
MDP Exercise 11.4. (Uniform[✓, ✓ + 1]) In Example 11.14, take ✓1 = ✓
and ✓2 = ✓ + 1, where ✓ 2 (�1,1) is a real-valued location parameter.
For simplicity set b(x) ⌘ 1, so each Xi ⇠Uniform[✓, ✓ + 1]. Show that
(X(1), X(n)) remains a 2-dimensional minimal su�cient statistic for the 1-
dimensional parameter ✓.

MDP Exercise 11.5. For example, in Exercise 11.4, the minimal su�cient
statistic (X(1), X(n)) is equivalent to the pair (X(1), Rn) where Rn ⌘ X(n)�
X(1) is the sample range. Note that 0  X(1) � ✓  1�Rn, so Rn, which is
clearly ancillary hence provides no information about ✓ by itself, nonetheless
governs the accuracy of X(1) as an estimator of ✓. In fact, because Rn is
ancillary, we can base inference about ✓ on the conditional distribution of
X(1) | Rn.

(i) Find this conditional distribution. (See CB Example 5.4.7 for a related
discussion.) Use this conditional distribution to find an estimator ✓̃n that
is conditionally unbiased for ✓, thus unconditionally unbiased.

(ii) Let ✓̌n = X(1) � 1
n+1 . Show that ✓̌n is unbiased for ✓, that Var(✓̃n) <

Var(✓̌n) for all n, and that limn!1 Var(✓̃n)/Var(✓̌n) =
1
2 .

(iii) Find a confidence interval for ✓, centered at ✓̃, whose conditional and
unconditional confidence coe�cient is (1� ↵). t̄

Solution: (i) Let U = X(1) � ✓, V = X(n) � ✓, so 0 < U < V < 1. Then

Pr[u < U < V < v] = (v � u)n,

so
f(u, v) = n(n� 1)(v � u)n�2.

Now let R = V � U , so

f(u, r) = n(n� 1)rn�2, 0 < u, r < 1, 0 < u+ r < 1.

Thus

(11.a) U | R ⇠ Uniform(0, 1�R),

so
E(U | R) = 1

2 (1�R),

E(X(1) | R) = ✓ + 1
2 (1�R).
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Therefore
✓̃n := X(1) � 1

2 (1�R) = 1
2 (X(1) +X(n))� 1

2

is conditionally and unconditionally unbiased for ✓.

(ii) From (9.9), E(X(1)) = ✓ + 1
n+1 , hence ✓̌n is unbiased. From (9.10) and

MDP Exercise 9.3,

Var(✓̌n) =
n

(n+ 1)2(n+ 2)
,

Var(✓̃n) =
1
4 [Var(X(1)) + Var(X(n)) + 2Cov(X(1), X(n))]

=
1

2

h n

(n+ 1)2(n+ 2)
+

1

(n+ 1)2(n+ 2)

i

=
1

2(n+ 1)(n+ 2)
.

Thus for n > 1,

1 >
Var(✓̃n)

Var(✓̌n)
=

n+ 1

2n
! 1

2
as n ! 1.

(iii) From (11.a),

(11.b)
X(1) � ✓

1�R

��� R ⇠ Uniform(0, 1),

so

(1� ↵) = Pr
⇥
(1�R)↵2 < X(1) � ✓ < (1�R)(1� ↵

2 )
⇤

= Pr
h
✓̃n � 1

2 (1�R)(1� ↵) < ✓ < ✓̃n + 1
2 (1�R)(1� ↵)

i
.

Note that the ancillary statistic 1�R governs the width of this confidence
interval. t̄
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• Completeness and minimal su�ciency.

Theorem. If S⇤ is su�cient for P and P is complete on S⇤, then S⇤ is min-
imal su�cient for P. Briefly: “a complete and su�cient subfield/statistic
is minimal su�cient.”

