) and

the LEQ

h(fUz)
Z h(y:) + 9 (yi) — h(ys)]

=0,

has at most one solution, which must be the MLE if it exists.3”

37 No solution need exist, for example if all g(yz-) > h(yi) in which case the LF ap-
proaches its maximum as 6 — 1, or all g(yi) < h(yz) in which case the LF approaches

its maximum as 8 — 0.
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The LEQ is equivalent to a polynomial equation of degree n—1. Rather
than solving this equation we can apply the EM algorithm by introducing
the i.i.d “missing data” Z = (Z1,...,Zy), where Z; ~ Bernoulli(f) is the
indicator variable that determines whether Y; is drawn from g or from h:

’ h(yz> if Z; = 0.

Thus

(15.30) fo(ys | 2) = lg(ya))* (M),

(15.31) fo(z) = 07(1 —0)' %,

so the joint (mixed) pdf of (Y, Z) has the exponential form

(15.32) foly, 2) = | [109(wa)l**[(1 — O)h(ya)]' .
i=1

This has the exponential form (15.4) with T(y,2) = >, ;. Therefore by
(15.7), p.263, the (k -+ 1)-st E-step requires the calculation

leylp---ayn:yn} :Pék liZZ:l

Es, {Zi Y, = yzi]

(15.33) = - Org(v:).
Org(yi) + (1= Ou)h(s)

which follows from (15.30)-(15.31) and Bayes formula (4.14) [Exercise 15.7].
Finally [Exer. 15.7], the (k + 1)-st M-step yields the updated estimate

A Org(yi)
(15.34) Ok+1 =
Z ekg yz) + (1 - 0k>h(yz>

By the unimodality of the LF, this will converge to the MLE 6 (or to one
of the boundary points § = 0 or § = 1 — see Footnote 37, p.268). U

Exercise 15.7. (i) Verify (15.33) and (15.34) of Example 15.6.

(ii) Suggest a reasonable starting value 0. [Hint: consider {y|g(y) > h(y)}.]

(iii) Find an integral expression for the information number Iy (6). W
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Example 15.8. In most mixture problems arising in applications, the pdfs
g and h are assumed to be unknown members of a parametric family {fx},
so (15.28) now appears as

(15.35) foru(w) =00 () + (A=) fu(y:),  0<0<],

with @, A, 4 unknown. The EM algorithm in Example 15.6 readily extend to
this case — details appear in many textbooks, e.g. K. Knight Mathematical
Statistics Chapman & Hall, 2000. Here is an example.

Suppose that Y; is a f-mixture of Poisson()) and Poisson(u) rvs, with
0, \, 1 all unknown. Thus (15.29) and (15.32) become, respectively,

n [ 6—>\>\y¢ e P Yi
(1536)  fonul) = [I, |05, 7+ 0 -075F }
no [ e v ST
1597) fonn2) =TT, [1o] " -0 ]
_ _ n /‘l"“—)‘ quj Zyzzz
(15.38) _ |2 9} {96 } pd <-A-> o
| 4 i eH 1—-86 M Hy'b‘

Thus the complete-data likelihood fg(y, #) has the exponential family form
given in (15.4) with T'(y, 2) = (3 2i, 2. Yi, 2 Yi%), 80 by (15.7) and Bayes’
formula, the (k + 1)-st E-step simply imputes z; by

Ziht1 = Eék,s\k,ﬁk [Zi | Y= yil

é —3"“5\%
(15.39) o — S
Ore A+ (1 — Or)e Fr iyt

Then, because the complete-data MLEs are [Exercise 15.11]

1 - D Y% Yyl = &)
15.40 0= — : N = e _
the (k + 1)-st M-step yields the updated estimates
A 1 . Q Yo YiZikt1 A Syl — Zigr1) -
0 _ - 4 )\ — _.__T—’——— — - ) ) N
k+1 n Zik+1s k+1 Ezi,k—i—l ) ME+1 2(1 — zi,k+1)
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Remark 15.9. Whereas it is possible to find a reasonable “all-purpose”
starting value 6, when g and h are known (see Exercise 15.7), this is not
the case when they are unknown. Instead, as in Example 15.8, one may
begin with a histogram of y1, . . ., ¥, and attempt to discern the two mixture
component pdfs fy and f, and their relative weights § and 1 — 6 by eye.
As a default option, one may simply take 6o = .5 and \o = [io = ¥n, the
mean of the pooled data set. This option is problematic, however, in view
of the notorious sensitivity of the EM algorithm to the choice of the starting
value. (Also, the histogram may reveal more than two modes, suggesting a
mixture of more than two pdfs — this is called “bump-hunting”.) L

Remark 15.10. When the mixture component pdfs f and f, are unknown
as in Example 15.8, it is apparent from (15.35) that the parameters 0, A, p
are actually not identifiable on the basis of the observed data Y alone, since

(15.41) Foonu(Wi) = fi—o,ux ().

To attain ideptiﬁability a constraint should be imposed, such as A< .
Therefore, if A\ > [ix, replace each by their average %—(}\k + ). [why?] O

Exercise 15.11. Verify (15.40) in Example 15.8. What happensif}_2; =0
or y,z;=n? [

Exercise 15.12. Repeat Example 15.8 when the two mixture component
distributions are Binomial(m, \) and Binomial(m, p) (rather than Poisson).

What goes wrong when m = 1? What about m = 27 L
Example 15.13. (Multinomial (categorical data) model with missing data)
Example 15.14. (Censored data model) [Also see Supplement 1, p.342.]
Example 15.15. (MVN model.wz'th patterned covariance matriz)

Example 15.16. (Combining cells in a multinomial distribution)
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16. Bayes Estimators.

It may be appropriate to assume that the unknown parameter 6, is itself
random. That is, 0 is the realized value of a random variable © taking
values in the parameter space . If we know the prior pdf 7(0) of ©
(continuous or discrete), then we should incorporate this prior information
into our inferences concerning 0. In fact, even with no data, a reasonable
prior guess for 0 is

E(@)E/Gw(@)d@ <or20m(0¢)).

If data is available, the best estimator of 8 is often a weighted average of
this prior guess and the best unbiased estimator of 6

For example, if the data consists of a random sample Xi,... X, from
a univariate normal distribution Ni(0,0%) with ¢® known, and if © has
prior distribution Nj(n,72) with n and 72 known, then E(©) = n is our
best prior guess of @, while the sample average (= MLE) X,, is the best
unbiased estimator of §. We will see that the Bayes estimator is a weighted
average of 1 and X,,, with the weights depending on the ratio o2 /nt?.

In the general case, let X = (Xj,...,X,) denote the observed random
data vector with pdf fo(z) (continuous or discrete) where, as above, 0 is
‘the realized value of ©. Tt is now appropriate to write fo(x) in the form of
a conditional pdf f(z|@) and to interpret the prior pdf 7(0) as a marginal
pdf. Then the joint pdf of (X,©) is |

f(m>0> - f(:l:\@)’lf(@),
so the conditional = posterior pdf of ©|X is, by Bayes’ formula (4.14),
[@8)w6) _ Flo) ()
f(x) J f(=]0) ™(0)do’

Given f(z|0), 7(0), and the observed value X = z, it is easy to find the
optimal = Bayes estimator § = 0(z) of § w.r.to the loss criterion given by

the MSE E(6(X)—©)2. (Here we are treating the case of a one-dimensional
parameter ¢ but the generalization to the multiparameter case is straight-
forward.) That is, 6(z) is the value that minimizes the mean-squared error

(16.2) E[(© — 6(X))’] = B{E[(© — 0())* | X = z]}.

(16.1) f0lx) =
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This can be minimized by minimizing the ezpected posterior loss
Bl(© - 6)° | X
for each z, which is accomplished by setting
(16.3) 6=0(z)=E[O|X = 2],
the posterior mean of ©, which is often called the Bayes estimator of 6.

Remark 16.1. If we adopted the loss criterion 19 — 0|, then the appropriate
Bayes estimator would be the posterior median of © | X = z. Alternatively,
the posterior mode ' ‘

0 = argmax, f(0|z) = argmax, f(z|0)7(0)

is sometimes used. For the uniform “prior” pdf w(#) o< 1 on €, this coincides
with the MLE (though this is an ¢mproper prior if [, df = oo; see §16.1.)

Example 16.2. As above, Xi,... X, is a random sample from Ny(0, o?)
with 02 known and © has prior distribution Ny (7, 72) with 7,72 known. In
terms of the sufficient statistic X,, for 8 we summarize this as

\ — 0'2
(16.4) Xn | O~ Ny (@, —-) ;
n
(16.5) O~ Ny(n, %) (=7).
To find the Bayes estimator E[© | X] we must find the posterior distribution
of © | X,,. As in Example 5.1 and Exercise 8.7, (16.4) and (16.5) imply

that the joint distribution of (X, ©) is bivariate normal, so we need only
find its mean vector and covariance matrix:

E(X,) = B[E(Xn | ©)] = E[O] = n;
Var(X,) = E[Var(X,, | ©)] + Var[E(X,, | ©)]
= E[o?/n] + Var(@)
= (% /n) + 7%
E(©) =n; Var(©) = 7%

Cov(X,, ©) = Cov[E(X,, | ©), ©] = Cov(0,0) = Var(0) = 72,

273



Thus

Xy (7 o 472 g2
(16.6) (@ )NNz (77>’ (”Tz -2 ]|
so [verify!]

[ nX K3
_ non + 1
16.7 ©|X,~N, | =7 :
(16.7) | Xn I
hence the Bayes estimator of 8 is
A _ ﬂu + %
(16.8) 6(X,) =EO | X,]| =-F—F
02 + 7‘2

a weighted average of X,, and n as predicted above. The weights are pro-
portional to %% and 12, the precisions of the normal distributions given by
the model dlstnbutlon (16.4) and the prior distribution (16.5), respectively.
The ratio of these weights is n72/02, which determines the relative weight
assigned to the MLE X,,. Thus the weight assigned to X,

e increases as n increases (because X,, becomes more precise)
e increases as o2 decreases (because X, becomes more precise)

e increases as 72 increases (because the prior dist’n becomes more diffuse)

Note that the Bayes estimator §(X,,) in (16.8) is biased:

E[0(X,)|©=6] = ——i—#e unless 6 = 7,

n
o2 2
and its MSE for each fixed value of 6 is given by

E[(0(X,) —0)% | © = 6] = Var[f(X,.) | © = 6] + {E[6(X,) | © = 6] — 6}

(X
n 2 2
- - ol
= | —=% 1>Var[Xn|®=9]+ 5 — 0
= + = +

0-2 .7.-2

(16.9) -




which is smallest when 0 = 7 = E(©), as should be expected. Finally, the
optimal (minimum) Bayes risk is attained by 6(X,,) and is given by

oy (0-n)? no4 1
(16.10)  74(n) =E o2 T T | = 0”722: - ! —. U
(B+5)"] (B+H)° (@t+)

Example 16.3. As in Example 4.3, suppose that

(16.11) X | ©® ~ Binomial(n, ©),
(16.12) © ~ Uniform(0, 1).

By Bayes formula (16.1),

Q0 -0
S (M6 (1 — g)n—=db
I'(n + 2)

f0]z) =

= 6*(1—-0)" "
N+ 1DI'(n—z+1) ( "
hence the posterior distribution is given by
(16.13) O|X ~Beta(X+1,n—X +1).

Thus the Bayes estimator of 6 is

oo moin=XE= (1) (5)1(25) (3)

again a weighfed average of the unbiased MLE —i—f— and the prior mean %—
The ratio of the weights is % so, as in Example 16.1, the weight assigned to

% increases to 1 as n — oo. Finally, the Bayes estimator is again biased:

nf + 1
n -+ 2

=+ 0 unlessH:%. L

E{E[© | X]|0=10]}=

Example 16.4. Suppose that X | © = +£0 with probability —é— each, where
© > 0. Then | X| = ©, so the Bayes estimator E[© | X] = ©, that is, it is a
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perfect estimator of © (regardless of the choice of prior distribution of ©).
In this case the Bayes estimator s unbiased:

E{E[©|X]|©=0}=E{6|0=0=0V0. N

Exercise 16.5. Show that the Bayes estimator § = B[O | X] is unbiased
for @ iff it is perfect, i.e., iff § = © (which does not occur in practice). LI

Exercise 16.6. In Example 16.3, generalize the prior distribution (16.12)
to © ~ Beta(a, B) for a, 8 > 0. Show that (16.13) and (16.14) become

(16.15) O | X ~ Beta(X +a, n— X + f),

X ta n 2(__ a+ [ Q
(16.16) E[@|X]—n+a+ﬁ_ <n+a+/3> <n>+(n+a+5> (a+5>'

Again E[© | X] is a weighted average of the MLE —i-{— and the prior mean
E(©) = L

@
o8

Exercise 16.7. Suppose that X | A ~ Poisson(A) and A has the prior pdf
() = %e_%, an exponential distribution with v > 0. Find the posterior
distribution of A | X and the Bayes estimator E[A | X], and express the
latter as a weighted average of the MLE X and the prior mean E(A) = v.0

Remark 16.8. The priors in Exercises 16.2, 16.6, and 16.7 are conjugate
priors. These occur for parametric models { f(x]0)|0 € Q} such that for each
fixed , f(x|0) o< 7, (5 (0) with {7, ()|T € =} a second parametric family of
prior pdfs such that for each pair (z,79), the posterior pdf f,, (f|z) obtained
from the prior 7., (0) remains a member of the second family; i.e,

Jro (0]x) o< Tr(z) (0)r, (0) o< WT(:B,TQ)(Q)

for some 7(x,79) € Z. In this case {7, (0)|T € E} is called a conjugate family
of prior pdfs for the model {f(z]0) |0 € Q}. The conjugate families in Exer-
cises 16.2, 16.6, and 16.7 are the N(n,72), Beta(a, 8), and Exponential(v)
families, respectively.

A conjugate family of priors can greatly simplify the calculation of the
posterior distribution. However, priors should always be chosen on the basis

of prior knowledge rather than mathematical convenience. L

276



16.1. Prior distributions: proper vs. improper, informative vs.
uninformative.

Many so-called Bayesian analyses use “improper” and/or “uninforma-
tive” prior distributions. An improper distribution is one with infinite mass,
e.g., Lebesgue measure on (—o0,00). An uninformative prior is one sup-
posedly used to represent prior “ignorance”, e.g., using the Uniform(0, 1)
distribution for a binomial probability p. In my opinion, however, neither
of these belong in a valid Bayesian analysis.

(a) There is no such thing as an improper preor distribution.

On one level, this is tautological: a “distribution” refers to a proba-
bility distribution, and no measure with infinite mass can be normalized
to become a probability measure, period. Attempts that formally invoke
Bayes formula to convert improper prior. “distributions” into proper pos-
terior distributions thus rest upon a nonexistent foundation. Attempts to
justify improper prior distributions as limits of proper prior distributions
(e.g. J. Berger, Statistical Decision Theory and Bayesion Analysis) are
invalid in general (see Example 16.8 below.) Equally troubling, severe dif-
ficulties are encountered if one attempts to interpret an improper measure
as a uninformative prior “distribution” — see (c).

(b) An “uninformative” proper prior distribution may be informative.®

As a simple example, consider the model given by an observation X ~
Binomial(n, ), 0 < 6 < 1, with § unknown. If we have no prior knowledge
about 6 we might be tempted to “represent this prior ignorance” by a
“uninformative” prior distribution, and an obvious choice is the uniform
prior distribution Uniform(0, 1). But this prior is far from “uninformative”:
for example, it tells us that E(©) = 1/2 a priori. In fact, the use of an
“uninformative” prior violates the rationale of the Bayesian model, whereby
prior knowledge is to be combined efficiently with sample data to yield
optimal a posterior: inferences.

