
MDP Exercise 11.4. (Uniform[✓, ✓ + 1]) In Example 11.14, take ✓1 = ✓
and ✓2 = ✓ + 1, where ✓ 2 (�1,1) is a real-valued location parameter.
For simplicity set b(x) ⌘ 1, so each Xi ⇠Uniform[✓, ✓ + 1]. Show that
(X(1), X(n)) remains a 2-dimensional minimal su�cient statistic for the 1-
dimensional parameter ✓.

MDP Exercise 11.5. For example, in Exercise 11.4, the minimal su�cient
statistic (X(1), X(n)) is equivalent to the pair (X(1), Rn) where Rn ⌘ X(n)�
X(1) is the sample range. Note that 0  X(1) � ✓  1�Rn, so Rn, which is
clearly ancillary hence provides no information about ✓ by itself, nonetheless
governs the accuracy of X(1) as an estimator of ✓. In fact, because Rn is
ancillary, we can base inference about ✓ on the conditional distribution of
X(1) | Rn.

(i) Find this conditional distribution. (See CB Example 5.4.7 for a related
discussion.) Use this conditional distribution to find an estimator ✓̃n that
is conditionally unbiased for ✓, thus unconditionally unbiased.

(ii) Let ✓̌n = X(1) � 1
n+1 . Show that ✓̌n is unbiased for ✓, that Var(✓̃n) <

Var(✓̌n) for all n, and that limn!1 Var(✓̃n)/Var(✓̌n) =
1
2 .

(iii) Find a confidence interval for ✓, centered at ✓̃, whose conditional and
unconditional confidence coe�cient is (1� ↵). t̄

Solution: (i) Let U = X(1) � ✓, V = X(n) � ✓, so 0 < U < V < 1. Then

Pr[u < U < V < v] = (v � u)n,

so
f(u, v) = n(n� 1)(v � u)n�2.

Now let R = V � U , so

f(u, r) = n(n� 1)rn�2, 0 < u, r < 1, 0 < u+ r < 1.

Thus

(11.a) U | R ⇠ Uniform(0, 1�R),

so
E(U | R) = 1

2 (1�R),

E(X(1) | R) = ✓ + 1
2 (1�R).
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Therefore
✓̃n := X(1) � 1

2 (1�R) = 1
2 (X(1) +X(n))� 1

2

is conditionally and unconditionally unbiased for ✓.

(ii) From (9.9), E(X(1)) = ✓ + 1
n+1 , hence ✓̌n is unbiased. From (9.10) and

MDP Exercise 9.3,

Var(✓̌n) =
n

(n+ 1)2(n+ 2)
,

Var(✓̃n) =
1
4 [Var(X(1)) + Var(X(n)) + 2Cov(X(1), X(n))]

=
1

2

h n

(n+ 1)2(n+ 2)
+

1

(n+ 1)2(n+ 2)

i

=
1

2(n+ 1)(n+ 2)
.

Thus for n > 1,

1 >
Var(✓̃n)

Var(✓̌n)
=

n+ 1

2n
! 1

2
as n ! 1.

(iii) From (11.a),

(11.b)
X(1) � ✓

1�R

��� R ⇠ Uniform(0, 1),

so

(1� ↵) = Pr
⇥
(1�R)↵2 < X(1) � ✓ < (1�R)(1� ↵

2 )
⇤

= Pr
h
✓̃n � 1

2 (1�R)(1� ↵) < ✓ < ✓̃n + 1
2 (1�R)(1� ↵)

i
.

Note that the ancillary statistic 1�R governs the width of this confidence
interval. t̄
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• Completeness and minimal su�ciency.

Theorem. If S⇤ is su�cient for P and P is complete on S⇤, then S⇤ is min-
imal su�cient for P. Briefly: “a complete and su�cient subfield/statistic
is minimal su�cient.”