Proof. We must show that S⇤ ✓ S0 [P] for any other su�cient subfield
S0. Because S0 is su�cient, for each S⇤ 2 S⇤ there exists an S0-measurable
version gS⇤ of P [S⇤|S0] 8P 2 P. Because S⇤ is su�cient, there exists an
S⇤-measurable version hS⇤ of EP [gS⇤ |S⇤] 8P 2 P. Thus for any P 2 P,

EP (hS⇤) = EP (gS⇤) = EP (IS⇤) ⌘ P (S⇤),

so EP [hS⇤ � IS⇤ ] = 0 8P 2 P. Because hS⇤ � IS⇤ is S⇤-measurable and P
is complete on S⇤, hS⇤ = IS⇤ a.e. [P].

Set S0 = {gS⇤ = 1} 2 S⇤; we shall show that S04S⇤ is P-null. First,

P (S⇤) =

Z
IS⇤ dP =

Z

S⇤
hS⇤ dP =

Z

S⇤
gS⇤ dP  P (S⇤) 8P 2 P,

since 0  g⇤
S

 1 a.e. [P]. Therefore S⇤ \ {gS⇤ < 1} is P-null, hence
{gS⇤ 6= 1} \ S⇤ is P-null. Next,

0 =

Z

(S⇤)c
IS⇤ dP =

Z

(S⇤)c
hS⇤ dP =

Z

(S⇤)c
gS⇤ dP � 0 8P 2 P,

so {gS⇤ = 1} \ (S⇤)c is P-null. Thus S04S⇤ is P-null, as claimed.

Example. Let X ⇠ N(✓, 1) with ✓ = ±1, i.e., P = {N(1, 1), N(�1, 1)}.
Show that X is minimal su�cient [verify!] but not complete, since X con-
tains the nontrivial ancillary statistic |X| [verify!].
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Exercise 14.37**. Let X1, . . . , Xn be an i.i.d. sample from the univariate
normal location-scale family N1(µ,�2). The MLEs of µ when �2 is known
and when �2 is unknown are both X̄n, so trivially have the same asymptotic
e�ciency. This also follows from the fact that the N1(0, 1) pdf is symmetric
about 0, so µ and � are orthogonal parameters. For a finite sample size
n � 2, however, di↵erent confidence intervals are used for the two cases:

�2 unknown: X̄n ± snp
n
tn�1;↵/2, �2 known: X̄n ± �p

n
z↵/2.

Show that the expected width of the first confidence interval is greater
than the (non-random) width of the second, so that knowing �2 actually
improves the accuracy of inference about µ (on average).

A. Unsuccessful analytic approach. We need to show that

E

✓
snp
n
tn�1;↵/2

◆
>

�p
n
z↵/2. (1)

It is tempting to try to establish (1) in two steps (we set n � 1 = k for
notational convenience):

(a) Show that tk;↵/2 > z↵/2. This is equivalent to showing that F1,k is
stochastically greater than �2

1, which in turn follows from the facts that

F1,k is stochastically decreasing43 in k and F1,k
d! �2

1 as k ! 1.

(b) Try to show that E(sn) > �. Because s
2
n
�2 ⇠ �

2
k
k
,

E
�
sn
�

�
=

q
2
k

�( k+1
2 )

�( k
2 )

, (2)

so the hoped-for inequality in (b) can be re-written as

q
k

2 <
�( k+1

2 )

�( k
2 )

? (3)

43
Attributed to P. L. Hsu (1938), J. Hajek (1962); see M. L. Eaton (1987), ”Group

induced orderings with some applications in statistics”, CWI Newsletter No. 16, 3-31.