38  An invariant proper prior distribution may be uninformative. For example, in a
directional data model, if the parameter 0 ¢ [O, 2m ) represents a direction in R? then
the uniform distribution on the unit circle is invariant under rotations and uninformative.
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Furthermore, in the Binomial example this choice of a uniform prior
to represent “complete ignorance” about 6 is somewhat arbitrary because
it is dependent on the choice of parametrization. For example, the Bino-
mial model also can be parametrized by the logit v = log —1—25 € (—o0,00);
an “uninformative” prior for v would appear to be the uniform (improper)
distribution on (—o0,00). However, the uniform prior for 6 induces a stan-
dard logistic prior for «y, which is non-uniform on (—o00,00). [See “Jeflreys
prior”.] |

(c) There is no such thing as an uninformative improper prior distribution.

The difficulties encountered in (a) and (b) are compounded by at-
tempts to construct “uninformative” improper prior “distributions” — ex-
amples appear in Lehmann TSH Ch.5 §9. As a simple example, consider the
model given by an observation X ~ N;(6,1) with —oo < 6 < co unknown.
Lehmann (TSH Example 12 p. 226) notes the possibility of using Lebesgue
measure df over the entire parameter space (—oo,00) as an improper prior
“distribution” to represent “indifference”. (This prior is often called a “flat
= uniform” prior.) Note, however, that this improper prior “distribution”
assigns infinite mass to the complement of every bounded interval [—M, M ]
no matter how large M is, and thereby (at first glance, at least) will bias
any inference away from 0 and favor large values of 6. (Furthermore, this
improper prior suffers from the same arbitrariness (non-invariance under
reparameterization) that we encountered in the Binomial example.)

At second glance, however, this discussion makes no sense because we
may fix any value n and apply the same “reasoning” to conclude that the
improper Lebesgue prior “distribution” biases any inference away from 7,
no matter how large || may be. The correct conclusion is that this discus-
sion is vacuous because Bayes Theorém applies only to proper probability
distributions — improper priors have no place in the Bayesian paradigm.

Lehmann (TSH Example 12 p.226) suggests that the flat Lebesgue prior
might be viewed as an approximation to a proper normal prior distribution
0 ~ Ni(n,72) with 72 very large, so that inferences made on the basis of
the improper prior may be viewed as approximations to inferences based
on a proper but very diffuse prior.. (Again, however, n is arbitrary.) The
following example due to L. J. Savage (cf. Perlman and Rasmussen (1975)
Comm. Statist. 4 455-468) shows that this suggestion is invalid. [This
illustrates the “Marginalization Paradox”, c.f. Dawid, Stone, Zidek (1973).]
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Example 16.8. In this example, a multivariate generalization of Example
16.2, we observe X ~ Np(0,1,) with 6 = (61,...,0,) € R? unknown. We
are interested in the case where p is large. Suppose that © ~ Np(n,T2Ip)
with  and 72 both known, and take n = 0 for simplicity of notation. A
standard Bayesian calculation (see Example 16.2 for the univariate case
p = 1) shows that the posterior distribution of ©|X is [verify]

2 2

T T
16.1 @X~N< X, I).
(16.17) ‘ P\1+ 72 1+72°7

As the prior variance 72 — oo, the prior Ny (0, 721,) becomes increasingly
diffuse and the posterior distribution (16.17) approaches

(16.18) . e|X~N, (X,' L),

which is also the “posterior distribution” obtained by using Lebesgue mea-

sure as an improper prior “distribution” and formally applying Bayes for-

mula [verify]. The “Bayes estimator” of § derived from (16.18) is X itself.

Because X is complete and sufficient for 6, X is the UMVUE of 0 as well.
Suppose, however, that we wish to estimate

(16.19) 5p = L)0)% = £(6F + -~ +0p),

1
p

the “average noncentrality per coordinate”. Because || X||? | © ~ xz(lel?),
a noncentral y? variate with p degrees of freedom and noncentrality param-
eter |©]%, E(|| X||? | ©) = p+ [|1©]]?, so the UMVUE of d, is

(16.20) o, = 1|1 X|? - 1.

1
p

However, the posterior “distribution” (16.18) derived from the improper
Lebesgue prior “distribution” yields the posterior “distribution”

(16.21) el* | X ~ xg(I1X1%),

so the corresponding “improper Bayes estimator” of 4, is

A

(16.22) by = E[Sl10]7 | X] = X" + 1.
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Next, under the proper prior N,(0,721,), it follows from (16.17) that

2 2 X”2
16.23 ' X ~ (- | )
(16.23) 0121 ~ 7 5 (T )
and the corresponding proper Bayes estimator of d,, is
R 2 2 X2
16.24 5,) =E[L[0]2 | X] = — (”W 1),
( ) ( p)'r [p“ H | ] 1 _J[_7-2 p(]_ +T2) +

We névv assert that no matter how large 7> may be, the difference
(16.25) (bp), — GIX]? = 1)| = O(p~'/?)

uniformly in T w.r.to the marginal = unconditional distribution of X. By
(16.22), this will imply that

(16.26) |(85), —dp| =2+ 0%

uniformly in 72, so that the proper Bayes estimator (SP)T does not approx-
imate the “improper Bayes estimator” 5p no matter how large 72 may be,
i.e., mo matter how diffuse the proper prior N,(0,7%L,). Instead, (SP)T
approzimates the UMVUE 6, = %HXHQ —1

To establish (16.25), note that

X|© ~ N,(0,1,) and © ~ N,(0,72I,) = X ~ N,(0,(1+77)L,),
so || X||? ~ (1+7%)x3. Therefore

2

2 2
1172 <p’21Hfﬂ2) - 1) = GIXIE - 1)‘
- -1+ [ )
p L(I+72)2 1472
) - )
1+ 72 p(1 4 72)
- |(25) - 2)
1472 D
(16.27) < 2-0(p Y?)
uniformly in 72, as asserted. L
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17. The Elements of Statistical Decision Theory (non-sequential).
o Statistical model P ={Py |0 € Q}, sample space X, data X ~ Fp.
o Action space (= decision space) A= {a}.

Examples:

(a) A= here a € 2, s0 a is an estimate of 0.
(b) Partition 2=0Q0UQ;. Let H; be the hypothesis that 6,1 =0, 1:
A = { {accept Ho}, {reject Ho} } « test Ho vs. H;.
(c) A = { all intervals (c,d) }: confidence interval for 0.
e Loss function L(a, 0) = loss incurred by action a when 0 is true.

Examples: , |
(a) Estimation: L(a,0) = (a — 6)* or |a — 0], etc.
Hoy Hi

- _ [a=“accept Ho” ( 0 cor
(b) Testing: Lcm,clo(aae) ~ | a = “reject Hp” (clo 0 )’

where cg1,c19 > 0. Ly 1 is called the 0-1 loss function.
e Decision rule d(x) . X — A. If X =z is observed, d(z) = action taken

Ezxamples:

(a) Estimator: d(z1,...,Zn) = Tn OF Tmedian OT s2, etc.

(b) Test: d(z) = {

Thus a (non-randomized) test «» a partitioning & = AUR.

“accept Hy” if x € acceptance region A C X,
“reject Hy”  if = € rejection region R = X \ A.

o Randomized decision rule d(z) : X +— P(A), the set of all probability
distributions on A. If X = z is observed, the action taken is determined by
randomizing over..A according to the distribution d(z).

For example, a randomized test has the following form:

\_ 160y _ Jaccept Ho w. probability 1 — ¢(x),
W)d@){mmm w. probability ¢(z),
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where ¢(z) : X — [0,1] is a test function, interpreted as follows:
(17.1) ¢(z) = P[d? rejects Hy | X = =].

Thus, d? is a non-randomized test with rejection region R iff ¢(z) = Ir(z).
Because any test d = d?, randomized or non-randomized, is completely
determined by its test function ¢(z), we drop “d” and simply refer to “the
test ¢”.

Proposition 17.1. The set ® of all (randomized and non-randomized) test
functions ¢ is convez: ¢1,¢2 € D = md1+m202 € ® for allmy > 0, n2 > 0,
m+n2 =1 |

Proof. This is immediate from (17.1), which says that ® consists of all
(measurable) functions ¢ on X that satisfy 0 < ¢(z) < 1. l
e Risk function of a decision rule d: Rq(0) = Eo[L(d(X), 0))], the average

loss incurred by decision rule d when 6 is the true parameter value.

Examples:
(a) Estimation: R4(0) = Eg[(d(X) — 6)?] (MSE) or Eg[|d(X) — 0]].

L . [ c10Ps| ¢ rejects Ho] if 6 € Qo,
(b) Testing: Ry(0) = {cmPg[gb accepts Ho| if 6 € Qy,

_ C107T¢(9) if 8 € Qo,
(17'2) { Co1 [1 — 7T¢(9)] if 6 € Ql,

where
(17.3) | T4(0) = Pyl ¢ rejects Ho] = E¢[o(X)] -

is the power function. Obviously the ideal power function is

_ _ 0 if 6 € Q, , ‘
”mm@“{lﬁeem. '@;M .

Typically this is unattainable for a finite sample size n but approached as
n — 0.
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e Decision rules are compared on the basis of their risk functions (= expected
loss). This is the standard formulation of decision theory (called game
theory in economics). Thus:

dy dominates dy if Ry, (0) < Rg,(0) VO € Q, with < for at least one 6 € Q.
d is inadmissible if it is dominated by some d’; otherwise it is admissible.

d is minimaz if max R;(0) = minmax Ry ().

d' 0eQ)
: / FINIPIRX
/;M/]J/Mlb_gll’/ﬂ P, -

17.1. Bayes decision rules.

Suppose that the value of 8 is the realization of a random variable © with
range €). The prior probability distribution of © is specified by a pdf (or

pmf) (0).

e The Bayes risk rq(v) is again the expected loss, but now averaged w.r.to
' both x and 0:

ra(1) = B{L(d(X), ©)}
(17.4) = Ey{E[L(d(X),0) | ©]}
(17.5) = E¢{Rd(@)}.

o A Bayes decision rule for the prior distribution % is any decision rule dy
that minimizes the Bayes risk w.r.to ¢:

T'dy </¢) - Hgn Td ("P)

A Bayes rule need not exist and/or need not be unique. If it does exist,
however, it is easy to specify. Reverse the iteration in (17.4) to obtain

ra(y) = E{E[L(d(X),©) | X]}
(17.6) = E[expected posterior loss for d(X)].
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Thus if X = =, a Bayes rule dy(x) takes the (not necessarily unique) action
a(z) that minimizes the expected posterior loss. For this we use Bayes’
formula to calculate the posterior (conditional) pdf ¥(0 | z) of © | X = z.

Note: We can always find a non-randomized Bayes rule, but sometimes a
minimax rule must be randomized (combine Exercises 18.8 and 18.14(i)).

Ezamples:

(a) Estimation: if L(a,0) = (a — 6)*, the expected posterior loss is
E[(a — ©)% | X], which is minimized®* when a = a(z) is the mean of
the posterior distribution of ® | X = . Thus the Bayes estimator is the
posterior mean:

(17.7) dy(z) =E[© | X = z].
If L(a,0) = |a — 6], then the Bayes estimator is the posterior median:

(17.8) dy(z) = median[© | X = z].
(b) Hypothesis testing with 1085 Ly eq0° the expected posterior loss is

E[Lcoy 010(0,0) | X = z] = {cOlP[@ e | X =2] ifa= “accept Ho",

c10P[@ € Qo | X =z] if a = “reject Ho”.

Thus a Bayes test ¢y must have the form
(17.9)
“accept Ho? if coiP[@ € | X =2] < c10P[® € Qo | X =z,
do(z) =< “reject Ho” if cotP[© € Q1 | X =a]> c10P[©® € Qo | X = =i,
either if co1P[© €V | X =] = c10P[© € Qo | X = z].

Equivalently, the Bayes test compares the posterior odds ratio and cost rattio:

(17.10) by (x) = { “accept Ho” if Jg%ggg;gzﬁ < 2o etc.

co1’

Special case: Qo = {60} and Q1 = {6,} are both simple, i.e., singletons.
Here Bayes formula (4.14) gives

39 Note that this minimizing value of @ is unique [verify].
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where f(x | 6;) is the pdf or pmf specified by the statistical model for X and
Y; = P[© = 6;], i = 0,1, are the prior probabilities. Thus (17.10) becomes

« ”» e 0 ‘
(17.11) by () = { accept Hp” if ;Eiieég < iﬁgé‘i, ete. ,

which depends solely on the likelihood ratio ;g}g;g (also see Prop. 18.4).

Example 17.2. (Discriminating between two multivariate normal distribu-
tions with common covariance matriz) Suppose we observe X ~ Ny(u, %)
and wish to test p = po vs. p = p;. For simplicity suppose that 3 is
known (and positive definite). Assume prior probabilities 1o, 11 for po, p1,
respectively. Then

flz | ps) = (27T)_%|E!_%6_%(m“ui),2“1(m—ui)
so the log likelihood ratio (LLR) is given by [verify]

flz | p1)

(17.12) log [f(m o)

_ 1 _ _
} = (u1 = po) S0 w — 5 (X7 i — 1o " o) -

Thus the Bayes test ¢y (z) in (17.11) assumes the following form:

[ “choose po” if (u1 — po)'T " w < ¢,
(17.13) dy(z) = { “choose pu1” if (py — po)' Ttz > c*,’

where

. c 1 _ _
(17.14) ¢’ = log (:ﬁ?;ﬁ) +3 (BS = o= o) -

The linear function (11 — po)'S "1z = d'z is called Fisher’s discriminant
function. The Bayes test ¢y, partitions R? into two halfspaces {z | d'z < c*}
and {z | d'z > c*}, then chooses po or 1 accordingly [see figure below]. LI

Exercise 17.3. In Example 17.2, find the two error probabilities

(17.15)  P[¢y chooses py | po true] and Plgy chooses pg | p1 truel.

CHOOSE u, Cuaos’s/xo




17.2. Admissible Bayes estimators.

Proposition 17.4. A unique Bayes rule W;r.td a general loss function L is
admissible w.r.to L.

Proof. Obvious [verify].
Example 17.5. As in Exercise 16.6, suppose that

(17.16) X | © ~ Binomial(n, §),
(17.17) © ~ Beta(a, ) for a, 8 > 0.

For the quadratic loss function L(a,0) = (a — )2, the Bayes estimator is

X 4o

(17.18) da,p(X) =E[O | X] = ===

by (16.16). Since da,(X) is the unique Bayes estimator for the prior (17.17)
(see Footnote 39), it is admissible by Proposition 17.4. O

Exercise 17.6. What about the admissibility of the unbiased MLE 2—75—?
By (17.18),

X
(17.19) | = Jm dap(X),

a limit of Bayes estimators, but Proposition 17.4 is not directly applicable.
Suppose, however, that we change the loss function to the scaled quadratic
loss function

B (a — 6)?

(17.20) L(a,0) = 6

Show that if o, 3 > 1 and we replace quadratic loss L by L, then from
(17.6) the unique Bayes estimator becomes

(17.21) do p(X) =




Now set & = 8 = 1 to obtain dy1(X) = £ which shows that £ is ad-

missible w.r.to the loss function L. Finally, show that admissibility w.r.to
L is equivalent to admissibility w.r.to L, hence -7)% is admissible w.r.to the

ordinary MSE criterion. U

Example 17.7. Let Xi,... X, be a random sample from N; (0,0?) with
o2 known and let © have prior distribution 9, = Ni(n,72) with n and 7
known. From Example 16.2, the Bayes estimator of 6 (w.r.to MSE) is

' . -
(17.22) d,(Xn) = E[© | Xp) = =1

a weighted average of X, and 7. Note that, similar to (17.19),

(17.23) lim d-(X) = Xn,

i.e., the Bayes estimator converges to the unbiased MLE X,, as 7 — 00,
that is, as the prior distribution %, becomes increasingly diffuse. Unlike
(17.20) in Exercise 17.6, however, there is no obvious modification L of
the quadratic loss function L(a,6) = (a — 6)* such that X, is the Bayes
estimator w.r.to L. Thus a different argument is needed to establish the
admissibility of X, w.r.to L. One approach is the following;:

If X,, is inadmissible w.r.to L, it is dominated w.r.to MSE by some
estimator d, that is,

02

(17.24) R4(0) < Rx,, (6)

il

n

with strict inequality at some 6*. Because {N1(6,0%) | —oo < 0 < oo} is
an exponential family and the quadratic loss function L(a, ) is continuous
in 0, both risk functions are continuous in 8, so de>0s.t.