Proof. We must show that S⇤ ✓ S0 [P] for any other su�cient subfield
S0. Because S0 is su�cient, for each S⇤ 2 S⇤ there exists an S0-measurable
version gS⇤ of P [S⇤|S0] 8P 2 P. Because S⇤ is su�cient, there exists an
S⇤-measurable version hS⇤ of EP [gS⇤ |S⇤] 8P 2 P. Thus for any P 2 P,

EP (hS⇤) = EP (gS⇤) = EP (IS⇤) ⌘ P (S⇤),

so EP [hS⇤ � IS⇤ ] = 0 8P 2 P. Because hS⇤ � IS⇤ is S⇤-measurable and P
is complete on S⇤, hS⇤ = IS⇤ a.e. [P].

Set S0 = {gS⇤ = 1} 2 S⇤; we shall show that S04S⇤ is P-null. First,

P (S⇤) =

Z
IS⇤ dP =

Z

S⇤
hS⇤ dP =

Z

S⇤
gS⇤ dP  P (S⇤) 8P 2 P,

since 0  g⇤
S

 1 a.e. [P]. Therefore S⇤ \ {gS⇤ < 1} is P-null, hence
{gS⇤ 6= 1} \ S⇤ is P-null. Next,

0 =

Z

(S⇤)c
IS⇤ dP =

Z

(S⇤)c
hS⇤ dP =

Z

(S⇤)c
gS⇤ dP � 0 8P 2 P,

so {gS⇤ = 1} \ (S⇤)c is P-null. Thus S04S⇤ is P-null, as claimed.

Example. Let X ⇠ N(✓, 1) with ✓ = ±1, i.e., P = {N(1, 1), N(�1, 1)}.
Show that X is minimal su�cient [verify!] but not complete, since X con-
tains the nontrivial ancillary statistic |X| [verify!].
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Exercise 14.37**. Let X1, . . . , Xn be an i.i.d. sample from the univariate
normal location-scale family N1(µ,�2). The MLEs of µ when �2 is known
and when �2 is unknown are both X̄n, so trivially have the same asymptotic
e�ciency. This also follows from the fact that the N1(0, 1) pdf is symmetric
about 0, so µ and � are orthogonal parameters. For a finite sample size
n � 2, however, di↵erent confidence intervals are used for the two cases:

�2 unknown: X̄n ± snp
n
tn�1;↵/2, �2 known: X̄n ± �p

n
z↵/2.

Show that the expected width of the first confidence interval is greater
than the (non-random) width of the second, so that knowing �2 actually
improves the accuracy of inference about µ (on average).

A. Unsuccessful analytic approach. We need to show that

E

✓
snp
n
tn�1;↵/2

◆
>

�p
n
z↵/2. (1)

It is tempting to try to establish (1) in two steps (we set n � 1 = k for
notational convenience):

(a) Show that tk;↵/2 > z↵/2. This is equivalent to showing that F1,k is
stochastically greater than �2

1, which in turn follows from the facts that

F1,k is stochastically decreasing43 in k and F1,k
d! �2

1 as k ! 1.

(b) Try to show that E(sn) > �. Because s
2
n
�2 ⇠ �

2
k
k
,

E
�
sn
�

�
=

q
2
k

�( k+1
2 )

�( k
2 )

, (2)

so the hoped-for inequality in (b) can be re-written as

q
k

2 <
�( k+1

2 )

�( k
2 )

? (3)

43
Attributed to P. L. Hsu (1938), J. Hajek (1962); see M. L. Eaton (1987), ”Group

induced orderings with some applications in statistics”, CWI Newsletter No. 16, 3-31.