The result can be obtained from the representation F1,k ⇠ U/(V/k) with U ⇠ �2
1,

V ⇠ �2
k
, U ?? V . Condition on V and use the fact that the cdf of U is concave (since

the pdf is decreasing). [Note to myself: can use majorization.]
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Unfortunately the opposite is true. Because
p
x is strictly concave,

Jensen’s Inequality yields

E
�
sn
�

�
= E

✓q
�
2
k
k

◆
<

r
E
⇣
�
2
k
k

⌘
= 1, (4)

so equivalently,
�( k+1

2 )

�( k
2 )

<
q

k

2 . (5)

Comparison of (3) and (5): Set x = k�1
2 so (3) can be re-written as

q
x+ 1

2 < �(x+1)
�(x+ 1

2 )
? (30)

It follows from inequalities of Gautschi (1959, also see below) and Kershaw
(1983), respectively, that for x > 0,

p
x < �(x+1)

�(x+ 1
2 )
, (6)

q
x+ 1

4 < �(x+1)
�(x+ 1

2 )
, (7)

whereas (5) can be re-written as

�(x+1)
�(x+ 1

2 )
<

q
x+ 1

2 . (50)

Thus, although (30) fails, it doesn’t fail by much.

Gautschi’s Inequality: Because the gamma function �(x) is strictly log con-
vex (verify by di↵erentiating twice under the integral sign),

�(x+ 1
2 ) <

p
�(x)�(x+ 1),

so
�(x+ 1

2 )
�(x+1) <

q
�(x)

�(x+1) =
q

1
x
.
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B. Successful statistical approach. In 1961, John Pratt and P. K.
Ghosh independently established the following identity,44 which relates the
expected length of a confidence interval (l(X), u(X)) for a real-valued pa-
rameter ✓ based on data X ⇠ f✓(x) to the power function of the corre-
sponding test: for any fixed ✓0,

E✓0 [u(X)� l(X)] =

Z

✓ 6=✓0
Pr✓0 [✓ 2 (l(X), u(X))]d✓. (8)

If we let ⇡(✓; ✓0) denote the power function of the corresponding 2-sided
test for testing ✓ = ✓0 vs. ✓ 6= ✓0, then

1� ⇡(✓; ✓0) = Pr✓[l(X) < ✓0 < u(X)],

so (8) can be written as

E✓0 [u(X)� l(X)] =

Z

✓ 6=✓0
[1� ⇡(✓0; ✓)]d✓. (8)

(Note the interchange of ✓ and ✓0.) Therefore (1) will follow if we can
show that the power of the 2-sided size-↵ t-test for testing µ = µ0 with �2

unknown (but fixed at �2 = 1) is less than that of the 2-sided size-↵ Z-test
for µ = µ0 (with �2 known to = 1). [Z ⇠ N(0, 1).]

Because the 2-sided tn-test is equivalent to the 1-sided F1,n-test, where
F1,n = t2

n
, it therefore su�ces to show that the power of the (non-central)

F1,n-test is greater than that of the 1-sided (non-central) �2
1-test, where

�2
1 = Z2. In fact a stronger result was proved by Das Gupta and MDP

(JASA 1974): For fixed value of the non-centrality parameter, the power of
the non-central Fm,n-test is increasing in n (and decreasing inm). Therefore
the expected length of the t-based confidence interval on the left side of (1) is
decreasing in n. Now (1) follows from the fact that tn ! N(0, 1) as n ! 1.

44
This is proved via Fubini’s Theorem, as in CB Exercise 2.14; see Lehmann and

Romano Testing Statistical Hypotheses, 3rd edition, p.200.
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MDP Exercise 16.5. Show that the Bayes estimator ✓̂ ⌘ E[⇥ | X] is
unbiased for ✓ i↵ it is perfect, i.e., ✓̂ = ⇥.

Solution. (The statement and proof in CB §7.5.2 are incorrect.) First,

E[(✓̂ �⇥)2] = E(✓̂2)� 2E[✓̂⇥] + E(⇥2)

= E(✓̂2)� 2E[E(✓̂⇥ | X)] + E(⇥2)

= E(✓̂2)� 2E[✓̂E(⇥ | X)] + E(⇥2)

⌘ E(✓̂2)� 2E(✓̂2) + E(⇥2)

= E(⇥2)� E(✓̂2).