2
(17.25) Ra(0) < %— e if |00 <e

We shall show that the Bayes risk rq(1r) of d satisfies

02T2

52 112 T r? =rq, (Yr) for suffictently large T,

(17.26) ra(ir) <
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(recall (16.10) where d, was denoted as ). Since (17.26) contradicts the
- Bayesian optimality of d, w.r.to ¥.,, we can conclude that X, is admissible.

First note that (17.26) is equivalent to

o? ot

(17.27) —n— - ’I“d(ﬁﬁrr) > n(0_2 n 7’1,7‘2)

Jor sufficiently large T.

Now let I(g«+¢) denote the indicator function of (6* — ¢, 8* + ¢€). Then

v

2 0_2

=5y, | (%~ Re(®)) Tor20(0) + (5 - Ral®)) Kp1:(O)]
> e P[0 — 0%] < ¢ by (17.24) and (17.25)]

0% +e 2
€ (9 77)
/ 2
V2T Jox—e |
2¢> @ temm? (0% —n—e)?
(17.28)  z———min <e s 5 )
wT
o4

n(o? + nr?)

I

>

for sufficiently large 7, which implies (17.27). ) [l

Remark 17.8. Extend Example 17.7 to R? as follows. Let X1,... X, be
a random sample from N, (6,0%I,) with ¢ known and let © have prior
distribution Ny (n,721,) with n and 72 known (n € R?). The above proof of
the admissibility of X,, does not extend to R, however, because (17.28) is
replaced by O(77P) [verify|, whereas the right-hand side of (17.27) remains
O(772) [verify].. In fact, Charles Stein (1956, 1962) showed that X, is
inadmissible for p > 3, where it is dominated by the renowned James-Stein
estimator — see §22. (He also showed that X,, is admissible for p = 2 by a
-different argument, based on the Information Inequality.) Ll
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(recall (16.10) where d, was denoted as f). Since (17.26) contradicts the
Bayesian optimality of d, w.r.to ¢;,, we can conclude that X, is admissible.

First note that (17.26) is equivalent to

2 ' 4

ag o
(1727) 'E — ’l"d(lp’r) > 7’2,(0’2 n ?’LT2>

for sufficiently large T.

Now let I(g,+¢) denote the indicator function of (01 — €, 01 +€). 'I‘hen

=By, Kf'f- - Rd(@)) L(o,:+6)(©) + (%; - Rd<@>> f<elﬂ:e>c<@>ﬂ

n

>eP[|© — 01| < €] [by (17.24) and (17.25)]

__« /”““ -5 49

\/ 27T7_ 01—¢
2€2
17.28 7
( ) 2T T
4

- o
n(o? + nr?)

for sufficiently large 7, which implies (17.27). v U

Remark 17.8. Extend Example 17.7 to R? as follows. Let X3,... X, be
a random sample from N,(0,02I,) with ¢? known and let © have prior
distribution N, (8o, 72I,) with 6y and 72 known (o € RP). The above
proof of the admissibility of X,, does not extend to RP, however, because
(17.28) is replaced by O(77?) [verify], whereas the right-hand side of (17.27)
remains O(7~2) [verify]. In fact, Charles Stein (1956, 1962) showed that
X, is inadmissible for p > 3, where it is dominated by the renowned James-
Stein estimator — see §22. (He also showed that X, is admissible for p = 2
by a different argument, based on the Information Inequality.) L
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18. Testing Statistical Hypotheses.

18.1 Testing a simple hypothesis vs. a simple alternative.

In this section we consider the simplest nontrivial decision problem, testing
a simple hypothesis Hqy vs. a simple alternative Hy, i.e., H; consists of a
single distribution with pdf f;, ¢ = 0, 1. Thus we wish to test

(181) HO ZXNf() VS. H1 ZXNf]_.

Here both the action space and parameter space have exactly two members
and we can completely characterize the set of all admissible decision rules.
Unless otherwise specified we shall assume the 0-1 loss function.

The risk function R = Ry is now a risk vector (recall (17.2)):
Ry = (Ro, R1) = (Po| ¢ rejects Ho |, Pi[ ¢ accepts Hy )

(Eo[¢(X)], 1 — Ex[¢(X)])

(m4(0), 1 —mg(1)).

where Py = Py, P = Py, Eo = Ey, B1 = Ey,. The ideal risk vector
is (0,0). For this simple testing problem we can visualize the set of all

(18.2)
(18.3)

attainable risk vectors: |
| (2,)

(18.4) R={Ry|¢pc ®} ‘

as a subset of the unit square in R? [see figure). R !

The following result is fundamental:

Proposition 18.1. (i) R is a convex subset of R?.

(ii) R contains the diagonal {(n,1—mn)|0<n<1}. (9,07 Ro (1,9)
(i) R is symmetric about (%, 1). » N
(iv) R is a closed subset of R?. wEONC

Proof. (i) It follows from the convexity of ® (see Proposition 17.1), from
(18.2), and the linearity of expectation that if Ry,, Ry, € R then [verify]

mBe, +n2Re, = Ryigr4nag, €ER MLy +1m2 =1
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(ii) Let ¢po(z) = 0 (resp., ¢1(x) = 1) be the trivial test that ignores the data
x and always accepts Ho (vesp., H1). Then from (18.2), Ry, = (0,1) and
Ry, = (1,0), so (ii) follows from the convexity of R. '

(iii) p e = (1—¢) € P,50 Rp € R = R1_¢ € R. But

1 1 11
SRt Rie = By =By = (53),

50 (iii) holds.

(iv) This follows from the Weak Compactness Theorem of functional anal-
ysis (see Lehmann, T'SH Appendix 4). O

Since R is closed it contains its boundary, in particular R contains its
southwest (SW) boundary [see figure], which corresponds to the risk vectors
of all admissible (non-dominated) tests. The compactness of R guarantees
that its SW boundary is nonempty [Exercise 18.2(i)], so admissible tests
exist!

T,

) \\ R«;u -‘ Ry [Kﬁf S ﬁd ‘
S‘\ by 2Ry

Exercise 18.2. (i) Show that the SW boundary of R is nonempty.
Hint: Consider that R € R closest to (0,0). '

SW boundpar

R
¢ 0R?
(if) Show that the SW boundary of Ris "o '

the graph of a strictly decreasing function:

(iii) Show that there exists a unique admissible test ¢* iff ¢* is a perfect |
test, i.e., Ry« = (0,0). Show that this occurs iff fo and fi have disjoint
supports, so it is possible to distinguish between them without error. W

Since Hy and H; are simple, a prior distribution ¢ = (o, %1) is
specified by the two prior probabilities 1o = P[Ho] and %1 = P[H;]
(o + 91 = 1).
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Proposition 18.3. ¢ is admissible = ¢ is a Bayes test, i.e., ¢ = ¢y for
some prior ¥ = (o, %1). (The converse is not true in general.)

Proof. Suppose that ¢ is admissible, i.e.,
Ry € SW boundary of R. Since R is convex,
there exists a supporting line (= tangent line)
L for 'R that passes through Ry4. Since the
SW boundary is the graph of a decreasing
function, this line has negative slope, so

L = {(xo,21) | Yozo + 121 = ¢} for some
o, 1 > 0, g + 11 > 0, ¢ > 0. Dividing by
Yo + Y if necessary, we can ensure that

Yo + 1 = 1. We shall show that ¢ is Bayes
for the prior distribution ¥ = (1o, 11):

Because L is a tangent line to R that passes through its SW boundary
point Ry = (Ry, R1), the Bayes risk of ¢ w.r.to 1) satisfies

r6(1) = YoRo + 1 R1 < oRy + Y1 Ry =14 (Y)

for any other Ry = (Rp, R}) € R, i.e., for any other test ¢’ € ®. This
1mphes that ¢ = ¢y, i.e., ¢ is a Bayes test for . U

Bayey For
(%,"f"s (’;‘71 )
(nadmissibe L Bapes, Byes Fom I ) = (0,1

\ \l’;j:fjﬂ /F;// /N/?dr'ﬂt’}b 1BLE,

§ Bayss T &9755 = $Adriss e TESTS] 3 Bayesfesrs] 2 §Adbissidh fosrs?

Proposition 18.4. ¢ = ¢, is a Bayes test = ¢ is a likelihood ratio (LR)
test, i.e., has the form (recall (17.11))

/ 0 (= accept Hy) if Mz) = ggzg <c,
(18.5)  é(z) = pe(z) =< 1 (= reject Hy) if Mz) = ;;EZ% > ¢,
v(z) (= randomize) if Mz) = ggg c

for some ¢ € [0,00] and some (measurable) 0 <y <1,
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Proof. From (17.9), a Bayes test ¢, (z) must have the form

0 it P[H, | X =a] < P[Hy | X = 1],
(18.6) ¢¢(£B) = 1 if P[Hl | X = a:] > P[Ho I X = 51}],
v(z) if P[H; | X =z| = P[Hy | X = z].

By Bayes’ formula, however [verifyl],

L fi(@)
(18.7) PlH, | X = 2] = fo(@)vo + fi(x)r’
L fo(@)iho
(18.8) PlHo | X =] = fo(@)bo + f1(z)yr’
so (18.5) holds with ¢ = %2. -

Definition 18.5. The Neyman-Pearson (NP) criterion. Fix 0 < a < 1. A
test ¢ is level a (resp., size a) for Hy if [see figure] &W)M\vi

7(0) = Ep[p(X)] < a (resp., m4(0) = a)a MP _\::,'

A level a test for Hy : 0 € Qg is most powerful (MP) level afor Hy if )
Tg(1) = Eq[¢(X)] = sup T (1), o—+

where ¢’ ranges over all level « tests for Hy. U |

Propositions 18.3 and 18.4 together imply that any admissible test, i.e.,
any test with risk vector on the SW boundary of R, must be a LR test of
the form (18.5). Furthermore, if 0 < o < 1 then the risk vector of any MP
level « test ¢ must lie on the SW boundary (provided that its power is < 1,
ie., E1(¢) < 1 [see Figure]). Thus any such MP level a test must be a LR
test. The Neyman-Pearson Lemma provides the converse.

Theorem 18.6. The Neyman-Pearson Lemma. Let ¢ be a LR test of
the form (18.5) with ¢ < co and set o = Eg[¢p(X)]. Then ¢ is a MP level
test for testing Hq vs Hi. That is, if ¢’ is any other test such that

(18.9) Eo[¢'(X)] < o,
then
(18.10) Ey[¢/(X)] < Ea[¢(X)].




Proof. By assumption we have

(18.11)

(18.12)

Thus

Eq[¢(X)] — E1[¢(X)]

/ z) f1(z diﬁ—/fﬁ ) f1(z)dzx

(6— &) f1 +
{f >c}\_\,_./

> / (6— &)efo +
({8 >c} ({5

—c (6= 902 cla—a) =0

by (18.11) and (18.12), so

Explanation why LR tests are
Suppose that f; =Uniform[0, 1].

Jr F1(z)dz.

(18.10) holds.

<c}

/{m (6 ¢)f1+/{

(¢ —@')cfo+ /

f1(=)

f1(=)
fo(=)

{

/f

fol=) ™

=cC

}

c}

(¢ —

MP:

isdl

A

(¢ -8

¢,)Cfo

Restrict attention to non-randomized
tests ¢(x) = Igr(z). The size constraint (18.9) becomes [ rdz < o, e,
length(R) < o. Subject to this constraint we wish to find R to maximize

Clearly [see figure] we should choose R to be that interval

(or union of intervals) of total length o on which f;(z) achieves its largest
values. Thus we should choose R to be of the form

Ro={a| file)2 0} = a

fi(z)
fo(z)

>

c}.

where c is chosen so that length(R.) = «, which is a LR test.
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Example 18.7. Let X = (X1,...,X,,) be an i.i.d. sample from Ny (u,0?)
with o2 known. We wish to test

(18.13) Ho:pu=po ws. Hi:p=p, o < p1. m l;

¥

The pdf of X is Mo i

f"’(m):< . >n-e“§§7z(fﬂi—u)2

2o

: o2
i 2 - , K
= const - e~ 202 Z%.easzz.e 207

so the LR is

_ 2,2
(18.14) f,J,1 (CI:) _ e(u1fgg)nmn . eu%aéﬁ ,
f/«bo(w)

a strictly increasing function of Z,. Thus a LR test (18.5) has the form

0 (= accept Hy) if 2, <ec,
(18.15) p(x) =41 (= reject Hy) ifZn>c,.
v(z) (= randomize) if Z,=c

Note that this is essentially a non-randomized test since P[X, = c] = 0.
Finally, the MP level « test is given by the LR test (18.15) with ¢ = cq
chosen to satisfy '

| | NGs,1)
(18.16) P [Xn > o = o, m

|
1
i
0 2

hence ¢, = o + %za. :

Note: Because X, ~ Ny (0, 9;—) is sufficient for 6, we could work directly

with the pdf f,(Z,): the LR ;—5—%‘% yields the same test as (18.15). N
o] g .

Exercise 18.8. In Example 18.7, show that the risk set R = R, [see figure]

fills out the unit square at an exponential rate as n — oo. That is, show

that the minimax risk vector (o, a,) — (0,0) exponentially fast.
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Example 18.9. In Example 18.7, suppose instead that we wish to test
(18.17) Hy:02=0% wvs. Hy:0*=o03, 02 < o2,

with ¢ known. Now the LR is

(18.18) i) _ oty ) St

a strictly increasing function of > (z; — )%, Thus the size o LR test rejects
Hy in favor of Hy if [verify]

(18.19) > (Xi—p)? > 05 X o

Example 18.10. The results of Examples 18.7 and 18.9 extend immedi-
ately to any 1-parameter exponential family, including Binomial, Poisson,
Exponential, etc. That is, if X = (X1,...,X,) has joint pdf

n

=1

(18.20) fo(z) = [a(0)]" exp I:HZT(QZZ)

where 0 € ) is a real parameter, then the MP level o test for testing Hp : 6o
vs. Hy : 61 (6p < 67) is a LR test given by

0 (= accept Hy) T < cq,
(18.21) p(z) =141 (= reject Hy)  if T > ca,
Yo (z) (= randomize) if T = cq,

where T'= 3. T(X;). If T is continuous then ¢, can be chosen as in (18.16),
but if T is discrete then we can select ¢, and v, (z) = v, to satisfy

(18.22) Py, [T > ca) + Yo Po, [T = ca] = .

Remark 18.11. Note that the MP test ¢ specified by (18.21) and (18.22)
does not depend on the alternative 61 > 6o, hence is a uniformly most
powerful (UMP) level o for testing Ho : 0 = 6y vs. the extended one-sided
alternative Hy : 6 > 6y (also see Theorem 18.20.)
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Remark 18.12. In most scientific applications, the attainment of an exact -

Type I error probability « is not relevant, so “randomization on the bound-
ary” as in (18.22) would not be used. Instead one would report the p-value
= attained significance level

(1823) p= p(Tobserved) = PQO [T > Tobserved ]
A small p-value is evidence that favors Hy over Ho. [Also see §18.11, p.321]

Note: Both Hy and Hy must be specified to form the LR -f-"—l—(ﬂ, and thence
fOQ (:C) _

to obtain a p-value. It is not enough to specify Ho alone. U

Example 18.13. Let X be a single observation from a Cauchy(¢) distri-
bution and suppose we wish to test Ho : 0 = 0o vs. Hy : 60 =01 (6 < 61).
Then a LR test rejects Hp iff [see figure]

fel(m) . 1+ ($—00>2

(18.24) @ 1t (@0

> cv.