The result can be obtained from the representation F1,k ⇠ U/(V/k) with U ⇠ �2
1,

V ⇠ �2
k
, U ?? V . Condition on V and use the fact that the cdf of U is concave (since

the pdf is decreasing). [Note to myself: can use majorization.]
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Unfortunately the opposite is true. Because
p
x is strictly concave,

Jensen’s Inequality yields

E
�
sn
�

�
= E

✓q
�
2
k
k

◆
<

r
E
⇣
�
2
k
k

⌘
= 1, (4)

so equivalently,
�( k+1

2 )

�( k
2 )

<
q

k

2 . (5)

Comparison of (3) and (5): Set x = k�1
2 so (3) can be re-written as

q
x+ 1

2 < �(x+1)
�(x+ 1

2 )
? (30)

It follows from inequalities of Gautschi (1959, also see below) and Kershaw
(1983), respectively, that for x > 0,

p
x < �(x+1)

�(x+ 1
2 )
, (6)

q
x+ 1

4 < �(x+1)
�(x+ 1

2 )
, (7)

whereas (5) can be re-written as

�(x+1)
�(x+ 1

2 )
<

q
x+ 1

2 . (50)

Thus, although (30) fails, it doesn’t fail by much.

Gautschi’s Inequality: Because the gamma function �(x) is strictly log con-
vex (verify by di↵erentiating twice under the integral sign),

�(x+ 1
2 ) <

p
�(x)�(x+ 1),

so
�(x+ 1

2 )
�(x+1) <

q
�(x)

�(x+1) =
q

1
x
.
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B. Successful statistical approach. In 1961, John Pratt and P. K.
Ghosh independently established the following identity,44 which relates the
expected length of a confidence interval (l(X), u(X)) for a real-valued pa-
rameter ✓ based on data X ⇠ f✓(x) to the power function of the corre-
sponding test: for any fixed ✓0,

E✓0 [u(X)� l(X)] =

Z

✓ 6=✓0
Pr✓0 [✓ 2 (l(X), u(X))]d✓. (8)

If we let ⇡(✓; ✓0) denote the power function of the corresponding 2-sided
test for testing ✓ = ✓0 vs. ✓ 6= ✓0, then

1� ⇡(✓; ✓0) = Pr✓[l(X) < ✓0 < u(X)],

so (8) can be written as

E✓0 [u(X)� l(X)] =

Z

✓ 6=✓0
[1� ⇡(✓0; ✓)]d✓. (8)

(Note the interchange of ✓ and ✓0.) Therefore (1) will follow if we can
show that the power of the 2-sided size-↵ t-test for testing µ = µ0 with �2

unknown (but fixed at �2 = 1) is less than that of the 2-sided size-↵ Z-test
for µ = µ0 (with �2 known to = 1). [Z ⇠ N(0, 1).]

Because the 2-sided tn-test is equivalent to the 1-sided F1,n-test, where
F1,n = t2

n
, it therefore su�ces to show that the power of the (non-central)

F1,n-test is greater than that of the 1-sided (non-central) �2
1-test, where

�2
1 = Z2. In fact a stronger result was proved by Das Gupta and MDP

(JASA 1974): For fixed value of the non-centrality parameter, the power of
the non-central Fm,n-test is increasing in n (and decreasing inm). Therefore
the expected length of the t-based confidence interval on the left side of (1) is
decreasing in n. Now (1) follows from the fact that tn ! N(0, 1) as n ! 1.

44
This is proved via Fubini’s Theorem, as in CB Exercise 2.14; see Lehmann and

Romano Testing Statistical Hypotheses, 3rd edition, p.200.
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MDP Exercise 16.5. Show that the Bayes estimator ✓̂ ⌘ E[⇥ | X] is
unbiased for ✓ i↵ it is perfect, i.e., ✓̂ = ⇥.

Solution. (The statement and proof in CB §7.5.2 are incorrect.) First,

E[(✓̂ �⇥)2] = E(✓̂2)� 2E[✓̂⇥] + E(⇥2)

= E(✓̂2)� 2E[E(✓̂⇥ | X)] + E(⇥2)

= E(✓̂2)� 2E[✓̂E(⇥ | X)] + E(⇥2)

⌘ E(✓̂2)� 2E(✓̂2) + E(⇥2)

= E(⇥2)� E(✓̂2).