But by the unbiasedness of ✓̂,

E[(✓̂ �⇥)2] = E(✓̂2)� 2E[✓̂⇥] + E(⇥2)

= E(✓̂2)� 2E[E(✓̂⇥ | ⇥)] + E(⇥2)

= E(✓̂2)� 2E[⇥E(✓̂ | ⇥)] + E(⇥2)

⌘ E(✓̂2)� 2E(⇥2) + E(⇥2)

= E(✓̂2)� E(⇥2),

so E[(✓̂ � ⇥)2] = 0, i.e., ✓̂ ⌘ E[⇥ | X] = ⇥. Therefore ✓̂ is perfect. The
converse is trivial. t̄
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Exercise 17.3. Let R =  0c10

 1c01
, so c⇤ = logR + 1

2

�
µ0
1⌃

�1µ1 � µ0
0⌃

�1µ0

�
.

Let d = ⌃�1(µ1 � µ0) and �2 = (µ1 � µ0)0⌃�1(µ1 � µ0). Then

P [� chooses µ0 | µ1] = P [d0X < c⇤ | µ1] = P [N1(d
0µ1, d

0⌃d) < c⇤]

=P [N1((µ1 � µ0)
0⌃�1µ1, �

2) < logR+ 1
2

�
µ0
1⌃

�1µ1 � µ0
0⌃

�1µ0

�
]

=P [N1(0, �
2) < logR� 1

2�
2]

=1� �
⇣

1
2�

2�logR

�

⌘
[� = cdf of N1(0, 1).]

Similarly, P [� chooses µ1 | µ0] = 1� �
⇣

1
2�

2+logR

�

⌘
.

Note: When R = 1 (e.g., if  0 =  1 and c10 = c01), then

P [� chooses µ0 | µ1] = P [� chooses µ1 | µ0] = 1� �
�
1
2�

�
.

� is the Mahalanobis distance between Np(µ0,⌃) and Np(µ1,⌃). It is
easy to verify that the Kullback-Leibler divergence between Np(µ0,⌃) and
Np(µ1,⌃) is equal to

1
2�

2. (Compare to MDP eqn. (14.11).)

MDP Exercise 17.6. The posterior distribution is still given by (16.15):

⇥ | X ⇠ Beta(X + ↵, n�X + �).

However, the expected posterior loss (EPL) for L̃ ⌘ (a�✓)2
✓(1�✓) now becomes

E
h
(a�⇥)2

⇥(1�⇥)

��� X
i
= const ·

R 1
0 (a� ✓)2✓(X+↵�1)�1(1� ✓)(n�X+��1)�1d✓.

If (X 6= 0, n) or (X = 0, ↵ > 1) or (X = n, � > 1) this is minimized when

(1) a = E[Beta(X + ↵� 1, n�X + � � 1)] = X+↵�1
n+↵+��2 ,

which agrees with (17.21). If (X = 0, ↵ = 1), the EPL = 1 unless a = 0,
so is trivially minimized at a = 0. If (X = n, � = 1), the EPL = 1 unless
a = 1, so is trivially minimized at a = 1. These last two cases also agree
with (17.21). Thus for ↵ = � = 1 the unique Bayes estimator is X

n
, so this

is admissible w.r.to L̃ ⌘ (a�✓)2
✓(1�✓) . Clearly admissibility w.r.to L ⌘ (a� ✓)2

is equivalent to admissibility w.r.to L̃ because, for any estimator d, the
corresponding risk functions ar related by R̃d(✓) =

Rd(✓)
✓(1�✓) .
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MDP Exercise 18.14. (i) Let f✓(x) = ✓�1I[0,✓](x). By MDP Propositions
18.3 and 18.4, every admissible test (i.e., one with risk vector on the SW
boundary) for testing f1 vs. f2 is a likelihood ratio test of the form (18.5).
The LR is

f2(x)

f1(x)
=

⇢
1
2 if 0  x  1;
1 if 1 < x  2.

Thus the LR test (18.5) has one of the following four forms:

c < 1
2 : �c(x) = 1 for all 0  x  2;A.

c = 1
2 : �c(x) =

⇢
�1(x) if 0  x  1;
1 if 1 < x  2;

B.