Thus, setting § = (0o + 01)/2, the rejection region is

an interval (a1, b1) C (8, 00) o ife>1,
(18.25) a complement (ag, bo)® with (ag, bo) C (—00,0) ifc<1,
the one — sided interval (0, oo) : if ¢ =

This irregular behavior is due to the fact that the LR (18.24) is not a
monotone function of z. By contrast, the LR is a strictly monotone function
of T in all 1-parameter exponential families. (See the discussion of monotone
likelihood ratio in §18.2.) L

The following exercise presents an example where the LR is monotone
but not strictly monotone. Compare the shapes of the risk sets to that
depicted in Exercise 18.8.

Exercise 18.14. (i) Let X = (Xi,...,X5) be an i.i.d sample from the

Uniform][0, §] distribution. Consider the problem of testing Ho : 6 = 1 vs. |
Hy : 0 = 2 with n = 1. Specify the SW boundary of the risk set R. Specify

the tests corresponding to the risk vectors on this SW boundary.
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(ii) Repeat (i) for n > 2. Show that as n — oo, the risk set R = R, fills
out the unit square at an exponential rate.

(iil) Repeat (i) and (ii) for testing Ho : @ = 2 ws. Hy : = 1. Show that for /é‘

9-" < o < 1, the MP level « test has power 1. Explain this behavior.

(iv) Repeat (i) and (ii) for testing Ho : X; ~ U[0,2] vs. Hy : X; ~ U[L,3].

Theorem 18.15. (Consistency of MP and LR tests for i.i.d. samples.) //

Consider the problem of testing

(18.26) Ho:X;~ fo ws. Hi:Xi~fi

based on an %.i.d. sample X1,...,Xy,. For each 0 < a <1 the MP level o
test ¢, is consistent, i.e. its power at Hy approaches 1 as n — 0o:

Pi{pn(X1,...,X,) rejects Hol — 1.

Proof. Note that this consistency is equivalent to %n (& * %)
] ~”?

B = Pi[¢n(X1,...,Xn) accepts Ho] — 0. (s, Bl

(v,0)

p
By the geometry of the risk set R, [see figure], this will follow if we can
exhibit a sequence of tests {¢% = ¢*(X1,...,X,)} whose risk vectors

(18.27) Ry = (o, 0%) — (0,0) asn — oo,

£
n

Let ¢} be a LR test with ¢ = 1:

_ . _ [1#(=) <
0 (= accept Hp) if Ay = i = 1,
1 (= reject Hp) if Ay = Thoe > 1.

(18.28) ¢p(z1,..-,%n) =

Now apply*® the WLLN and the inequality

Bo {10z | 228} =~ (s, 1) <0

40 Recall (14.26) in the proof of Wald’s Theorem 14.7(i) for the consistency of the
MLE when () is finite.
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to see that

(18.29) QZEPO{%Q)EX; } {Elog{ “’}>o}—»o.

Similarly 8% — 0, so (18.27) is established.

In fact, o and 3} — 0 exponentially fast: by Markov’s inequality,

(18.30) o = Pro[An > 1] = Pro[MY/? > 1] < Eo(\Y/?)

B / ' / {H fo(%’)}l/2 [H fl($i>] i Hdaci = p" — 0,

where  p= / fo@)]? [f1@)] P de =1 -4 [(fs”* - f/*)? <1 O

Exercise 18.16. Let A(X) = ;;g% denote the LR statistic for testing

Hy: X ~ fo vs. H : X ~ fi. Assume that the range of A is an interval
(a,b) (necessarily a < 1 < b [why?]) Let Go and G1 be the cdfs of A under
Hy and Hq, respectively; i.e., for a < ¢ <b, :

Gole) = Pp,IMNX) < d =1 - alc),
G1(e) = P, A(X) < d = (o).

Assume that Gy and Gy are continuous and strictly increasing for a < ¢ < b.
Here Ry = (a(c), B(c)) is the risk vector of the LRT ¢ = ¢, in (18.5).

(i) Let G;(c) = 1 — Gy(c), i = 0,1. Show that

Gi(c) <cGo(e) fa<e<l,

Gi(c) > cGole) fl<ec<b.
Conclude that a(c) + B(c) < 1 and that Gi(c) < Go(c) for all a < ¢ < b.
The latter inequality shows that A is stochastically larger under H; than
under Ho. In particular, E1(X) > Eo(A) = 1.
(ii) Let gi(c) = Gi(c), i = 0,1. Show that %é—%% = ¢, a < ¢ <b. [Since g; is
the pdf of A under H;, this result says that “the LR of the LR is the LR” ]

Hint: One method is to consider the moment generating functions of [ =
log A under Hg and Hi, but there is a short direct method.

(iii) Let “AUB” denote the area of the shaded region under the SW bound-

ary of the risk set R. Show that AUB = f G1 ()dGo(t) = f G1(t)gh(t)dt.
Combine this with (i) to show that AUB < 3.
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(iv) If X is an i.i.d. sample as in Theorem 18.15, show that AUB,, — 0 as
n — oo. [Hint: just apply (18.27).]

(v) Let X1,..., X, beiid. Exponential(A) rvs with pdf Ae™**, 0 < & < oo,
Consider the problem of testing A = 1 vs. A = A1 (% 1). Find AUB,, for
n =1 and n > 2, and show that AUB,, — co at an exponential rate. L.

18.2. Testing composite hypotheses and /or‘ alternatives.
Definition 18.17. The Neyman-Pearson (NP) criterion. Fix 0 < a < 1.
A test ¢ is level a (resp., size o) for testing Ho : 0 € Qo if

sup 7¢(8) < o (resp., sup m4(0) = ).
ISION ISA

A level o test ¢ for testing Ho : 0 € Qo vs. Hy : 0 € Qq is uniformly most
powerful (UMP) level o if |

ms(0) = sup 7w (0) VO €.

¢’ level

The NP criterion treats Ho and H; asymmetrically: we control the proba-
bility of a.“Type I error” (reject Hp when it is true) at level o, then minimize
* the probability of a “Type II error” (accept Ho when false) subject to this
constraint. This treats a Type I error as more serious than a Type IT error.

Hypothesis-testing terminology reflects this asymmetry: Ho is often
called the “null hypothesis”, for example representing the effect of a stan-
dard treatment, while H; is called the “alternative hypothesis”, represent-
ing the effect of a new treatment. Strong evidence (indicated by a small
p-value) is required to reject the null hypothesis in favor of the alternative.

Remark 18.18. The NP criterion requires only that the supremum of
the Type I error probabilities be controlled for 8 € Qo - it does not con-
sider the detailed behavior of the power function on . For certain non-
standard multiparameter testing problems where g is not a linear subspace
(or smooth manifold) — e.g., if Qg is the complement of the positive orthant
— this can lead to serious anomalies. See “The Emperor’s New Tests”,
Perlman and Wu (1999), Statistical Science. N

299



18.3. One-parameter testing problems with one-sided alternatives.

Let X have pdf or pmf fo(z) where 6 is a real parameter whose parameter
space €2 is an interval (possibly infinite). Consider the problems of testing

(18.31) Hy:0=0y ws. H{ :6> 0o,
(18.32) . Hy:0<06, vs. Hy :0>60

In each case, H is a one-sided alternative. We will show that UMP level
a tests exist for these problems when fg(x) has monotone likelihood ratio.

Definition 18.19. {fs(z)} has (strict) monotone likelihood ratio (MLR)
if there exists a real-valued statistic 7 = T'(X) such that for each pair

01 < 5 € Q, the LR ;zz Eg is a (strictly) increasing function of T'(z), i.e.,
1

f92 (m)
fel(x)

where g, g, (t) is (strictly) increasing in ¢. L

(18.33)

= go,,0,(T(x))

Note: Tt follows from (18.33) and the Factorization Criterion that 7'(X) is
a real-valued sufficient statistic for 6. (Set 6, = 0 in (18.33).)

In Example 18.10 we saw that if X = (X4,...,X,,) is an i.i.d. sample
from any l-parameter exponential family, then fg(z) has strictly MLR. By
contrast, for n > 2 the Cauchy, double exponential, and logistic families
do not have MLR. This can be verified by direct examination of their LRs
(e.g. see Example 18.12), or it follows since we know that for each family
the order statistics are minimal sufficient, hence no real-valued sufficient
statistic can exist. Similarly, the Uniform[f, 8 4 1] family cannot have MLR,
because (X(1), X(n)) is & 2-dimensional minimal sufficient statistic.

Other strict MLR families include the noncentral x2 (), Fy, »(0), and

tn(0). The Uniform[0, 8] family has MLR but not strict MLR, [verify — see
Exercise 18.14].

Theorem 18.20. Let fo(x) have MLR in T and let ¢ = ¢(T) be the test
0 ift<cq,

(18.34) b(t) = { 1 ift> ca,
Yo ift=cq,
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where c,, and v, are chosen to satisfy
(18.35) Po, [T > ca] + Yo Po, [T = cal = .

Then ¢ is UMP level o for testing (18.31) and (18.32).

Proof. By the MLR property, the test ¢ is a size a LR test for testing 0
vs. any fixed 61 > g, hence is MP level « for 6y vs. 81 by the NP Lemma.
Since ¢ does not depend on 6y, it must be UMP level « for (18.31), as in
Remark 18.11.

Next consider (18.32). Because

{all level o tests for H=} C {all level a tests for Ho},

and ¢ is the UMP level a test for Hy vs, H{, it suffices to verify that ¢
" remains level « for H . That is, we need shOW that for all # < 6,

(18.36) o = Eg[p(T)] < Eg,[6(T)] = c.

Method 1. By invoking the MLR property and the NP Lemma as above, we
see that ¢ is MP level o’ for testing 6’ vs. 6y. (Here ¢’ is the null hypothesis
and 0y is the alternative.) However, the trivial purely randomized test
¢’ = o/ satisfies

Eo [¢] = Eg,[¢] = &/,

hence is also level o/ for 6’ and has power o’ at 6. Since ¢ is MP level o/
for 6’ vs. 6, this implies (18.36).

Method 2. From its definition (18.34), ¢(t) is non-decreasing in ¢. Thus

(18.36) is a consequence of the following lemma. [l

Lemma 18.21. Suppose that fo(z) has (strict) MLR in T = T(X) and
that g(t) is (strictly) increasing in t. Then Eg[g(T)] is (strictly) increasing
in 8. Therefore T is “stochastically increasing” in 6.

Proof. For simplicity, suppose fo(x) > 0 for all z € X. For 6, > 64,

Ep, [o(T)] = / G(T (@) fou (@) de
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e 2] o

( )

' f92 (CB)

= Eg, ¢ @ [fel(w)jl
—

S in T
L Sin T )

* > Eg, [9(T)] - Eo, [————;Zz EZ;]
= By, [g(T)]a

where (*) follows from Chebyshev’s Other Inequality (Lemma 5.1). U

~

Exercise 18.22. Prove Lemma 18.21 without assuming that fo(x) > 0. U

Note 1: Theorem 18.20 is also valid if (18.31) and (18.32) are replaced by

(18.37) Hy:0=0y wvs. Hy:0< 6o,
(18.38) HZ:0>06y wvs. HS:0<06o,
and “<” and “>” are interchanged in (18.34) and (18.35). O

Note 2: The Cauchy location family does not have MLR; UMP tests do not
exist for these one-sided testing problems (recall Example 18.13). However,
locally most powerful tests can be found via the NP Lemma. Ll

18.4. One-parameter testing problems with two-sided alternatives.

Let X have pdf or pmf fs(z) where 6 is a real parameter whose parameter
space {0 is an interval (possibly infinite). Consider the problems of testing

(18.39) Ho:0=0, wvs. HI :0# 6o,
(18.40) Hyp:a<0<b ws. Hg,:0<aorb<d.

Both Hf and H{, are two-sided alternatives. In view of Theorem 18.20
and Note 1, UMP level « tests do not exist for these problems when fo(x)
has monotone likelihood ratio [explain]. Instead, often we can find UMP

unbiased level o tests for (18.39) and (18.40).
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Definition 18.23. A test ¢ is unbiased for Hy : 0 € Qg vs. Hy : 60 € Qq if
it is more likely to reject Hy when Hj is false than when it is true. That is,
its power function 7, satisfies [see figures]

ANBIPSED Bafbsp uNBszﬂ
| W
(18.41). sup mg(0) < elené Ty (). _/I/
Pesto 1 PR ,n, TN T
UMP level a tests for one-sided alternatives usually have one-sided
rejection regions and are unbiased [why?], hence are biased for two-sided BinseDd
alternatives. Instead, UMP unbiased (UMPU) level o tests with two-sided
rejection regions often can be constructed for two-sided alternatives, espe-
cially in 1-parameter exponential families. An extension of the NP Lemma % “*¢ ™
is needed that incorporates not only the level constraint but also the unbi-
asedness constraint. This is straightforward but will not be included here.

Example 18.24. (a) Asin Example 18.7, let X1,...,X,, beanii.d. sample
from Nj(u,0?). Suppose we wish to test

(18.42) Hy:p=po ws. Hf C £ o
with o2 known. The one-sided tests with rejection regions
{Xn > Lo + iza} and {Xn < g — —z—za}

Vn v
are, respectively, UMP for Hy vs. H{ and for Hy vs. H;, but neither is

unbiased for (18.42). Instead, the UMP unbiased level « test for (18.42)
has the symmetric two-sided rejection region

- o
an - ,lL0| > —=Zg.

Vn
(b) As in Example 18.9, suppose instead that we wish to test
Hy:0% =02 ws. Hf:aQ#ag

with ¢ known. Here the UMP unbiased level « test has an (asymmetric!)
two-sided rejection region

{Z(Xi; Dk <01} U{Z(Xz'z— > >C2}’

09 oy
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where ¢; = X2 ;_,, and ¢ = x2 . are chosen so that cfe™® = cfe™°* and
aj + ag = a. (See Lehmann Testing Statistical Hypotheses §4.2.)

18.5. One-parameter testing problems with nuisance parameters.

[Simﬂar tests, Neyman structure, UMPU tests.] -

18.6. Testing composite hypotheses; the general LRT.
'The general problem is this: based on data X ~ fp, test

(18.43) Ho:0e€Qy wvs. Hy:0€Q=0\0.

Case Ia: )y and (); are uniformly KL-separated: _Q:/
(18.44a) 9oeﬂi()1,1£1691[((90’91) > 0, Goeﬂi;,lefleﬂlK(gl’gO) >0, 7

Case Ib: )y and (); are pointwise KL-separated: <l
(18.445)  inf K (6o, 6) > 0 Vo € Q, in K(0:,0) > 0¥y € . //& Kj}/

Clearly uniform separation = pointwise separation. Here the LRT is

0 (= accept Hy) if ——HH?)‘E?; <1,
(1845) ¢k (w1,...,7n) = ][ffio( :
— . e 1176, \ %) 1
1 (= reject Hy) if [17. @ > 1,

where HAZ is the MLE of 6 under H;. This LRT behaves similarly to the LRT
for a simple hypothesis vs. a simple alternative. If X = (Xy,...,X,,) are
i.i.d. observations X; ~ fg(z;), fo(z;) is (upper semi-)continuous in 6, and

(18.46) Eg, {(Qseugz:)1 log I:feo(Xi) } < oo, Eg, {gseugo log Fo () } < 00

for each 0y € Qp and 6, € 2y, respectively (recall (14.22)), then

fo, (X3) To, (X3)
(1847) Pgo l:'ll:—l-[-m < 1jl > P@Q [%E;?Q_) < 1-‘
0

n fa, (X3) 3 X
= P, {% Z log [7%] < 0} = Py, {Supgeﬂl %Z; log [ffei((xi))} < O}

ngo{sup Hn(90,9)<0}——>1 as n — 0o,
=193
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by (14.29) (for 1) and (18.44a). Similarly Pp, {% > 1} S 1 as
6o \ 21

n — oo. Thus as in the proof of Theorem 18.15, the LRT ¢, is consistent
under both Hy and Hy [usually at an exponential rate].