But by the unbiasedness of ✓̂,

E[(✓̂ �⇥)2] = E(✓̂2)� 2E[✓̂⇥] + E(⇥2)

= E(✓̂2)� 2E[E(✓̂⇥ | ⇥)] + E(⇥2)

= E(✓̂2)� 2E[⇥E(✓̂ | ⇥)] + E(⇥2)

⌘ E(✓̂2)� 2E(⇥2) + E(⇥2)

= E(✓̂2)� E(⇥2),

so E[(✓̂ � ⇥)2] = 0, i.e., ✓̂ ⌘ E[⇥ | X] = ⇥. Therefore ✓̂ is perfect. The
converse is trivial. t̄
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Exercise 17.3. Let R =  0c10

 1c01
, so c⇤ = logR + 1

2

�
µ0
1⌃

�1µ1 � µ0
0⌃

�1µ0

�
.

Let d = ⌃�1(µ1 � µ0) and �2 = (µ1 � µ0)0⌃�1(µ1 � µ0). Then

P [� chooses µ0 | µ1] = P [d0X < c⇤ | µ1] = P [N1(d
0µ1, d

0⌃d) < c⇤]

=P [N1((µ1 � µ0)
0⌃�1µ1, �

2) < logR+ 1
2

�
µ0
1⌃

�1µ1 � µ0
0⌃

�1µ0

�
]

=P [N1(0, �
2) < logR� 1

2�
2]

=1� �
⇣

1
2�

2�logR

�

⌘
[� = cdf of N1(0, 1).]

Similarly, P [� chooses µ1 | µ0] = 1� �
⇣

1
2�

2+logR

�

⌘
.

Note: When R = 1 (e.g., if  0 =  1 and c10 = c01), then

P [� chooses µ0 | µ1] = P [� chooses µ1 | µ0] = 1� �
�
1
2�

�
.

� is the Mahalanobis distance between Np(µ0,⌃) and Np(µ1,⌃). It is
easy to verify that the Kullback-Leibler divergence between Np(µ0,⌃) and
Np(µ1,⌃) is equal to

1
2�

2. (Compare to MDP eqn. (14.11).)

MDP Exercise 17.6. The posterior distribution is still given by (16.15):

⇥ | X ⇠ Beta(X + ↵, n�X + �).

However, the expected posterior loss (EPL) for L̃ ⌘ (a�✓)2
✓(1�✓) now becomes

E
h
(a�⇥)2

⇥(1�⇥)

��� X
i
= const ·

R 1
0 (a� ✓)2✓(X+↵�1)�1(1� ✓)(n�X+��1)�1d✓.

If (X 6= 0, n) or (X = 0, ↵ > 1) or (X = n, � > 1) this is minimized when

(1) a = E[Beta(X + ↵� 1, n�X + � � 1)] = X+↵�1
n+↵+��2 ,

which agrees with (17.21). If (X = 0, ↵ = 1), the EPL = 1 unless a = 0,
so is trivially minimized at a = 0. If (X = n, � = 1), the EPL = 1 unless
a = 1, so is trivially minimized at a = 1. These last two cases also agree
with (17.21). Thus for ↵ = � = 1 the unique Bayes estimator is X

n
, so this

is admissible w.r.to L̃ ⌘ (a�✓)2
✓(1�✓) . Clearly admissibility w.r.to L ⌘ (a� ✓)2

is equivalent to admissibility w.r.to L̃ because, for any estimator d, the
corresponding risk functions ar related by R̃d(✓) =

Rd(✓)
✓(1�✓) .
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MDP Exercise 18.14. (i) Let f✓(x) = ✓�1I[0,✓](x). By MDP Propositions
18.3 and 18.4, every admissible test (i.e., one with risk vector on the SW
boundary) for testing f1 vs. f2 is a likelihood ratio test of the form (18.5).
The LR is

f2(x)

f1(x)
=

⇢
1
2 if 0  x  1;
1 if 1 < x  2.

Thus the LR test (18.5) has one of the following four forms:

c < 1
2 : �c(x) = 1 for all 0  x  2;A.

c = 1
2 : �c(x) =

⇢
�1(x) if 0  x  1;
1 if 1 < x  2;

B.