1
2 < c < 1 : �c(x) =

⇢
0 if 0  x  1;
1 if 1 < x  2;

C.

c = 1 : �c(x) =

⇢
0 if 0  x  1;
�2(x) if 1 < x  2.

D.

Thus the SW boundary of the risk set is determined by the risk vectors
(R0, R1) of these four classes of tests, as follows [verify from (18.2)]:

(R0, R1) = (1, 0);A.

(R0, R1) =
�
�̄1,

1
2 (1� �̄1)

�
;B.

(R0, R1) = (0, 1
2 );C.

(R0, R1) =
�
0, 1� 1

2 �̄2
�
.D.

where �̄1 =
R 1
0 �1(x)dx, �̄2 =

R 2
1 �2(x)dx, so 0  �̄1  1, 0  �̄2  1.

(ii) We may base all tests on the minimal su�cient statistic X ⌘ Xmax,
whose pdf is f✓(x) = ✓�nnxn�1I[0,✓](x). Now the LR is

f2(x)

f1(x)
=

⇢
1
2n if 0  x  1;
1 if 1 < x  2.

The LR test (18.5) has the form A, B, C, or D with 1
2 replaced by 1

2n . Note
that these clases of tests are exactly the same as above. The SW boundary
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of the risk set is determined by the risk vectors (R0, R1) of these four classes
of tests, as follows [verify from (18.2)]:

(R0, R1) = (1, 0);A.

(R0, R1) =
�
�̄1,

1
2n (1� �̄1)

�
;B.

(R0, R1) = (0, 1
2n );C.

(R0, R1) =
�
0, 1� 1

2n �̄2
�
.D.

where now �̄1 = n
R 1
0 �1(x)x

n�1dx, �̄2 = n
R 2
1 �2(x)x

n�1dx, so 0  �̄1  1,
0  �̄2  2n � 1. Finally, because 1

2n ! 0 at an exponential rate, the entire
risk set fills the unit square at an exponential rate.

MDP Exercise 18.22. MLR preserves monotonicity. If f(x|�) has
MLR in T ⌘ T (X) and g(t) is nondecreasing in t, then

E�[g(T (X))] ⌘
Z

X
g(t(x)) f(x|�)d⌫(x)

is nondecreasing in � (⌫ is either counting measure or Lebesgue measure).

Proof. Set h(�) = E�[g(T (X))]. Then for any �1  �2 in ⇤,

h(�2)� h(�1)

=

Z
g(t(x))[f(x|�2)� f(x|�1)]d⌫(x)

= 1
2

RR
[g(t(x))� g(t(y))] [f(x|�2)f(y|�1)� f(y|�2)f(x|�1)]d⌫(x)d⌫(y)

� 0,

since the 2 terms in brackets [·] are both � 0 if x � y or both  0 if x  y.

MDP Exercise 18.27. Follow the outline of MDP Example 18.25:

sup
⇠2L,�2>0

f⇠,�2(x) = sup
⇠2L,�2>0

1

(2⇡�2)
n
2
e�kx�⇠k2

/2�2

= sup
�2>0

1

(2⇡�2)
p
2
e�kx�PLxk2

/2�2

= 1

(2⇡�̂2
L)

p
2
e�p/2,
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where PL is the orthogonal projection matrix onto L and �̂2
L
= 1

p
kx�PLxk2.

Similarly define PL0 and �̂2
L0

= 1
p
kx� PL0xk2. Then the LRT statistic

� ⌘
sup

⇠2L0,�
2>0 f⇠,�2(x)

sup
⇠2L,�2>0 f⇠,�2(x)

satisfies

�
2
p =

�̂2
L

�̂2
L0

=
kx� PLxk2

kx� PL0xk2
=

k(I � PL)xk2

k(I � PL)xk2 + k(PL � PL0)xk2

since (I � PL)(PL � PL0) = 0 [verify]. The LRT rejects H0 if � is too

small, or equivalently if F ⌘ k(PL�PL0 )Xk2

k(I�PL)Xk2 is too large. The numerator and
denominator are independent by MDP Exercise 8.5 and are distributed as

�2�2
d�d0

⇣
k(PL�PL0 )⇠k

2

�2

⌘
and �2�2

p�d
, resp., by MDP (8.111). (Note that

PL�PL0 and I�P are projection matrices, and (I �P )⇠ = 0 since ⇠ 2 L.)
Thus F has a noncentral F distribution, central when H0 : ⇠ 2 L0 holds
(since (PL � PL0)⇠ = 0 in this case).