Case II: )y C Q are subspaces (or submanifolds) of R*., Let 0 =
(01,...,0%). Let Qo C Q be smooth, relatively open manifolds in R*, deter-
mined by nested sets of differentiable constraints (with nonzero gradients):

(18.48) Q={0]g1(0)="-=gr(6) =0},
(18.49) Qo={0]q:(0)="-= 9r(0) = gr1(0) =+ = grts(0) = 0},
so that

d = dimension(Q) =k -,
do = dimension(2) =k — 7 — s,
(18.50) d — dop = dim(Q) — dim(Q0) = s.

For such Qo and ©, (18.43) allows two-sided alternatives but not one-sided
alternatives.)

For Case II testing problems the usual form*' of the LR statistic is

. _ _ SUDPgeqq fo(z) _ féo(fﬁ)
(1851) >\ == A(CU) - Supeeﬂ f@(m) - fé(x) Y

where éo and 6 are the MLEs of @ under Qg and € respectively. Note that
0 < A < 1. The LRT takes the form

0 ifA>e¢, [Noter not A <cl|
(18.52) p(z) =141 ifX<ec, [Note: not A>cl
v if A=c¢,

and the associated p-value is (cf. (18.112), p.321)

(1853) D= p(Aobserved) = Ssup P90[>\ < Aobserved ]
fo€Q0

41 The main reason that Wilks used \ rather than 1/ is that A reduces to a beta
statistic when testing normal linear models, as in Example 18.27.
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Example 18.25. (The 1-sample normal model.) Let X = (X1,..., Xp) be
iid. with X; ~ N1(u,0?),i=1,...,n. Consider the problem of testing

(18.54) Ho:p=puo vs. Hy:p#po, with o2 unknown.

The pdf of X is

L D BN C D%
fu,az(CB) - -(—2-;0—2)—%'6 202 Zml .

The unrestricted parameter space Q is {(u,0?%) | —0o < u < o0, 0? > 0}
and from (14.18) the unrestricted MLE of (u, 0?) is given by

. o 1o _
= Tp, &2 = E Z(mz - mn)2a
3=1

so [verify]

1
18.55 sup f o2(T) = ———A———ﬂe_ .
( ) co<u<o0,0250 @) (2m62) 2

w3

The restricted parameter space Qg is {(to,0?) | 0 > 0} and the MLE of
2

o“is
. 1
b5 = — 2 (@i~ po)?,
so [verify]
1 n
18.56 o = ——e 2,
(1556 5 Funr ) = ramyE

3o

If

Q>| Qé

o

@-5f _ Tl 2)

Ty — Q-S'n
(fL'z' - ,Lbo)

(18.57) A

>
>

or, equivalently, for large values of

(n — )n(Zn — NO)z _ n(Tn — ,“0)2
Y@ —Zn)? s2
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Under Hy, t? ~ t2_; (= Fy n—1) regardless of the value of 02, so the p-value
can be easily obtained:

(1859) p= p@observed) P[t2 1 > tobserved] U

Exercise 18.26. (The 2-sample normal model) Let X1,..., Xm, Y1,..., Yy
be independent with

18.60) X;~ Ni(u,0%), Y;~Ni(v,7?), i=1,....,m, j=1,...,n.
J

Consider the problem of testing u = v ws. ,u + 1/ under the assumption

that the variances are unknown but equal; ¢ = 72. The unrestricted and

restricted models are written in the forms (18.48) and (18.49) as follows:
Q:o? =712

(18.61) Qo:0?=7% pu=v.

Here k =4,r =1, s =1 = d—dp. Show that the unrestricted and restricted
MLEs of u,v,0? are, respectively,

vo 2 (i = Em)? D (Y — Tn)?

ﬂ:j;Tw 19:377%7 o = m+tn ;
L MEmAGn g @i = Zm) (Y — Tn)? e (B — Tn)”
Mo = Vo = y Og— .
m-+n m-+n

Show that the LRT is equivalent to the 2-sided t-test that rejects Hy for
large values of :

mn (Q_S'm o %)2
18.62 2 = mtn .
( ) - S (@i—=Em)2+) (Y5 —Tn)?

m+n—2

Show that under Ho, t? ~ ¢2,, . _, regardless of the values of yu and 2. U

Exercise 18.27. (Testing linear models) Based on a single observation
X ~ Np(&, 02I,) with 02 unknown, consider the problem of testing

(18.63) : Hy:¢£€ Lo wvs. Hy:€£€ L\ Lo, /L“'Lo ;ZZ/\L
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where Lo C I C RP are nested linear subspaces of dimensions dg and d
respectively. Because an [-dimensional linear subspace is determined by
a set of p — [ linear constraints,  and o are of the forms (18.48) and
(18.49) respectively. Find the LRT statistic A for (18.63) and show that
it is equivalent to an F-statistic with d — do and p — d degrees of freedom
(recall Remark 8.4, where Lo = {0}). N

Exercise 18.28. An example of the testing problem (18.63) is that of
testing a simple linear regression model (8.131) vs. a quadratic regression
model (8.137):

(18.64) EX;=a+b; vs. EXj=a+bti+ct, i=1...,n

that is, test ¢ = 0 vs. ¢ # 0. Here do = 2, d = 3 [why?]. Show that the
LRT statistic for (18.64) is equivalent to a ¢* statistic withn —3 d.f. U

Example 18.29. (Ezact case of Wilks’ Theorem.) Based on an observation

_ (X1 _ [ _ [ Y11 22
(18°65) X = <X2> NP1+P2 {M— (’u2> ’ Y= <221 222>} )

where 11 1 p1 X 1, po : p2 X 1, Y11 1 p1 X p1, D12+ p1 X P2, etc. and > is a
known pd matrix, consider the problem of testing

(18.66) Ho:po=0 ws. Hjp:ps#0 with y; unknown.

Note that (18.66) is a special case of the linear hypothesis (18.63) in Exercise
18.27, with Lg < {i | uo = 0} and do < p1, L < R* and d < p1 + pa, S0
d — dgy < po. (However, 3 is assumed to be completely known.)

To find the LRT A (18.51) (here 6 « u), factor the pdf of (X1, X2) as

fﬂl,uz(wlaxZ) - fﬂl,/vbz ($1|LL‘2> ) fuz (m2>
(18.67) = Np, (1 + S12555 (2 — pi2), L112) - Npy (2, Da2)-
Thus
Sup,,, [fu1,0<531|$2)f0($2)]
SUP Ly, 2 [fia,0 (z1]22) fus (2)]
[sup,, fus,0(@1lz2)] - fo(z2)
Sup,,, {[Supm f#l,uz (mlle)] ' fl«bz (5232)} .

=
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But sup,,, fu,,0(Z1]z2) = sup,, fu,,u,(@1|22) for each fixed iy [verify], so

fo(z2) (const) - o~ 32555, T2
A= _ 1 ’
SUPp, oz (22) (const) - e—2(0)

the LR statistic for testing us = 0 vs. g # 0 based on Xy ~ Ny, (pi2, Yi22)
alone. Thus the LRT rejects Hy for large values of the quadratic form

(18.68) ~2log A = X§%55 Xa ~ X, (M3 %25 H2),

a noncentral x? distribution (recall (8.110)). Under Hp : ug =0,
—2log A ~ X}%z = x5 do (a central x? distribution),

so Wilks’ approximation (18.69) below is ezact in this testing problem. O

In Case II the null distribution of the LRT statistic A is particularly
easy to approximate for i.i.d. samples from a regular family of pdfs.

Theorem 18.30. (S. S. Wilks, 1938) Let X3,..., X, be an i.i.d. sam-
le from a regular family {fo} that satisfies the Fisher-Cramér and Wald

conditions, so the MLE 6() is CANE for 8. Let Ay = Mp(X1,...,Xn) be
the LRT statistic (18.51) for testing (18.49) vs. (18.48). Then under Ho,

(18.69) —2log M\ < Xa—ds as n — 00.

Proof. See §18.8. U

Example 18.31. (Multinomial) Let (X1,...,Xk) ~ Mr(n; p1,...,Dk)-
Consider the problem of testing a simple hypothesis

(18.70) Ho:p=p° wvs. Hy:p#p°

based on X = (X1,...,Xk) ~ Mi(n; p), where

p= (pl)"'apk>7 pO: (p(l)a"wpg) (aﬂp? >O>
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The unrestricted and restricted paraméter spaces caﬁ be expressed in the
forms (18.48) and (18.49) as follows:

Q:pr+-+pe=1,

(18.71) ; .
Qo:pr+-+pe=10p1—01=0,...,pp-1 D1 =0

Here k =k, r=1,s=k—1=d—do. The multinomial pmf of X is
fp(m):ajl!_”mk!pllu'pkk if sz:n

The unrestricted MLE of p is given by (recall (14.76))

so the LRT for testing Hp vs. Hi rejects Ho for small values of

(18.72) — A=]1 (”f) .

g=1

By Wilks’ Theorem 18.30, under Hy we have
(18.73) —21og Ap > o4 as n — 00. [

Remark 18.32. In (7.32) of §7 we saw that Pearson’s x*-statistic

(18.74) 2 — i (X — npz )2 i (Observed; — Ex%ected?)z
i=1 Expected;

=1

also has an asymptotic Xk , distribution under Hy : p = p®. This is no
coincidence: 1’5 will be shown in §18.7 that the LRT statistic —2log A,, and
the Pearson x? statistic are asymptotically equal as n — co. L.

Example 18.33. (Testing independence in a 2-way contingency table.) Let
{ X5} ~ Mie(n; {pi;})
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be the entries in a 2-way contingency table with 7 rows and ¢ columns:

Xn Xie| X B, Ae P
! i

Xai Xd X B Prc| Fis

Xl**- thm P,m-,f"(,l

Con51der the problem of testing the hypothesm of mdependence
(18.75) Hy:pyj =pipy, t=1,...,7, j=1,...,¢

against the unrestricted alternative, where p;. = Za_l Dij, Doj = }:;1 Dij -
The null and alternative hypotheses can be expressed as follows:

QO pij——le,
asry
Qo—'—‘ﬂﬂ{pq;j—pi.p.j:—;o, 1=1,...,7—1, j'—:]_,...,ﬁ——l}.

[Why 7 — 1, ¢— 1 rather than 7, ¢?] [See figure for 7 = ¢ =2]
Here k = 7¢, r = 1, s=(F—1)E—1)=d— do. Notethat

1500

d=rc—1, i

dog=(F— 1)+ (c—1) [interpret]. |
A | oob!

The multinomial pmf of X is

FoC P
HZ 1HJ 1 .. Ej]:];p ‘ 1 ;jz::lwzg 1,

so the unrestricted MLE of {p;;} is given by (reeall (14.76))

(18.77)

A

pZJ:___’ ’l',:]_,.,,,’]_;, jzl,...,é.

Under Hy the pmf of X is

I : T c ’I’L' T c ‘
18.78 T i) = — ( m)( “)




so the MLEs of ({p;.} and {p.;}) under Hy are given by

Z; i

A0 ~0 _ ‘g
(18.79) pi. =~ and P =

'_7;_.
Thus the LRT rejects Hy for small values of

(1880)  An= HH (zez)®™ (Tl oi) (I @5')

N P - : 7 C .
o (7)) n" i Tl 2

By Wilks’ Theorem 18.30, under Hg we have
| ] ,
(18.81) —2log Ay, — X%F_l)(é_l) as n — 00. L

18.7. Relation between —2log )\, and Pearson’s x? for multinomial
hypotheses.

Examples 18.31 and 18.33 are special cases of a more general Case II testing
problem in a multinomial distribution: based on

X = (Xle')Xk) NMk (’I’L, pP= (pl7"'apk)>7
test
(18.82) - Hy:pe€ Qo ws. Hy:pe€ P \Qo,

where € is a submanifold of the probability simplex Px = {p | >_pi = 1}. .
As above, the LRT for (18.82) rejects Ho for small values of

k nAQ X
(18.83) | M=]] ( )?’f) :

i=1

where (79, . ..,p2) is the MLE of (p1, ..., px) under Ho. By Wilks’ Theorem,

(18.84) —2log A, 4 Xo—1—dg as n — 00

when Hy is true, where do = dim(£o).
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A second reasonable test statistic for the testing problem (18.82) is
Pearson’s goodness-of-fit statistic (recall (18.74))

k

£ (X — i 0; — £9)?
z np EZ( = ).

(18.85)
=1 72192 i=1

HI

It was shown in (7.32) that Pearson’s x? statistic also has an asymptotic
X 4, distribution under Hy when do = 0, i.e., for the case of a simple
hypothesis g = {po}. In fact this holds for all values of dy, i.e., for the
general testing problem (18.82). We now establish this by showing that
under Hy, —2log A, and Pearson x? are asymptotically equal as n — oo. -

From the Taylor expansion log(1 — z) = —z — 22 + O(z°) we have

k 71150
—2log A, =—2)  X;log [1 — (1 — Xﬂ
i=1 i

2 3
_ 20 (Xi nﬁz) (X'i — nfy )
_2;(& np¢)+i}; 5 0 ; e
k k
(X —npy)? s0y3 (L L
=0+ :E:: ~0 + O :E:: ()(; 71272) <i7uﬁt{)(; X2 )
% =1 g 7

under- Hy, since X; — npd = (X; — npi) + ”(Pz 29
under Hy [verify]. Thus (—2log\,) — Op(n~
establishes their asymptotic equivalence under Ho

Thus in Example 18.33, x? 42 under Hy (cf. (18.81)).
(7—1)(c—1)

Op(n%) + Op(n%)
as n —» 00, which

M[H

)

Exercise 18.34. In Example 18.33, show that Pearson’s chi-square statistic
for testing independence in a 2-way table can be expressed as

- (nXi; — Xo X.5)? _
18.86 = 4 i ]
( ) >< :g:: jg:: 7153}.;Xij

=1 j=1
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approximately equivalent to the requirement np > 4. This suggests that the
condition ]?3? =np? > 4,41 =1,...,k, is necessary for the accuracy of the
approximation x? & x3_;_g, to the null distribution of Pearson’s statistic,
and thus also of the LRT statistic —2logAs. (Unfortunately, variance-
stabilizing transformations do not exist for the multinomial distribution or
other multivariate distributions — see P. Holland (1973) Ann. Statist.) U

Remark 18.36. The MLEs ¢ that appear in the Pearson x? statistic
(18.85) must be based on the multinomial counts X;, not on any underlying
data from which the X;’s may have been derived. For example, suppose we
observe continuous i.i.d. rvs Y1,...,Y, from an unknown pdf f on —00,00)
and wish to test Ho : f = Ni(u,0?) with (p,0?) unspecified. One approach
is to group the data into k cells (i.e., form a sample histogram) and use
the observed cell counts Xi,..., Xk to test Ho. Then the cell probabilities
p? = p?(u,0?) depend on the unknown (,0%), which must be estimated.
However, we may not use the usual MLEs i = Yy, 6% = @-;—ls% based
on the Y;’s but rather must use the MLEs (i, 52 based only on the X;’s —
otherwise the approximation 2~ xi_5 (hered=Fk —1, do = 2) is invalid
_ see Chernoff and Lehmann (1954) Ann. Math. Statist. O

18.8. Proof of Wilks’ Theorem; consistency of the Case II LRT.

Theorem 18.30 (repeated). Let Xi,...,Xn be an i.5.d. sample from a
reqular family {fo} that satisfies the Fisher-Cramér and Wald conditions,

so that the MLE 00V is CANE for 0. Let Ay = Mn(X1, ..., Xn) be the LRT
statistic (18.51) for testing (18.49) vs. (18.48). Then under Ho,

(18.69) —2log A\n <, Xa—dy as n — 00.