1
2 < c < 1 : �c(x) =

⇢
0 if 0  x  1;
1 if 1 < x  2;

C.

c = 1 : �c(x) =

⇢
0 if 0  x  1;
�2(x) if 1 < x  2.

D.

Thus the SW boundary of the risk set is determined by the risk vectors
(R0, R1) of these four classes of tests, as follows [verify from (18.2)]:

(R0, R1) = (1, 0);A.

(R0, R1) =
�
�̄1,

1
2 (1� �̄1)

�
;B.

(R0, R1) = (0, 1
2 );C.

(R0, R1) =
�
0, 1� 1

2 �̄2
�
.D.

where �̄1 =
R 1
0 �1(x)dx, �̄2 =

R 2
1 �2(x)dx, so 0  �̄1  1, 0  �̄2  1.

(ii) We may base all tests on the minimal su�cient statistic X ⌘ Xmax,
whose pdf is f✓(x) = ✓�nnxn�1I[0,✓](x). Now the LR is

f2(x)

f1(x)
=

⇢
1
2n if 0  x  1;
1 if 1 < x  2.

The LR test (18.5) has the form A, B, C, or D with 1
2 replaced by 1

2n . Note
that these clases of tests are exactly the same as above. The SW boundary

355



of the risk set is determined by the risk vectors (R0, R1) of these four classes
of tests, as follows [verify from (18.2)]:

(R0, R1) = (1, 0);A.

(R0, R1) =
�
�̄1,

1
2n (1� �̄1)

�
;B.

(R0, R1) = (0, 1
2n );C.

(R0, R1) =
�
0, 1� 1

2n �̄2
�
.D.

where now �̄1 = n
R 1
0 �1(x)x

n�1dx, �̄2 = n
R 2
1 �2(x)x

n�1dx, so 0  �̄1  1,
0  �̄2  2n � 1. Finally, because 1

2n ! 0 at an exponential rate, the entire
risk set fills the unit square at an exponential rate.

MDP Exercise 18.22. MLR preserves monotonicity. If f(x|�) has
MLR in T ⌘ T (X) and g(t) is nondecreasing in t, then

E�[g(T (X))] ⌘
Z

X
g(t(x)) f(x|�)d⌫(x)

is nondecreasing in � (⌫ is either counting measure or Lebesgue measure).

Proof. Set h(�) = E�[g(T (X))]. Then for any �1  �2 in ⇤,

h(�2)� h(�1)

=

Z
g(t(x))[f(x|�2)� f(x|�1)]d⌫(x)

= 1
2

RR
[g(t(x))� g(t(y))] [f(x|�2)f(y|�1)� f(y|�2)f(x|�1)]d⌫(x)d⌫(y)

� 0,

since the 2 terms in brackets [·] are both � 0 if x � y or both  0 if x  y.

MDP Exercise 18.27. Follow the outline of MDP Example 18.25:

sup
⇠2L,�2>0

f⇠,�2(x) = sup
⇠2L,�2>0

1

(2⇡�2)
n
2
e�kx�⇠k2

/2�2

= sup
�2>0

1

(2⇡�2)
p
2
e�kx�PLxk2

/2�2

= 1

(2⇡�̂2
L)

p
2
e�p/2,

356



where PL is the orthogonal projection matrix onto L and �̂2
L
= 1

p
kx�PLxk2.

Similarly define PL0 and �̂2
L0

= 1
p
kx� PL0xk2. Then the LRT statistic

� ⌘
sup

⇠2L0,�
2>0 f⇠,�2(x)

sup
⇠2L,�2>0 f⇠,�2(x)

satisfies

�
2
p =

�̂2
L

�̂2
L0

=
kx� PLxk2

kx� PL0xk2
=

k(I � PL)xk2

k(I � PL)xk2 + k(PL � PL0)xk2

since (I � PL)(PL � PL0) = 0 [verify]. The LRT rejects H0 if � is too

small, or equivalently if F ⌘ k(PL�PL0 )Xk2

k(I�PL)Xk2 is too large. The numerator and
denominator are independent by MDP Exercise 8.5 and are distributed as

�2�2
d�d0

⇣
k(PL�PL0 )⇠k

2

�2

⌘
and �2�2

p�d
, resp., by MDP (8.111). (Note that

PL�PL0 and I�P are projection matrices, and (I �P )⇠ = 0 since ⇠ 2 L.)
Thus F has a noncentral F distribution, central when H0 : ⇠ 2 L0 holds
(since (PL � PL0)⇠ = 0 in this case).