Comments on CB Exercise 10.31a assigned in 513 HW 18:

In my solution, a key step is to show that as min(n1, n2) ! 1,

S ⌘
q

n1n2
n1+n2

(p̂1 � p̂2)

⌘
q

n2
n1+n2

⇥p
n1 (p̂1 � p)

⇤
�

q
n1

n1+n2

⇥p
n2 (p̂2 � p)

⇤
d! N(0, 1).(1)

(In (1) it is assumed that n1 and n2 depend on a single index n s.t.
min(n1(n), n2(n)) ! 1 as n ! 1.) Several students asked if it is nec-
essary to assume that n1 = n2, or more generally, that the ratio n1

n2
! 1.

The answer to this is “no”. Consider the more general assumption that

(2) n1
n2

! ⇢ for some ⇢ 2 [0,1].

Note that the cases ⇢ = 0 and ⇢ = 1 are included. Because p̂1 ?? p̂2
and

p
ni (p̂i � p)

d! N(0, 1) as ni ! 1, i = 1, 2, under assumption (2) the
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result (1) will follow from Proposition 1 below with

Yn = (
p
n1 (p̂1 � p) ,

p
n2 (p̂2 � p)),

Y = N2(0, I2),

Xn = cn =
⇣q

n2
n1+n2

,�
q

n1
n1+n2

⌘
, (constant vectors),

c =
⇣q

1
⇢+1 , �

q
⇢

⇢+1

⌘
, (a constant vector).

Note that kcnk2 = kck2 = 1, so ctY ⇠ N(0, 1).

Proposition 1. Suppose that Xn

p! c and Yn

d! Y as n ! 1, where Xn,

Yn, and Y are random vectors in Rp and c 2 Rp. Then Xt

n
Yn

d! ctY .

Proof. Because h(x, y) ⌘ xty  kxkkyk, h is continuous in (x, y). Thus
the result follows from MDP Theorem 10.6 p.142, re-stated just below. t̄

Theorem 10.6. Suppose that Xn

p! c in Rk and Yn

d! Y in Rl. If h(x, y)

is continuous then h(Xn, Yn)
d! h(c, Y ). t̄

However, the result (1) does not require (2), i.e., does not require that
n1
n2

converge to anything! This follows from the next result:

Proposition 2. If kcnk ! 1 and Yn

d! Np(0, Ip), then ct
n
Yn

d! N(0, 1).

Proof. Assume to the contrary that ct
n
Yn 6 d! N(0, 1). Then 9A ✓ R1 s.t.

Pr[N(0, 1) 2 @A] = 0 but

(4) Pr[ct
n
Yn 2 A] 6! Pr[N(0, 1) 2 A].

Therefore 9 ✏ > 0 and a subsequence {n0} ⇢ {n} s.t.

(5) |Pr[ct
n0Yn0 2 A]� Pr[N(0, 1) 2 A]| � ✏ 8n0.

However, {cn0} is bounded so {cn0} contains a convergent subsequence
{cn00}, i.e. cn00 ! c for some c s.t. kck = 1. Thus by Proposition 1
with n replaced by n00, Xn by cn00 , Yn by Yn00 , and Y by Np(0, Ip),

ct
n00Yn00

d! ctY ⇠ N(0, 1),
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which contradicts (5). t̄