Proof (sketch). We will indicate the proof for the simple case where {0 is
a single point {6p} and ) is an open subset of R¥, so dg = 0, d = k, and
d — dy = k. Because § = 00 is a CANE estimator (recall (14.65)),

(18.87) VAURE 90) < Ni 0, [1(60))™")

when Hp : 0 = o holds, so by Slutsky’s Theorem the quadratic form
A / A
(1888) Qn=n <9<n> _ 00) 1(60) (0<n> _ 90) 42 asn— oo
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Thus (18.69) will follow if we can show that
(18.89) —2log \p, — Qn = 0p(1) as n — 00.

First take & = 1 so 0 is 1-dimensional. Let 1,,(0) = Y., log fo(z:)
denote the log likelihood function. From (18.51) (p.305) and the 2nd-order
Taylor expansion of I, about 0™ [not o),

—log A\, = — [ln(eo) - ln(é(n))]

dl,(0) (B —00)? d*1 () N (O™ —0,)3 d®1,.(05)
do 2 d62 6 dg3

_ (é(n)_90>

for some 0 € (QO,OA(”)). But 6™ satisfies the LEQ é_%_ﬁ%ﬂ = 0, so by

arguments similar to those for Theorems 14.9, 14.18, and Exercise 14.10,

A 421, (6™
2o, = —(F -2 20T o, 1)

= (6™ —00)%1(60) + 0p(1).

By (18.88), this establishes (18.89).
If k > 2, use the multivariate 2nd-order Taylor expansion instead.

The proof for the case of a general composite o may be found in the
original paper by S. S. Wilks (1938): “The large-sample distribution of the
likelihood ratio for testing composite hypotheses”, Annals of Mathemati-
cal Statistics 9 pp. 60-62; also see the book Approzimation Theorems of
Mathematical Statistics by R. Serfling (1980). Again the idea is to use the
asymptotic normality (18.87) of the MLE 6™ and the smoothness of Qg
and € to reduce the problem to one of testing a linear hypothesis about the

mean of a multivariate normal distribution, as in Example 18.29. U

In §18.6 we established the consistency of the LRT (18.45) based on
the statistic ¢* for Cases Ia,b where Qo and 2 are separated. This remains
true for Case II where the appropriate LRT statistic is given by (18.51), but
a different proof is required.
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Theorem 18.37. (Consistency of the LRT in Case I1.) Under the condi-
tions of Wilks’ Theorem 18.30, for each 61 € Q1 = Q\ Qo,

(18.90) Py, [—210g A > XG—dg.0l — 1 as n — 00,
Proof. For fixed 01, select 65 = 65(61) € Qo such that
(18.91) K(61,05) = min K(61,60) > 0.
0o €20
n:

Let 0o = é(()n) and 0 = 0™ be the MLEs of 6 under Qg
and €, respectively. Then

—log Ay, = -[zn@o) —1,(0)]

(18.92) = —[ln(B0) = 1n(05)] = [1a(65) = 1n(61)] — [In(62) — Ln(0)].
By Wilks’ Theorem with Qo = {61} (so do = 0),

(18.93) —[ln(61) = 1 (B)] D 13 = Op(1)  asn — oo.
By the WLLN,

—[in(88) — b (62)] = —n __531 H:(X)}

‘ (18.94) Nn-K(Ol,HO) — 00 as n — 00.

Finally, note that when 6; is the actual value of 0, b is the MLE of 6 under
the “wrong” model Qg. Just as for the MLE under the correct model, it
can be shown (see (18.102) in §18.9) that from the choice of 6§ in (18.91),

(18.95) do — 0% = O, (‘m%) .

If we now?*? let Vj 1,(60) denote the do X do Hessian matrix <§Zé?f(9§23 ), the

multivariate 2nd-order Taylor approximation of [,,(6{) about 0o gives

A A A 1 A A A
n(05) = In(B0) = (65 — 00)' Vi, in(00) + 5 (05 — 00)' Vi 1n(60)(05 — 0o)

42 Note that under the null model determined by $g, both g and Vg, [ (0o) are
actually dg-dimensional not k-dimensional, Vezo I,(80) is dp X dg not kX k, etc. Perhaps

our notation should be changed to reflect this.
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= 4565 — o)/ Vi Ln(B0) (65 — o) [since Vg In(Bo) = 0]
~ 265 — o) Vi, Ln(65) (05 — B0 [verify]
L vaes - ) |5 nl69)] [t o)

(18.96) = Op(1)

by (18.95) and the fact that under 61,

1 .
(18.97) — 3, 1n(05) — B {[vgo log fo, (X)) s (91)} = _J(6)

by the LLN. Thus by (18.92), (18.93), (18.94), and (18.96),
—2log Ay, zOp(1)+nK(01,0{§)—|—Op(1) — 00 as n — 00,
which establishes the consistency result (18.90). LI

18.9. Properties of the MLE when the model is incorrect.

As in §14.3 and §14.5, let {fp | 6 € Q} be a regular family of pdfs, where €
is an open subset of RF. Tt was shown there, cf. Propositions 14.8, 14.20,
and Theorems 14.9, 14.21, that under the Fisher-Cramér-Wald conditions,
the MLE 6 = 6™ based on i.i.d. X1,...,Xn~ foisa CANE estimator of
0. The key results were the following. When 6 = 6o, i.e., Xi ~ foo)

(a) Eg, {1og { ffe 90((XX))]} = —K (6, 0) < 0 has a maximum value 0 attained

uniquely at 6 = g, s0 Eeo {[Ve log fe(X)]eo} = [Vo K (0o, 9)]60 =0.

b) H,(00,0) = 2 S0, {log | L252| + — —K (6o, 6) uniformly in 0.
n i=1 feo(Xz)

(c) \/‘ﬁ (é(n) _ 90) R Ny, (O, [1(00)]“1), where % s
nssy 10 =B (Folosfs T ) | T N
(18.99) = —By [V log fo(X)] ™K (5,6 KA
(18.100) = [V2K(0,0)]g s - m
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The first of these relations shows that I(fo) is positive semidefinite.

Now suppose that the model {fo | 0 € Q} is incorrect, so that X; ~ g
rather than X; ~ fg,, where g # fp for any 6 € Q. If the Fisher-Cramér-
Wald conditions remain valid when X; ~ g then (a), (b), and (c) can be
directly extended as follows:

(a') By {log [f;((;.())]} = —K(g, 0) <0V0 € Q (by Jensen’s inequality).
Assume 3 a unique 0, € £ such that [see figure] | % > ¢

(18.101) K(g,0,) = min K(g,0) > 0. ‘
g 6eQ 'K(jfa)

(b') Hn(g,0) = 1 {log [J;;’(())({))}} — —K(g, 6) uniformly in 0.
(¢') Let 6 be the MLE of 6 under the incorrect model {fo | 6 € Q}. Then
(18.102) Vi (6%~ 0,) 4 N (0, U@ @I (@)

(recall (14.42)-(14.44), p.237), where I(g) is the k x k psd matrix given by

(18.103) 1(g) = By { [Vo log fo(X)ly, (Vo log fo(X)];, } [compare (18.99)
and J(g) is the k x k symmetric matrix given by

(18.104) J(g) = —E, { (V2 log f5(X)] 99} lcompare to (18.99)]
(18.105) = [VeK(9,0)],, [compare to (18.100)].

Note that I(g) and J(g) are psd [verify] by (18.103) and (18.101,105); so
both must be assumed to be positive definite.

Exercise 18.38. Derive (18.102) for k =1 [cf. (14.42)-(14.46), p.237]. U

Example 18.39. Take fo = N1 (0, 1), g = Ni(61, 0®) with 02 # 1. The
MLE of 6 under the “wrong” model {fo} remains 6(") = X,,. From (a/),

(X =61 (X-90)°

K(9,0) = —Hoy 02 | log o+ 55 2 - (8 o)
1 o+ (61— 0)* T
(18.106) = —logo — — + , :
2 2 (9;77’)
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which is minimized when 6 = 6; = 0,. Thus from (18.103), (18.105), and
(18.106),

I(Q) - E91,0‘2(X - 01)2 = 027

J(g) =1,
so from (18.102),

> d
\/ﬁ(Xn — 91) - N1 (0,0'2> )
the “wrong” variance. (This also follows by the Central Limit Theorem. )l

Exercise 18.40. By its definition, the MLE 6 under the model {fo}
satisfies the following system of k estimating equations (i.e., the LEQs):

Vo (%Zlog fe(%))} =0,
i=1

6(n)

n

(18.107) % > [Volog fo(zi)law =

g=1

while it follows from (18.101) that when X; ~ g (compare to (a), p.317):

(18.108) B, { [V log fo(X)ly, } = VoK (9,0)]s, = 0.

More generally, we can replace the score function Vg log fo(x;) by a gen-
eral estimating function ne(z;) and define 6™ and 6, to be the solutions
(assumed to exist and be unique) of the systems

(18.109) % an(n) (z;) =0,
(18.110) Eq [ne, (X)] = 0.

Under appropriate Fisher-Cramér-type regularity conditions, show that
when X; ~ g, 8% is a CAN estimator of f,, that is, satisfies (18.102)
with I(g) and J(g) suitably redefined (how?). [Also see CB pp.485-8.] U

Remark 18.41. Wilks’ Theorem is based on the asymptotic normality of
the MLE as obtained in the Fisher-Cramér Theorems 14.9 and 14.21. We
have stated each of these results for an i.i.d. sample Xi,..., X, from a
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regular family of pdfs {fs(z;)}, but they hold more generally, for example,
in the two-sample normal model of Exercise 18.26 and in models with de-
pendent observations such as auto-regressive time series models. For such
models the key requirement for asymptotic normality of the MLE is that the
total Fisher information concerning the parameters to be estimated should
approach infinity. , W

18.10. Case III: Non-separated but non-smooth hypotheses.

Multivariate one-sided hypotheses. Examples include:

'..Q.o —D“l
N
AN

The appropriate form of the LR statistic A is again (18.51) as in Case II,

but now for i.i.d. sampling, Wilks’ asymptotic x? approximation (18.69) of
the null distribution of X, is often replaced by

(18.111) —2log Ay, iwle+--~+wkxi as n — 00,

where the x? variates are mutually independent and wy, .. .,wy are weights
depending on the geometry of £y and ;. Furthermore, if Qg is composite,
these weights may depend on the value of 6y € . See books by Barlow,
Bartholomew, Bremner, & Brunk (1972), Robertson, Dykstra; & Wright
(1988), and Silvapulle & Sen (2005). For a cautionary note see MDP &
Chaudhuri “The role of reversals in order-restricted inference”, Can. J.
Stat., 2004; MDP & Wu “The Emperor’s New Tests”, Stat. Sci. 1999.

Null hypotheses with varying dimensionalities. If Qo = Uj_;{Q;, a union of
non-nested sets of varying dimensionalities, then no form of the LRT statis-
tic is appropriate — see Perlman and Wu “On the validity of the likelihood
ratio and maximum likelihood methods”, JSPI 2003. Instead, the union-
intersection or intersection-union methods may be used — see CB Ch. 8.
(Perhaps a better approach is to restate the problem as a multiple decision
problem, rather than use the simpler hypothesis-testing form.)




18.11. Properties of p-values.

It is often stated that “under the null hypothesis Hp, the p-value (cf.
(18.112)) is uniformly distributed on [0,1]”. This may be true for test
statistics 7' with continuous distributions (recall Example 2.2a, p.20), but
must be modified for discrete or general distributions, as follows.

For any random variable 7' (continuous, discrete, or a mixture thereof),
its cdf F(t) = P[T < t] is nondecreasing, right continuous, and satisfies
F(t=) = P[T < t]. Similarly, G(t) = P[T > t] is nonincreasing, left
continuous, and satisfies G(t+) = P[T > t]. Let U ~ Uniform[0,1].

Lemma 18.42. (i) F(T) *stoch U and G(T') =stoch U. That is,

PIF(T) <u]<wuand PIG(T) <u]<u for al 0 <u <1

(ii) If T is a continuous rv, F(T) ~ U and G(T') ~ U.
Exercise 18.43. Prove (i) and (ii). | O

Now let T be a test statistic for testing Ho : 6 € Qo vs. Hy : 0 € {2,
where Hy is rejected for large values of T. Set Gg(t) = Po[T" > t]. The
p-value = attained significance level associated with T' is

(18.112) p = p(Tobs) = SWPgeq, Go(Tobs),

where Thps = Topserved ~ 1. Clearly p = p(Tobs) is nonincreasing in Tobs-
It follows from Lemma 18.42(i) that when 6 € o,

Py[p < u] < PyGo(Tobs) < ul <.

Thus under Hy, the p-value is stochastically larger than U = Uniform[0,1].

Finally, for a real-valued parameter ¢, consider the problem of testing
Hy : 0 < 0y vs. Hy : 0 > 0p on a test statistic T ~ fo, where fo(t)
has monotone likelihood ratio in  (cf. §18.3). Then by Lemma 18.21
(p.301), Go(t) is increasing in 6, so p = p(Tobs) = Go, (Tons) and p is
stochastically decreasing in 6. Thus by Lemma 18.42(ii), if T' is continuous
then p ~ Uniform[0, 1] when § = 0o.
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19. Sequential Tests and Estimators.
19.1. The sequential probability ratio test.

During WWII, the quest for increased industrial efficiency led Abraham
Wald in the U.S. and George Barnard in the U.K. independently to study
statistical tests and estimates based on sequential sampling procedures. In
hypothesis testing, for example, traditionally the sample size is predeter-
mined so that prespecified (small) Type I and Type II error probabilities
will be obtained. However, it may occur that the evidence for or against -
the null hypothesis accumulates so rapidly that the entire sample need not
be examined, thereby reducing the time and cost of the study. We shall
illustrate this by the sequential probability ratio test (SPRT) for testing a
simple hypothesis Hy vs. o simple alternative Hy.

“Let X1, Xa,... be an infinite series of successive possible observations,
not necessarily i.5.d. Let X, = (Xi,...,Xy) have pdf fj(xy) under Hj,
j=0,1, and let )\, denote the likelihood ratio (LR) for X:
f1(%n)
fo(xn)

Consider the nonrandomized LRTs based on X, (recall (18.5):

(19.1) An = An(Xn) =

192) sz ={] S oo 1) A S b

with error probabilities

(19.3) an (k) = Po[An > K,
(19'4) ‘ 671(]{;) = Pl P‘n S k]
For fized n we can control one of the error pi‘obabilities via the choice of k:
1
an(k).:/ fo(xn) < -];/ f1(xn)
{An(xn)>k} {An(xn)2k}

1 1

(19.5) S () < 7

50 an(k) — 0 as k — oo, but in this case 8, (k) — 1 by (19.4).
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In the case where X1, Xo,... are i.i.d., we saw in Theorem 18.15 (cf.
(18.28)-(18.30)) that we can control both oy (k) and B, (k) by fixing &k (e.g,,
k = 1) and letting n — oco. Wald and Barnard realized, however, that
by sampling sequentially, that is, by letting the sample size depend on the
data as it accrues, both « and # can be controlled with smaller ezpected
sample size. Sometimes the initial observations may clearly reveal which
- of Hp or Hj is true, hence sampling may be stopped very early. Other
times extended sampling may be needed, but on average the sample size is
reduced — see Theorem 19.8.

The SPRT(B, 4): fix 0 <B<1<A<oo Forn=1,2,...,

- stop sampling and choose Hy if A\, < B,
(19.6) { stop sampling and choose Hy if Ay, > A,
' . continue sampling if B< A, <A

Note that SPRT(B, A) is.‘ defined even if X1, X5, ... are not i.i.d. The sample
size Ng 4 = Np,a(X1,Xa,.. .) is itself a random stopping time:

Definition 19.1. A positive—integer-valued rv N = N(Xy,Xa,...) is a

“stopping time (= Markov time = optional time) if for each n =1,2,..., the
event {N = n} depends only on (X1,...,Xn). That is, the decision to stop
at time n depends only on the past and present, not on the future. U

Proposition 19.2. If X1, Xa,... are i.i.d. then P;[Np,a < Qo] =1 and
Ej<NB,A) < 00, .7 - O) 1.