Comments on CB Exercise 10.31a assigned in 513 HW 18:

In my solution, a key step is to show that as min(n1, n2) ! 1,

S ⌘
q

n1n2
n1+n2

(p̂1 � p̂2)

⌘
q

n2
n1+n2

⇥p
n1 (p̂1 � p)

⇤
�

q
n1

n1+n2

⇥p
n2 (p̂2 � p)

⇤
d! N(0, 1).(1)

(In (1) it is assumed that n1 and n2 depend on a single index n s.t.
min(n1(n), n2(n)) ! 1 as n ! 1.) Several students asked if it is nec-
essary to assume that n1 = n2, or more generally, that the ratio n1

n2
! 1.

The answer to this is “no”. Consider the more general assumption that

(2) n1
n2

! ⇢ for some ⇢ 2 [0,1].

Note that the cases ⇢ = 0 and ⇢ = 1 are included. Because p̂1 ?? p̂2
and

p
ni (p̂i � p)

d! N(0, 1) as ni ! 1, i = 1, 2, under assumption (2) the
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result (1) will follow from Proposition 1 below with

Yn = (
p
n1 (p̂1 � p) ,

p
n2 (p̂2 � p)),

Y = N2(0, I2),

Xn = cn =
⇣q

n2
n1+n2

,�
q

n1
n1+n2

⌘
, (constant vectors),

c =
⇣q

1
⇢+1 , �

q
⇢

⇢+1

⌘
, (a constant vector).

Note that kcnk2 = kck2 = 1, so ctY ⇠ N(0, 1).

Proposition 1. Suppose that Xn

p! c and Yn

d! Y as n ! 1, where Xn,

Yn, and Y are random vectors in Rp and c 2 Rp. Then Xt

n
Yn

d! ctY .

Proof. Because h(x, y) ⌘ xty  kxkkyk, h is continuous in (x, y). Thus
the result follows from MDP Theorem 10.6 p.142, re-stated just below. t̄

Theorem 10.6. Suppose that Xn

p! c in Rk and Yn

d! Y in Rl. If h(x, y)

is continuous then h(Xn, Yn)
d! h(c, Y ). t̄

However, the result (1) does not require (2), i.e., does not require that
n1
n2

converge to anything! This follows from the next result:

Proposition 2. If kcnk ! 1 and Yn

d! Np(0, Ip), then ct
n
Yn

d! N(0, 1).

Proof. Assume to the contrary that ct
n
Yn 6 d! N(0, 1). Then 9A ✓ R1 s.t.

Pr[N(0, 1) 2 @A] = 0 but

(4) Pr[ct
n
Yn 2 A] 6! Pr[N(0, 1) 2 A].

Therefore 9 ✏ > 0 and a subsequence {n0} ⇢ {n} s.t.

(5) |Pr[ct
n0Yn0 2 A]� Pr[N(0, 1) 2 A]| � ✏ 8n0.

However, {cn0} is bounded so {cn0} contains a convergent subsequence
{cn00}, i.e. cn00 ! c for some c s.t. kck = 1. Thus by Proposition 1
with n replaced by n00, Xn by cn00 , Yn by Yn00 , and Y by Np(0, Ip),

ct
n00Yn00

d! ctY ⇠ N(0, 1),
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which contradicts (5). t̄