Discussion: A main property of convergence in distribution (aka. weak
convergence of probability measures), is the Continuous Mapping Property:

if Yn

d! Y and h is continuous then h(Yn)
d! h(Y ) (cf. MDP Corollary 10.1,

p.139). The Extended Continuous Mapping Property states conditions on

a sequence of functions hn s.t. Yn

d! Y and hn ! h ) hn(Yn)
d! h(Y );

cf. Billingsley (1968), Thm.5.5, p.34. However, as noted by F. Topsoe
(Ann. Math. Statist. (1967), pp.1661-1665), it is not necessary that the
sequence of functions {hn} be convergent, only that (a) {hn} be precompact
in an appropriate sense45 so that subsequences {h0

n
} contain convergent

subsubsequences {h00
n
}, and (b) hn(Y )

d! h(Y ).
Proposition 2 above is an example of this, with hn(y) = ct

n
y. The

condition kcnk ! 1 does not require that cn ! anything. It does imply
that (a) {cn} is bounded hence precompact, and (b) kck = 1 for any limit
point c of {cn}, so ctY ⇠ N(0, 1), which facts are used in the above proof.

[Thanks to Jon Wellner for a helpful discussion.]

45
e.g. precompact w.r.to the topology of uniform convergence on compact sets.
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Solution to Exercise 18.43

For any random variable T , its cdf F (t) ⌘ P [T  t] is nondecreasing, right
continuous, and satisfies F (t�) = P [T < t]. Similarly, G(t) ⌘ P [T � t] is
nonincreasing, left continuous, and satisfies G(t+) = P [T > t].

Lemma 18.42. (i) Both F (T ) and G(T ) ⌫stoch U ⌘ Uniform[0, 1].

(ii) If T is a continuous rv, both F (T ) and G(T ) ⇠ U ⌘ Uniform[0, 1].

Proof. (i) Since F is nondecreasing, A(u) ⌘ {t|F (t)  u} is a semi-infinite
interval: either (a) A(u) = (�1, t(u)] or (b) A(u) = (�1, t(u)). If (a),

P [F (T )  u] = P [T  t(u)] = F (t(u))  u

because t(u) 2 A(u) in this case. If (b), then

P [F (T )  u] = P [T < t(u)] = F (t(u)�)  u

because t(u)� ✏ 2 A(u) for all ✏ > 0 in this case. Thus F (T ) ⌫stoch U .
Now define B(u) ⌘ {t|G(t)  u}; either (a) B(u) = [t(u),1) or (b)

B(u) = (t(u),1). If (a), then

P [G(T )  u] = P [T � t(u)] = G(t(u))  u

because t(u) 2 B(u) in this case, while if (b) then

P [G(T )  u] = P [T > t(u)] = G(t(u)+)  u

because t(u) + ✏ 2 B(u) for all ✏ > 0 in this case. Thus G(T ) ⌫stoch U .

(ii) By continuity, F (T ) = 1�G(T ) �stoch 1�U ⇠ U , so F (T ) ⇠ U , hence
also G(T ) ⇠ U . t̄

Now let T be a test statistic for testing H0 : ✓ 2 ⌦0 vs. H1 : ✓ 2 ⌦1,
where H0 is rejected for large values of T . Set G✓(t) = P✓[T � t]. The
p-value ⌘ attained significance level associated with T is

(18.112) p ⌘ p(Tobs) ⌘ sup
✓2⌦0

G✓(Tobs),

where Tobs ⌘ Tobserved ⇠ T . Clearly p ⌘ p(Tobs) is nonincreasing in Tobs.
It follows from Lemma 18.42(i) that when ✓ 2 ⌦0,

P✓[ p  u ]  P✓[G✓(Tobs)  u]  u.

Thus under H0, the p-value is stochastically larger than U ⌘ Uniform[0,1].
Finally, consider the problem of testing H0 : ✓  ✓0 vs. H1 : ✓ > ✓0 (✓

real) based on a test statistic T ⇠ f✓, where f✓(t) has monotone likelihood
ratio in ✓ (cf. §18.3). Then by Lemma 18.21, G✓(t) is increasing in ✓, so
p ⌘ p(Tobs) = G✓0(Tobs) and p is stochastically decreasing in ✓. If T is
continuous then p ⇠ Uniform[0, 1] when ✓ = ✓0.
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Definition 19.25. Let P, Q be probability measures on a measurable space
(X ,S) and let p, q be their corresponding pdfs w.r.to some measure ⌫. The
Hellinger distance H(P,Q) is defined via

(19.61) H2(P,Q) = 1
2

R
(
p
p�p

q)2d⌫ = 1�
R p

pqd⌫.