Proof. Suppose that X; ~ fj under Hj, j =0,1, so

- fl(Xi)} < |
(197) © ; © [‘fO(‘—Xi) ;
a : —4
s T . e
m \/ N:STOF »("\""?

b

Here {S, | n-= 1,2,...} is a random walk, i.e., a discrete-time stochastic
process consisting of consecutive sums of the i.i.d. rvs Z1, Za,.... Then

{Np 4 <oo}={S, <—bor Sy deor somen=1,2,...},
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where
(19.8) ~b=logB <0 <logA=a.

But P;[Z; # 0] > 0 for j = 0,1 since fo # fi1, so P;[Z; >O]>00r}
P;[Z; < 0] > 0 or both. WLOG suppose that Pj[Z; > 0] > 0. (Abbreviate
Ng.a by N.)

(a) Suppose in fact that P;[Z; > b+a] =6 > 0. Then

{N<n}D{Z >b+a}U.---U{Z, >b+a},

SO
Pj[N>n|<Pj[Z <b+a,...,Zn <b+al
| = P;[Z, <b+a]"
=(1-46)".
Thus
P;[N<oo]:n1_1_1;%oP[N<n]>n1£r;o[1—(1~—5) =1
Also,

ZP [N > n] <Z(1-—

n=>0

In fact, all positive moments E;(NT") are ﬁmte.]

(b)Y If P;j[Z; >b4+a]=0,de> 0s.t. P;[Z; > ¢ =~>0. Chooser > b,
so 7e > b+ a. Then

Pj[Z1+"'+Z7“_>_b+a]__>_Pj[Z12.67'~°)ZT‘Z€]
= Pi[Z1 > €| P[Z1 > €]
=~">0.

Now apply the argument in (a) with 6 = o" and Z; replaced by
Zp(i—1)41+  + Zrs N

Proposition 19.3. Suppose that Py, [Np a < ool =1, j=0,1. Define

(19.9) a(B,A) = Py[SPRT(B, A) chooses Hi] = Po[{An} hits A before B,
(19.10) B(B,A) = P[SPRT(B, A) chooses Ho| = Pi[{ .} hits B before A.
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Then whether X1,X2, ... are t.4.d. or not,

(19.11) a@1A>§1"?X%A)§%7
(19.12) B(B,A) < (1 —a(B,A)B < B.

[Compare (19.11) to (19.5) with k = A. Also, note that these bounds do
not depend on the actual sequence of pdfs {f;(xs)} under Hy, j =0, 1.]

Proof. Abbreviate Np 4 by N. Then

(B, A) = Py 2 Al =Y " PofAn > A, N =n)

n=1
. n= {An (xn)2A4A, N=n}

1 o
19.13 < = / x,,)dx,,
(19:42) A 2 [rntn)2 A, N=n} filoen)
1 0
= Zznzl PlP\N > A, N = 'I’L]
1
= — >
APIP\N > Al
1 o
= Z{l — P1[>\N < B]} [since Pl[N < OO] = 1]
_ 1 |
= Z(l - ﬁ(B>A)>>
so (19.11) holds. A similar argument establishes (19.20). O

Remark 19.4. (Wald’s approzimations.) By (19.6), either Ayy , < B or
ANga = A IE the successive ratios An/An—1 are nearly one then approxi-
mate equality holds in (19.13) hence holds for the first inequality in (19.11),
and similarly in (19.12): |

. _BB,A) - 1-B(B,A)
(19.14) B ma AT aBA)

which in turn yield the following approximations for a(B, A) and B(B, A):

1-B _B(A-1)

. (19.415) a(B,A) ~
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Furthermore, the approximations in (19.14) can be used to select B and A so
that the SPRT(B, A) approximately attains prespecified error probabilities
o and 8. Note that the B and A so obtained will not depend on fo or
fi. (Usually this approximation will be conservative, i.e., the actual error -
probabilities will be smaller than the prespecified values.) U

Proposition 19.5. (Wald’s Lemma for a randomly stopped sum.)
Suppose that Uy, Us, ... is a sequence of 4.i.d. Tvs with E|\U;| < oo and let
N be a general stopping time for {Un}. If E(N) < oo then

(19.16) E(SN)=EUL+ ...+ Un) = E(N)E(Uy).
Proof. Since N is a stopping time, the indicator function

In=Inzny = 1= [N<n-13
depends only on Uy, ...,Up—1, s0 I, 1L Uy. Therefore

N o'}
E(Sy)=E (Z Un> =F (Z InUn>
n=1 n=1 :

LY E(IulUn) = ) B(In)EUn)
n=1 n=1

_ (i Pr[N > n]> B(UL)

— B(N)E(Uy).

This completes the proof, except for justification of the interchange of
E and 3 at (). This relies on the Dominated Convergence Theorem, which
implies that E (3250, ¥,,) = > ooy EY;, provided that either all Y, > 0 or
B, |Ya]) < co. Set Yy, = I,Uy. Since [InUn| = 0 we have

" E <Z [InUn[) = " B|LUn| = ) E(I)E[Un|
— (i Pr[N > m) E|U]

n=1

= E(N) E|,U1] < Q.
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Thus the interchange of E and > at (*) is justified. O

Remark 19.6. (Approxz’matz’ng Eo(Np a) and Ei(Np,a) for the
SPRT(B A) in the i.i.d. case:) Apply Wald’s Lemma (19.16) with U; =

= log [%} to obtain

(19.17) E;(Snp4) = Ej(NB,4) Ej(Z1), j=0,1.

Here E;(Np,4) < oo by Ploposmon 19.2, while we must assume that
E;|Z1| < o0, § = 0,1. If the conditions for Wald’s approximations hold,
then under Ho,

oL with probability 1 — a,
Np,a ™Y 4  with probability o,

where oo = a(B, A), so
(19.18) - Eo(Snp 4) & —(1 — )b+ aa.
Since Eo(Z;) = —K (fo, f1), it follows by (19.17), (19.18), and (19.14) that

—(1—a)b+aa

=K (fo, f1)

N( o) log & ﬁo‘+alog1 5
- K(fo, f1) ’

(1919) EQ(NB,A) ~

and similarly

(1-0)log =L + Blog £ B
K(flafo) ’

Remark 19.7. For the symmetric SPRT(A™?, A) (where b = a), Wald’s
approximations (19.15) become .

(1920) EI(NB,A> ~

1 .
—1 q ~ 4"‘1 4 I —
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while (19.19), (19.20), and (19.21) combine to yield

4=1llog A log A
Eo(Nao1 4) rs At ~ 8
o(Na-1,4) K(fo, f1) K(fo, f1)
ﬁﬁlogA _ logA

K(f1, fo) ~ K(f1, fo)

if A is large,
(19.22)

E1(Ng-1 4) & if A is large. 0

" Theorem 19.8 (Optimality of the SPRT in the ii.d. case). Let
X1, Xo,... be i.4.d. Consider the problem of testing the simple hypotheses

(19.23) Ho . Xz ~ fo VS, Hl . Xi ~ fl-

Let Np a denote the stopping time of the SPRT(B,A) = T, whose error
probabilities oo and B are given by (19.9) and (19.10). Let T' = (N, {¢.})
be any other test (fited or sequential sample size N') with the same error
probabilities as T and such that Eo(N') < 0o, Eq(N') < co. Then

(19.24) Eo(Np,4) < Eo(N'),
(19.25) E1(NB,a4)

Proof. We give the non-rigorous proof due to Wald in his 1947 book
Sequential Analysis. (Also Wolfowitz, Kiefer, Wijsman.) Define the events

F = {T' chooses Ho}, F°={T" chooses Hi}.

We will show below that

(19.26) Eol A IF]‘: 1 _’?a,
(19;27) - Eo[ A | F€] = 1;ﬂ ,
(19.28) C Ew | F=1 ;a,
(19.29) Ei[ A [ F] = 1—%-5
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Now apply Wald’s Lemma to Sy = Ef\_f__ll Z; =log Ay (cf. (19.7)): Then

- —K(fo, 1) Bo(N') = Eo(N') Eo(Z:)

Eo(Sn') [by (19.16)]
Eo[log An | F](1 — ) + Eo[log Anv | F€Jex

< log Eo[ My | F](1 = @) +log Eo[ A+ | Flax

1- ﬁ

i

I

I

(1—a)log1 b

I

+ alog

by (19.26) and (19.27). Thus (19.24) holds approzimately:

(1-o )log % +alog 125

| (fo, f1)

by (19.19), and (19.25) is similarly approximated.
It remains to establish (19.26) — (19.29). For (19.26):

Eo[ An/IF]
Po[F]

Eo [i AnIFﬁ{N’:n}} [Po(N' < 00) = 1]

(19.30) E0<N’) >

~ Eo(Np,4)

Eo[An: | F] =

11—«

[ MIFn{n'=n}]

) X X
1"042/13‘0{N/——n} fo(x )fo( )

I Z ./Fﬂ{N’ Falacn )
Zpl [FN{N'=n}]

n:l

:11ap1(p) PV < 00) = 1]

B

1—a

i
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(x): These equalities hold because (N’,{¢,}) is a sequential test, which

implies that the event F'N {N’ =n} depends only on x, = (T1y -y %n)-
The relations (19.27) — (19.29) are established similarly. (Note that

the proof of (19.26) — (19.29) does not require the i.i.d. assumption.) U

Example 19.9. In Theorem 19.8, éupp‘ose that fo = N1(uo,0?) and f1 =
Ni(pi,0%). Let T” be the fized sample size test that achieves specified error
probabilities a, 8 > 0. It is well known that the required fixed sample size

is
| 0% (2 z)?

N’ = :
(p1 — po)?
From (14.11) (p.229) the K-L distance K(fo, f1) is given by

‘ IRY
K(fO)fl) = gy—l'é'o"__éiq')—a |

so by (19.19),

Eo(NB;A) N (1—a)logl’é—‘—"-+alogi%l—@—
N7 K(fo, /1) 0% (za + 28)* /(b1 — o)?]

(1 —~cv)log1—'“ﬁ-—g + alog 155
(20 + 25)%/2]

Thus in the symmetric case where B = A™" (so a = ), we have

CEj(Na-14)  (1—20)logi=® [ 49 if o= .05,
N’ 222

=3 .42 ifa=.01,

for j‘ = 0,1. Here the SPRT requires, on average, fewer than half as many
observations as the fixed sample size test. C
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19.2. Uniform consistency of tests; need for sequential sampling.

For testing a simple hypothesis vs. a simple alternative, the SPRT reduces
the expected sample size needed to control both error probabilities, but
sequential sampling is not necessary to achieve this control. In this section
we examine composite hypotheses to determine when sequential sampling
is indeed necessary. -

Let X1, Xo,... be an (infinite) sequence of i.i.d. random variables or
random vectors with common unknown distribution P € P (the statistical
model). Suppose that P = Po U Py, where Po NP1 = 0. We wish to test

(19.31) Hy: PePy vs. Hy: PePr.

Let ¢ = ¢n(X1,. .., Xn) denote a test function based on the finite set.of
~ observations Xi,...,Xn only. Such ¢, is called a finite sample test.

Definition 19.10. A sequence of finite sample tests {¢,} is consistent if

. [0, if PePo;
(19.32) | lim Ep|¢n] = { 1 i PeP;

nN—ro0

that is, if the power approaches 0 on the null hypothesis and 1 on the
alternative. The sequence is uniformly consistent if this convergence occurs
uniformly on Py and Py, that is, if

(19.33) {hmnaoo SUp pep, EP(¢n] - (13;

limy, 0o infpep, Ep[én]

If there exists a uniformly consistent sequence of finite sample tests {¢n},
then P, and P are called finitely distinguishable (f.d.). [l

Proposition 19.11. [A. Berger (1951) Ann. Math. Statist.)] A sufficient
condition for finite distinguishability of Po and Py 1s the following:

(19.34) d(Po, P1) := sup A% o, |Po(A) — P1(A)] >0.

Proof. By (19.34) we can choose A, § > 0 such that
(19.35) |Py(A) — PL(A)| >4V Fo, 1.
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Define p,, = = > 11 14(Xs), 80 P — P = P(A) when P obtains. Define
Bo = {p| P € Py} and define the finite sample test ¢, by

1, if |pn — Bo| >
19.36 =
(19.36) P {o, if |, — Bo| <

Fix ¢ > 0 and choose n > 312;;. Then by Chebyshev’s inequality,

. d1 _ 4p(1—p) |
(19.37) .Prp[lpn —p| > 5] <BPce v

IfPE?jothen|ﬁn~Bo|>%é]ﬁn—pl>%,so

, 6 N §
(19.38) sup Prp [kl?n — Bo| > —] < . sup Prp [Ipn —p| > —} <e.

If P € Py then Iﬁn——p|'<%:>|ﬁﬁ—~Bol>g-,so

) )
. ‘ D, — | = i ~ D, — -l z2l—-e
(19.39) ]Dlél?fDlPI‘p[lp BO|'> 2] _Plél?f)lPlpr p| < 2] 1—¢

Thus, {¢n} is uniformly consistent, as required. U

Remark 19.12. Berger’s condition (19.34) is sufficient for finite distin-
guishability (f.d.), but not necessary. To see this, consider Py = {Po} and
Py = {P1, Py, P}, four discrete distributions on {a,b,c}:

2 2 2 1 2 3\ 2 31 312
ae (32 - (a9 ne(hDne (3D
o=\g66) T \&e6) 2 \e6'6/ ° \6°6°6

Then there are 23 possibilities for the sets A in (19.6): 0,{a},{b},{c},
{a,b},{a,c}, {b,c},{a,b,c}. But for each such A, Py(A) = P;(A) for some

i =1,2,3, 80 d(Po, P1) = 0. Nonetheless, Py and Py are f.d, by Prop. 19.14
below. Thus, (19.34) is not necessary for f.d. 0

Exercise 19.13. (i) -Show, however, that P§ = {Fo x Fo} and P =
{P, x Py, P, x P, Py x P} do satisty Berger’s condition (19.6), where
P x P represents the distribution of two i.i.d. repetitions X1, X from P.
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(ii)*** [class research project]. Study the following Conjecture:

A necessary and sufficient condition that Po and Py are finitely distinguish-
able is that d(Pg,PJ) > 0 for some n =1,2,3,.... O

Proposition 19.14. Finite families Py and Py are finitely distinguishable.
Proof. Consider the sequence {¢*} of finite sample size tests where ¢y, is

the LRT based on % < (>) 1 as defined in (18.45). Then (14.24)-
g \ T4

(14.28) in the proof of Theorem 14.7(i) shows that {¢*} is consistent for

testing Po vs. P1. Because Po and Py are finite this is equivalent to uniform

consistency, hence these families are finitely distinguishable. U

A necessary and sufficient condition for finite distinguishablility has
been given by Hoeffding and Wolfowitz. (Also see related work by Kraft,
LeCam, D. Freedman....)

Definition 19.15. For two probability measures Py and Py on (X,S),
define the total variation (T'V) distance '

(1940) D(Po,P1> = Sup |P0(A) — Pl(A)I

: A€S
Clearly 0< D(PQ,P1> < 1, D(Po,Pl) = 0 iff Po = Pl, and D(Po,Pl) =1
iff the supports of Py and @ are disjoint. | U

For two disjoint sets of probability measures Po and P1, define

(1941) D(Po,Pl) - PoE’PloI,]IfDlE’Pl D(Po, Pl)

Then Py and Py are uniformly TV-separated if

(19.42) Df(Po,Pl) >0,

while Py and Pg are poz’nth’se TV—sepamied if

(19.43) D(Py,P1) >0 VP € Po, D(Po, P1) > 0 VP € Py.

