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Preliminaries

The problem of characterizing complex measures is often dealt by transporting them to a simpler
target measure via a transport map T . Let µ : B(Rd) → R+ be the source measure defined on the
Borel σ-algebra of Rd and let ν : B(Rd) → R+ be the target measure we wish to transport µ to.
Then the transport map T pushes µ to ν if T#µ = ν, i.e. for any A ∈ B(Rd),

T#µ(A) := µ(T−1(A)) = ν(A). (1)

The transport map is chosen based on the cost it takes to transport µ to ν. It is characterized by
the cost function c : Rd × Rd → R+ which leads to Monge problem

inf
T :T#µ=ν

ˆ
Rd

c(x, T (x))dµ(x) . (2)

The solution to the constrained problem in (2) is the optimal transport from µ to ν.

Brenier maps. Brenier maps arise from a relaxation of (2) called Monge-Kantorovich problem
and defined as

inf
π∈Π(µ,ν)

ˆ
Rd×Rd

c(x, y)dπ(x, y), (3)

where Π(µ, ν) is the subspace of P(Rd×Rd) (the set of Borel probability measures on Rd×Rd) with
marginals equal to µ and ν, respectively. Theory regarding the solutions of (3) exists in greater
generality than stated, but for the time being we will just state the results that we will need and
give appropriate citation.

First, if c : Rd ×Rd → R≥0 ∪{∞} is lower semicontinuous in (3), then there exists γ∗ ∈ Π(µ, ν)
such that the infimum is attained (Villani (2003), Theorem 1.3). In the case that c(x, y) = |x− y|2
is the quadratic cost, with some additional assumptions we get Brenier’s Theorem:

Theorem 1. Brenier’s Theorem (Villani (2003), Theorem 2.12) Let µ, ν be probability measures on
Rd with finite second moments, and assume that µ does not give mass to small sets (this is satisfied,
for example, if µ << m). Then there is a unique optimal solution π∗ to (3) with quadratic cost of
the form π∗ = (Id×∇φ)#µ where ∇φ is the unique (up to µ-a.e. equivalence) gradient of a convex
function that pushes forward µ to ν, i.e. ν = ∇φ#µ.

We call the transport map ∇φ arising in Brenier’s Theorem the Brenier map. We note the
degenerate support of Brenier maps compared to more general maps in Π(µ, ν). Additionally,
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Brenier’s Theorem demonstrates that, in the case of quadratic costs, solutions to the Monge-
Kantorovich problem are solutions to the classical Monge problem.

An important consequence of Brenier’s Theorem is that it allows us to quickly uncover solutions
to the 1-dimensional optimal transport problem as by the uniqueness of ∇φ it suffices to find a
transport map that is the gradient of a convex function. To wit, we have

Theorem 2. Optimal Transport on R Let µ and ν be probability measures on R with finite second
moments and distribution functions F and G, respectively. Additionally, assume µ is absolutely
continuous. Then G−1 ◦ F is the Brenier map transporting µ to ν, where G−1 is the generalized
inverse of G on [0, 1], i.e. G−1(a) = inf{x ∈ R : G(x) > a}.

First, it is clear that F and G−1 are increasing, so G−1 ◦ F is an increasing function. The
function H(x) =

´ x
0 (G

−1 ◦ F )(t)dt is then a convex function. Thus, if we can show that G−1 ◦ F
is a transport map, then by the uniqueness result in Brenier’s theorem we have that G−1 ◦ F is
indeed the Brenier map. Let X ∼ µ, then it is well-known that F (X) ∼ Unif[0, 1]. For all t ∈ R
we then have

P ((G−1 ◦ F )(X) ≤ t) = P (F (X) ≤ G(t)) = G(t).

Thus, since (G−1◦F )(X) has the same distribution as G, we have that G−1◦F is indeed a transport
map from µ to ν. As argued earlier, this implies that G−1 ◦ F is the Brenier map.

Knothe-Rosenblatt maps. The quadratic cost discussed above gives a unique but dense Brenier
map. The denseness of Brenier maps makes operations like inversion computationally prohibitive,
especially in high-dimensional settings. An alternative coupling, separately proposed by Knothe
(1957) and Rosenblatt (1952), is the Knothe-Rosenblatt rearrangement which is defined when µ
is absolutely continuous. The exact construction of KR maps is described by Villani (2009) and
omitted here for brevity. A key quality of KR maps is the it is triangular in that its Jacobian
is a triangular matrix. This makes KR maps amenable to various geometric applications. KR
map can be intuitively understood as one-dimensional monotonic transformation of the marginal
distribution of last coordinate, and then the sequential conditional distributions. However, such a
triangular map imposes uniqueness in terms of the coordinate reordering, in contrast to optimal
transport which is invariant to isometries on Rd. In fact, if µ and ν are absolutely continuous
measures, then KR map is the unique triangular map satisfying (1).