Clearly 0  H(P,Q)  1, H(P,Q) = 0 i↵ P = Q, and H(P,Q) = 1 i↵ the
supports of P and Q are disjoint. Note that 0 

R p
pqd⌫  1. t̄

MDP Exercise 19.26. Relations among Hellinger, total variation, and
Kullback-Leibler distances. Show that

H2(P,Q)  D(P,Q) 
p
2H(P,Q),(i)

H2(P,Q)  1
2K(P,Q).(ii)

These imply that TV-separation is equivalent to H-separation, and that
both imply KL-separation.

(iii)*** Does KL-separation imply TV⌘H-separation?

Solution. (i) From (19.45)-(19.47) and (19.61),

H2(P,Q) = 1�
Z

p
pq  1�

Z
p ^ q = D(P,Q).

Next, by (19.45)-(19.47) and the Cauchy-Schwartz inequality,

D(P,Q) = 1
2

R
|p� q| = 1

2

R
|pp+

p
q| |pp�p

q|
 1

2 [
R
|pp+

p
q|2]1/2[

R
|pp�p

q|2]1/2

= 1
2

⇥R
p+

R
q + 2

R p
pq
⇤1/2 p

2H(P,Q)

= 1
2

⇥
2 + 2

R p
pq
⇤1/2 p

2H(P,Q)


p
2H(P,Q),

since
R p

pq  1.

�K(P,Q) =
R
p log q

p
= 2

R
p log

q
q

p
(ii)

= 2
R
p log

⇣
1 +

q
q

p
� 1

⌘

 2
R
p
⇣q

q

p
� 1

⌘

= 2(
R p

pq � 1) = �2H2(P,Q). QED
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MDP Exercise 19.27. Finite families P0 and P1 are finitely distinguish-
able with an exponential error rate. (This strengthens Proposition 19.14).

Hint: Use Hellinger distance – recall (18.30). t̄

Solution. For convenience, suppose that P0 and P1 are parametrized by
✓. As in the proof of Proposition 19.14, consider the sequence {�⇤

n
} of finite

sample size LRTs given in (18.45), that is,

(18.45) �⇤
n
(x1, . . . , xn) =

8
><

>:

0 if �n ⌘
Q

f✓̂1
(xi)Q

f✓̂0
(xi)

 1,

1 if �n ⌘
Q

f✓̂1
(x)Q

f✓̂0
(x)

> 1,

where ✓̂i is the MLE under Pi. Because P0 and P1 are finite, uniform
consistency of {�⇤

n
} again will follow from pointwise consistency; we must

demonstrate the exponential rate. As in (18.30), for any P0(⌘ ✓0) 2 P0,

P0[�n > 1] = P0

"Q
f
✓̂1
(xi)Q

f
✓̂0
(xi)

> 1

#
 P0

Q
f
✓̂1
(xi)Q

f✓0(xi)
> 1

�

 E0

(Q
f
✓̂1
(xi)Q

f✓0(xi)

�1/2)
=

Z hY
f
✓̂1
(xi)

i1/2 hY
f✓0(xi)

i1/2

=

Z
max
✓12P1

hY
f✓1(xi)

Y
f✓0(xi)

i1/2


Z X

✓12P1

hY
f✓1(xi)

Y
f✓0(xi)

i1/2

=
X

✓12P1

⇢n
✓1

! 0 at an exponential rate,

since P1 is finite and

⇢✓1 =

Z
[f✓1(xi)f✓0(xi)]

1/2 = 1�H2(f✓1 , f✓0) < 1.

Similarly, P1[�n  1] ! 0 at an exponential rate 8P1 2 P1. t̄
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