(Compare to (18.44a) and (18.44b), and see Exercise 19.26(ii).)
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Hoeffding and Wolfowitz (1958) Ann. Math. Statist. showed that uni-
form TV-separation is necessary and sufficient for finite distinguishability:

(19.44) Py and Py are £.d. <= D(Po,P1) > 0.

Note that Berger’s sufficient condition (19.34) implies H-W’s necessary and
sufficient condition (19.44) because D(Po,P1) > d(Po,P1). We shall prove
(=) in (19.44) by means of the following well-known result.

Lemma 19.16. Let P, Q be probability measures on (X,S) and let p,q be
their corresponding pdfs w.r.to some measure v. Then

(19.45) - / (p o) / ip— gldv
(19.46)‘ = /{p>q}p 9)dv
(19.47) | = D(P,Q).

Proof. First, (19.45) follows from [see figure]

(19-48‘) | /X lp—q| = /{p>q}(p-q>‘+ /{q>p}(q - D),

(19.49) 2=/Xer/qu/{p>q}(p—cJ)+/{q>p}(q—p)+2L(p/\q)-

Next,

(19.50) 1=/{p>q}<p~q>+L<pAq>=/{q>p}<q—p>+/x<mq>

(19.51) = [{ p>q}@—Q): /{ q>p}(q—p) |
= (19.46) holds [by(19-48)]-
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Last, clearly

(19.52) DEQZ [ (p-a)  lwke A= {p> )]
| {p>q}
Also, for any A,
(19.53) | |
[ -0z [ w-02 [ w0+ [ &9
{p>q} An{p>q} An{p>q} An{g>p}
> / (p—q) > — / (q—p)-———/(p—q),
An{q>p} {g>p} {p>q} |

where the equality follows from (19.51). But

/Am{p>q}(p—Q)+/An{q>p}(p"‘Q)::/A(p-—q) = P(A) - Q(4),

so from (19.53),
P(A) — Q(A)] < / (p—q) VA
{p>q}

Therefore D(P,Q) < [ps g3 (P — q), which together with (19.52) implies
(19.47). | .

Proposition 19.17. (=) holds in (19.44).

Proof. Since Py and Py are f.d., 3 ¢ > 0, 3 n, and 3 a finite sample test
¢r, such that for all Py € Po, P € Pr, .

n

€ < Epl[gbn] — BEp,[¢n] = /Q%[Hfl(%) - Hfo(mi)]

=1

/{H fi(z)>] fo(=0)} T4 i— [ ot .
=5 [T aG) ~TThG) by (19.46)
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=1 [ ([Totw) A (T1 :t2) by (19.45)
<1- / IT (folmi) A fr(z:)) |

=1 ([ foledn hle)

=1-(1-3 [1h@) - f@I) by (19.45)]

where fo, fi are pdfs for Py, P1, resp. Thus

-9z [1-3 [1n@-hal]
=[1- D(Py, P)]" ¥ P, P,

S50

D(Po,P1) >1— (1™ >0. 0

Example 19.18. Let P; = {N(us0%) | 0 < 0% < oo}, 4 = 0,1, where
o < p1. Note that the power of the size o t-test for testing Po vs. P1
approaches ov.on P1 as 0 — 0. [Verify; see Lehmann, T'SH, Ch.5, Problem
2.] We apply Proposition 19.17 to show that in fact, Py and Py are not
distinguishable by any sequence of finite sample tests. For this, it suffices to
show that D(c) = D(N (po,02), N(u1,0%)) — 0 as 0 — oo

mw:/' Frow(@) = fo@)]  [by(19.46)]
{fuo»ﬂ(m)>f#1>0(m)} a
-/ () = Finr (@)
{z<(po+mp1)/2}
(1= Mo\ g /Mo~ H1
- CP( 20 ) (I)< 20 )
— L1 0 S o — 0
2 2 == as o | 0. 4

Example 19.18 demonstrates the need for tests based on sequential sam-
pling rules, or, simply, sequential tests. Let Xi,Xo,... be a sequence of
random variates (not necessarily independent or real-valued). A sequential
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sampling rule = stopping time is an integer-valued random variable N such
that for each n=1,2,..., the event {N =n} depends only on Xj,...,X,.
That is, the decision to stop at time n depends only on Xi,...,Xn (not
on subsequent X;’s). Unless otherwise noted, we shall require that the
procedure stops with probability 1, that is, Pr[N < oco] = 1.

A sequential test (N, {¢n}) consists of a stopping rule IV and a sequence
{$,} of finite sample tests applied as follows: when N = n, the sampling is
stopped and the test ¢, = ¢n(X1,...,Xn) is applied. |

Definition 19.19. P, and P are sequentially distinguishable (s.d.) if, for
each € > 0, 3 a sequential test (N¢,{¢5}) such that

sup Ep[dye] <,
PePy ‘ ’

'l’lf E ee >1"‘ .
Ple??l plivel = €

(19.54)

Hoeffding and Wolfowitz (1958) Ann. Math. Statist. showed that
pointwise T'V-separation (19.43) is necessary and sufficient for sequential
distinguishability [see figure].

/g"" ﬁ b I\ (Y AL
/ / Y
'/

Fd, | s;a{. ol s.d.

We will not prove this but will illustrate the necessity by an example:

Example 19.20. (Stein’s (second) two-stage testing procedure) [See TSH
Ch.5, Problems 26(i), (iv) and part of 28(iii).] Let X1, Xs,... be a sequence
of i.i.d. N(u,0?) r.v.s. Let |

PO:{N(/'LaaQ)lMS/“LO) 0<02<OO},

19.55
(19:55) Py = (N(1,0%) | 1> 1, 0 < 0 < 00},

where o < p1 are fixed. Then it is readily shown that Po and P; are point-
wise TV-separated (19.43). [Verify: consider A = [u1,00) and (—00, to).]
We now show directly that Py and P ares.d. Fix0 <o < % and 0 < B < %
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Stage 1: Fix an initial sample size m > 2 and observe Xi,...,Xm. Set

_— 1 m . 1 m _ 2'
Xm——g i:lXi, Sm-—m ' 'L:l(X?'—Xm) .

2
Stage 2: Let N = smallest integer > max {m, <tm“1ﬁ’b‘:iﬁ:“1’ﬁ> s%},

Take N —m > 0 additional observations Xm41,.-- . Xn. Then N (> m)
trivially is an (unbounded) random stopping time, since N depends on {X;}
only through s2,, hence only through X1,..., Xm with m fixed. Set

_ 1 N ' 0, if Xy <e
Xy = — X; Xi,... = ¢ SN =&
N =N Zz':l ’ ¢ (X1, , XN) {1, if Xy >c¢

b1 bt
where ¢ = ( ==L Pitlm—1,6H0 )  Then:
. tm—l,a’*‘tm-—l,ﬂ

(i) ¥ u,02, Pryo2[N <oo] =1
Proof of (i): Note that N depénds on s2, only, so its distribution depends -
only on %, not u. Then / -

2
2

1,0t tm—
tm—1,a + tm 1,,3> Sm}+1 <00 w.pr.l.

H1 — Mo

N§max{m,<

(ii) supPryo2[Xny >c <@,  supPryee [Xn <] <B.

Po P
Proof of (ii): Let the true parameter valﬁes be u,0? and set T' = []V—(-i:%"ﬂl
Clearly T does not depend on p. We claim that T ~ tym—1 (not depending
on o). To see this, consider the conditional distribution

T sm~T|8m, N [N:N(Sm)]
, :'\/]_\T(XN'—M> lsm N
oN(0,%). W)L (7))
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Therefore =T | 8y, ~ N’(O,-l), so 2T Il sp,. Thus

(5m/0)T _ N(0,1)

Sm/d X2 1

m—1

(19.56) T

Il

~tm—1.

Therefore, for any p < po,

Pr/,L,O‘[XN > C] = PI‘M,U[XN —U>Cc— M]

= Pr, [T > _____~___\/]—\f—(c —~ ,u)}
b, [ > Y= 1))
Sm
— Pr, [T S VNt 1,0 (k1 = pho) ]
Sm<tm—1,a + tm—l,ﬁ) .
<PI[T > tm—1,0] =@ [verify]
Similarly, for any 4> p, Pryo[Xn < ¢ < B. This establishes (ii). - O

Example 19.21. (Stein’s two-stage fized-width confidence interval) [See
TSH Ch.5, Problem 27(ii).] The preceding ideas are related to the notion
of fized-width confidence intervals. Suppose we want a confidence interval
. for u of specified width L and specified confidence (>) 7, e.g., v = .99
Choose ¢ > 0 such that

Pr [ [t < -zif—c-] .

Fix m and observe X1,...,Xm. Let N = ma,x{m", {8?’*] + 1}. Then

C

oo 1 2 5] =P A < 50

> Pr, [|T| < ~————] =~. [since T~ tm-1]

Thus Xy + —g- is a confidence interval for p of width L and confidence ny
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Example 19.22. (No fized-sample-size, fized-length confidence interval
for u exists) [See TSH Ch.5, Problem 925.] Let X, = (Xy,...,Xn). Any
confidence interval for p of fixed length L must have the form 6(X,) &+ Z.
We shall show that this interval has confidence 0, i.e.,

(19.57) inf Pr, , [|5(Xn) ol < g] — 0,

—oo< pu<00,0<o<o

(This also shows that any confidence interval with random but bounded
width also has confidence 0.)

Define §; = {X, | 16(Xn) — | < LY, where p; = 24L, 1 = 1,2,....
Thus S1, Ss, ... are mutually disjoint. We shall show that for any integer
K=1,2...,3 0o(K) > 0 such that

1

(19.58) o > 0o(K) = [Prp,«(S:)— Pry, o (S| < 750 1= 1,..., K.
But minz-:l,';,,K Pr}Ml,a(Si) < % since Si,..., Sk are disjoint, so

2
(19.59) o> oo(K) = ._ﬁmnKPrm,o(Sﬁ < 7d i=1,...,K.

Now let K — oo in (19.59) to obtain (19.57).

To establish (19.58), first note that X, ~ Nyp(pen,0?ly), where e, =
(1,...,1). Then

D(Nn(pi€ny 0> In), Nn(1n, 0% 1))
B Mg H1

[verify] —0  as o — oo

[Both normal pdfs (ps) 4o, say) in (19.60) converge to the N, (0,I,) pdf
(po, say) as o — 00, 80 Scheffe’s convergence theorem applies to |ps — qs| <
lps — Po| + g0 — po| — see TSH, Appendix, Lemma 4. Now apply (19.45)-
(19.47).] Thus we can choose 0o (K) large enough so that o > oo (K) =

1

<= i=L0K

DICACE AR NCINA)
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Remark 19.23. Let Po = {N (4, 1) | p < po, b PL= {N(:U': 1| p> po, 2
Here Py and P; are not pointwise D-separated so they are not s.d. Robbins
and Siegmund (ca. 1970) devised sequential tests for Py vs. P1 whose
power can be made uniformly close to 1-on Py, at the cost, however, that
- sampling may never terminate if Py holds. They argue that this may not
be a drawback in practical terms, since if the null hypothesis Py is true, it

is ok if we never stop to reject it. : U

Exercise 19.24. Problems 26, 27, 28 in TSH Ch.5. Some parts of these
problems alread have been treated in the above Examples — you need not
repeat their derivations, but you may refer to them. U

Definition 19.25. Let P, Q be probability measures on a measure space
(X,8) and let p,q be their corresponding pdfs w.r.to some measure v'. The
Hellinger distance H(P,Q) is defined via

(19.61) 2 (P,Q) =t [(/p— @)1 dv =1~ [ \/bqdv.

Clearly 0 < H(P,Q) < 1, H(P,Q) = 0 iff P = Q, and H(P,Q) = 1 iff the
supports of P and @ are disjoint. Note that 0 < [ /pgdv < 1. U

Exercise 19.26. Relations among Hellinger, total variation, and Kullback-
Leibler distances. Show that

(i H2(P,Q) < D(P,Q) < 2H(P,Q),
(i) H(P,Q) < 1K(P,Q).

These imply that TV-separation is equivalent to H-separation, and that
both imply KL-separation. ‘

(iii)*** Does KL-separation imply TV=H-separation? N

Exercise 19.27. Finite families Py and Py are finitely distinguishable with
an exponential error rate. (This strengthens Proposition 19.14).

Hint: Use Hellinger distance — recall (18.30). O
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Supplement 1: Censored Data exercise with solution. Let T1,...,T,
be i.i.d. survival times with 7} ~ Exponential(8), that is, 7; has pdf

Fa(t) =0e%, 0 <t < oo, 0<b<o0.

Let ’T > 0 be a known, fixed time point and define

(1 #Ti<T, o [T T <,
Ui_{o T >, V;_mm(T“T)_{’r it T, > 7.

(i) If only Uy,. .., U, are observed, what is the MLE f of 7 Does it always
exist?

(i) If only V4,..., V,, are observed, what is the MLE @ of 67 Does it always
exist?

Hint: express the “pdf” of V; as a mizture of the Exponential(0) pdf on (0,7)
and the discrete pmf that puts mass e~ 07 at T.

(iii) Find the asymptotic normal distributions of 6 and @ (suitably stan-
dardized). Which is asymptotically more efficient? Why is your answer not
surprising? '

Solution:

(i) U; ~ Bernoulli(p), where p =1 — e 97,50 0 < p < 1. Thus
S = Z U; ~ Binomial(n, p),
so this is a standard problem. The MLE of p is

s if1<S<n-1,
does not exist if § =0, n.

Because § = —[log(1 — p)]/7, the MLE of 0 is

%:-ﬂ%aungiﬂgSgn~L
does not exist if S =0,n.

(ii) The distribution of V; is a mixture of a continuous component on (0, )
and a discrete component at 7. Thus the likelihood function is [[i; fo(vs), .
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where fg(v;) is the “pdf’ of this mixture w.r.to the dominating measure
defined as normalized Lebesgue measure on (0,7) and point mass 1 at 7.
Thus '

f@ (’UZ) = 06_9% *17-_'.[(0,7-) (’U-',;) -+ 6“97_.[{7-} (’U,,;),

(1) H folvy) =775 05T =0m(n=5) = 775 95 e~ 01T +7(n=9)]

where T = 5 U;T;. Thus the MLE of 0 is

does not exist if § =0.

(iii) In both cases, P[MLE does not exist] — 0 so we can ignore the non-

existence for the asymptotic distributions. For 0, /n(p—p) 4N (0,p(1—p))
and df /dp = 1/(1 — p)7, so apply propagation of error to obtain

(2) \/ﬁ(é — 9) —fl—> N(O, -(_1_—-_%)75) — N(O ea*-—l)

For 6, /n(6 — 6) 4N (0,1/I(6)), where the Fisher information is obtained
from (1): S

) = -s[Pe Ly 0] _ (g 2™

SO \/ﬁ(é —0) 4N (0, T—_i;’?) It is straightforward to show that

62 < e —1

Ve,

50 0 is more efficient than 6. This is not surprising since U; is a function of
Vi.
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| 23.
24.
25.
26.
27.‘
28.
29.

30.

Estimation and Hypothesis Tésting with Normal Data.

[supplementary notes will be handed out]

Invariant Tests and Equivariant Estimators.

[supplementary notes will be handed out]

The James-Stein Estimator.

[supplementary notes will be handed out]

How Likely is Simpson’s Paradox?

[supplementary notes will be handed dut]

Sharpening Buffon’s Needle.

‘[supplementary notes will be handed out]

Estimating the Face Probabilities of Shaved Dice.

~ [supplementary notes will be handed out]

Circular and Spherical Copulas.

[supplementary notes will be handed out]

The Emperor’s New Tests.

[supplementary notes will be handed out]

The Role of Reversals in Order-restricted Inference.

[supplementary notes will be handed out]

Predicting Extinction or Explosion in a Galton-Watson

Branching Process. [supplementaryvnotes will be handed out)

Variance-stabilizing Transformations for a Normal

Correlation Coefficient. [sup‘plementa,ry notes will be handed out]
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