Discussion: A main property of convergence in distribution (aka. weak
convergence of probability measures), is the Continuous Mapping Property:

if Yn

d! Y and h is continuous then h(Yn)
d! h(Y ) (cf. MDP Corollary 10.1,

p.139). The Extended Continuous Mapping Property states conditions on

a sequence of functions hn s.t. Yn

d! Y and hn ! h ) hn(Yn)
d! h(Y );

cf. Billingsley (1968), Thm.5.5, p.34. However, as noted by F. Topsoe
(Ann. Math. Statist. (1967), pp.1661-1665), it is not necessary that the
sequence of functions {hn} be convergent, only that (a) {hn} be precompact
in an appropriate sense45 so that subsequences {h0

n
} contain convergent

subsubsequences {h00
n
}, and (b) hn(Y )

d! h(Y ).
Proposition 2 above is an example of this, with hn(y) = ct

n
y. The

condition kcnk ! 1 does not require that cn ! anything. It does imply
that (a) {cn} is bounded hence precompact, and (b) kck = 1 for any limit
point c of {cn}, so ctY ⇠ N(0, 1), which facts are used in the above proof.

[Thanks to Jon Wellner for a helpful discussion.]

45
e.g. precompact w.r.to the topology of uniform convergence on compact sets.
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Solution to Exercise 18.43

For any random variable T , its cdf F (t) ⌘ P [T  t] is nondecreasing, right
continuous, and satisfies F (t�) = P [T < t]. Similarly, G(t) ⌘ P [T � t] is
nonincreasing, left continuous, and satisfies G(t+) = P [T > t].

Lemma 18.42. (i) Both F (T ) and G(T ) ⌫stoch U ⌘ Uniform[0, 1].

(ii) If T is a continuous rv, both F (T ) and G(T ) ⇠ U ⌘ Uniform[0, 1].

Proof. (i) Since F is nondecreasing, A(u) ⌘ {t|F (t)  u} is a semi-infinite
interval: either (a) A(u) = (�1, t(u)] or (b) A(u) = (�1, t(u)). If (a),

P [F (T )  u] = P [T  t(u)] = F (t(u))  u

because t(u) 2 A(u) in this case. If (b), then

P [F (T )  u] = P [T < t(u)] = F (t(u)�)  u

because t(u)� ✏ 2 A(u) for all ✏ > 0 in this case. Thus F (T ) ⌫stoch U .
Now define B(u) ⌘ {t|G(t)  u}; either (a) B(u) = [t(u),1) or (b)

B(u) = (t(u),1). If (a), then

P [G(T )  u] = P [T � t(u)] = G(t(u))  u

because t(u) 2 B(u) in this case, while if (b) then

P [G(T )  u] = P [T > t(u)] = G(t(u)+)  u

because t(u) + ✏ 2 B(u) for all ✏ > 0 in this case. Thus G(T ) ⌫stoch U .

(ii) By continuity, F (T ) = 1�G(T ) �stoch 1�U ⇠ U , so F (T ) ⇠ U , hence
also G(T ) ⇠ U . t̄

Now let T be a test statistic for testing H0 : ✓ 2 ⌦0 vs. H1 : ✓ 2 ⌦1,
where H0 is rejected for large values of T . Set G✓(t) = P✓[T � t]. The
p-value ⌘ attained significance level associated with T is

(18.112) p ⌘ p(Tobs) ⌘ sup
✓2⌦0

G✓(Tobs),

where Tobs ⌘ Tobserved ⇠ T . Clearly p ⌘ p(Tobs) is nonincreasing in Tobs.
It follows from Lemma 18.42(i) that when ✓ 2 ⌦0,

P✓[ p  u ]  P✓[G✓(Tobs)  u]  u.

Thus under H0, the p-value is stochastically larger than U ⌘ Uniform[0,1].
Finally, consider the problem of testing H0 : ✓  ✓0 vs. H1 : ✓ > ✓0 (✓

real) based on a test statistic T ⇠ f✓, where f✓(t) has monotone likelihood
ratio in ✓ (cf. §18.3). Then by Lemma 18.21, G✓(t) is increasing in ✓, so
p ⌘ p(Tobs) = G✓0(Tobs) and p is stochastically decreasing in ✓. If T is
continuous then p ⇠ Uniform[0, 1] when ✓ = ✓0.
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Definition 19.25. Let P, Q be probability measures on a measurable space
(X ,S) and let p, q be their corresponding pdfs w.r.to some measure ⌫. The
Hellinger distance H(P,Q) is defined via

(19.61) H2(P,Q) = 1
2

R
(
p
p�p

q)2d⌫ = 1�
R p

pqd⌫.

Clearly 0  H(P,Q)  1, H(P,Q) = 0 i↵ P = Q, and H(P,Q) = 1 i↵ the
supports of P and Q are disjoint. Note that 0 

R p
pqd⌫  1. t̄

MDP Exercise 19.26. Relations among Hellinger, total variation, and
Kullback-Leibler distances. Show that

H2(P,Q)  D(P,Q) 
p
2H(P,Q),(i)

H2(P,Q)  1
2K(P,Q).(ii)

These imply that TV-separation is equivalent to H-separation, and that
both imply KL-separation.

(iii)*** Does KL-separation imply TV⌘H-separation?

Solution. (i) From (19.45)-(19.47) and (19.61),

H2(P,Q) = 1�
Z

p
pq  1�

Z
p ^ q = D(P,Q).

Next, by (19.45)-(19.47) and the Cauchy-Schwartz inequality,

D(P,Q) = 1
2

R
|p� q| = 1

2

R
|pp+

p
q| |pp�p

q|
 1

2 [
R
|pp+

p
q|2]1/2[

R
|pp�p

q|2]1/2

= 1
2

⇥R
p+

R
q + 2

R p
pq
⇤1/2 p

2H(P,Q)

= 1
2

⇥
2 + 2

R p
pq
⇤1/2 p

2H(P,Q)


p
2H(P,Q),

since
R p

pq  1.

�K(P,Q) =
R
p log q

p
= 2

R
p log

q
q

p
(ii)

= 2
R
p log

⇣
1 +

q
q

p
� 1

⌘

 2
R
p
⇣q

q

p
� 1

⌘

= 2(
R p

pq � 1) = �2H2(P,Q). QED
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MDP Exercise 19.27. Finite families P0 and P1 are finitely distinguish-
able with an exponential error rate. (This strengthens Proposition 19.14).

Hint: Use Hellinger distance – recall (18.30). t̄

Solution. For convenience, suppose that P0 and P1 are parametrized by
✓. As in the proof of Proposition 19.14, consider the sequence {�⇤

n
} of finite

sample size LRTs given in (18.45), that is,

(18.45) �⇤
n
(x1, . . . , xn) =

8
><

>:

0 if �n ⌘
Q

f✓̂1
(xi)Q

f✓̂0
(xi)

 1,

1 if �n ⌘
Q

f✓̂1
(x)Q

f✓̂0
(x)

> 1,

where ✓̂i is the MLE under Pi. Because P0 and P1 are finite, uniform
consistency of {�⇤

n
} again will follow from pointwise consistency; we must

demonstrate the exponential rate. As in (18.30), for any P0(⌘ ✓0) 2 P0,

P0[�n > 1] = P0

"Q
f
✓̂1
(xi)Q

f
✓̂0
(xi)

> 1

#
 P0

Q
f
✓̂1
(xi)Q

f✓0(xi)
> 1

�

 E0

(Q
f
✓̂1
(xi)Q

f✓0(xi)

�1/2)
=

Z hY
f
✓̂1
(xi)

i1/2 hY
f✓0(xi)

i1/2

=

Z
max
✓12P1

hY
f✓1(xi)

Y
f✓0(xi)

i1/2


Z X

✓12P1

hY
f✓1(xi)

Y
f✓0(xi)

i1/2

=
X

✓12P1

⇢n
✓1

! 0 at an exponential rate,

since P1 is finite and

⇢✓1 =

Z
[f✓1(xi)f✓0(xi)]

1/2 = 1�H2(f✓1 , f✓0) < 1.

Similarly, P1[�n  1] ! 0 at an exponential rate 8P1 2 P1. t̄
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