Carlier et al. (2010) show that the optimal solutions to the Monge-Kantorovich problems with
weighted quadratic costs converge to Knothe-Rosenblatt maps if the weights dominate one another.

Main Result

We will assume that the Knothe-Rosenblatt map is well defined. This is true if the source measure
is absolutely continuous. The precise assumption is the following.

Assumption 1. (H-source) The marginal one-dimensional measure µd (dth marginal measure
of µ) has no atoms. Similarly for k ≥ 1, the one-dimensional conditional measures µkxd:k+1

for

µd − a.e. xd, µ
d−1
xd

− a.e. xd−1, . . . µ
k+1
xd:k+1

have no atoms.

As opposed to Brenier’s Theorem, we will also require more stringent assumptions on the target
measure. This is because it will allow us to assume certain maps are invertible in the main proof.
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Assumption 2. (H-target) The marginal one-dimensional measure νd has no atoms. Similarly for
k ≥ 2, the one-dimensional conditional measures νkyd:k+1

for νd− a.e. yd, ν
d−1
yd

− a.e. yd−1, . . . ν
k+1
xd:k+1

have no atoms.

We observe that (H-target) is a slightly less restrictive assumption than (H-source) as it does
require any conditional of the form ν1yd:2 to have no atoms.

We now state the main theorem of interest.

Theorem 3. (Carlier et al. (2010), Theorem 2.1) Let µ and ν be two probability measures on Rd

satisfying (H-source) and (H-target), respectively, with finite second moments, and γϵ be an optimal
transport plan for the cost cϵ(x, y) =

∑d
i=1 λi(ϵ)(xi−yi)2, for some weights λk(ϵ) > 0. Suppose that

for all k ∈ {1, . . . , d− 1}, λk(ϵ)/λk+1(ϵ) → 0 as ϵ→ 0. Let TK be the Knothe-Rosenblatt transport
from µ to ν and γK ∈ P(Rd×Rd) be the associated transport plan (i.e. γK := (id×TK)#µ). Then
γϵ ⇀ γK as ϵ→ 0.

Moreover, should the plans γϵ be induced by transport maps Tϵ, then these maps would converge
to TK in L2(µ) as ϵ→ 0.

The result is significant as it suggests a limiting procedure in which solutions to (3) converge
weakly to the KR map. It is important to note that the sense in which the γϵ are optimal is different
from the sense in which the KR map is optimal, yet they are connected via this result. While γϵ are
solutions to Monge-Kantorovich problem expressed through certain cost functions, KR maps are
not derived to minimize a pre-defined cost. However, this result ties KR maps to a cost function
in an asymptotic sense.

Once a weak limit to the γϵ is given (denoted γ), the main strategy of the proof is to use the
optimality and uniqueness of the 1-dimensional transport maps on which the KR map (denoted γK)
is built to iteratively show that γdK = γd, then γd−1

K = γd−1 (the marginal on (xd−1, xd), (yd−1, yd)),
and so on until γK = γ.

Proof of Main Result

We start with the following Lemma that will prove essential in the main argument argument,
although this result is stated in greater generality than we will need.

Lemma 1. Let µ, ν be Borel probability measures on Rd. If
´
ϕ(x)dµ(x) =

´
ϕ(x)dν(x) for all

ϕ ∈ Cc(Rd), then µ = ν as measures.

Proof. The Riesz Represtation Theorem gives a 1-1 correspondence between Radon measures on a
space and the dual space of Cc(Rn) given by µ 7→

´
fdµ for f ∈ Cc(Rn). Since Rn is a Polish space

(separable Banach space), probability measures on Rn are Radon measures. Thus, as the actions
of µ and ν on Cc(Rn) are the same, we must have that µ = ν, as desired.

Lemma 2. If two measurable functions f, g on Rd are equal π-almost everywhere, then
´
[f(x) −

g(x)]dπ(x) = 0.

Proof. The two function f and g are equal almost everywhere implies that the probability of the
set on which they are unequal has a measure zero under π. Let A ∈ B(Rd) be the set such that for
all x ∈ A, f(x) ̸= g(x). This implies that π(A) = 0 andˆ

A
(f(x)− g(x))dπ(x) = 0

=⇒
ˆ
Rd

(f(x)− g(x))dπ(x) = 0
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We now begin with our proof of the main result.

Proof. We will split the proof into two separate claims that will help us construct the proof of
γ = γK by equating its marginals iteratively. The first objective is to prove that the dth marginal
of γ (denoted by γd) is equal to that of γK (denoted by γdK). Secondly we will prove that the
conditional measure of (d− 1)th coordinate conditioned on (xd, yd) is also equal for γ and γK , i.e.

γ
(d−1)
(xd,yd)

= γ
(d−1)
(xd,yd),K

.

Claim: γd = γd
K.

First, by dividing each cϵ by λd(ϵ), we can insist that λd(ϵ) = 1 for all ϵ > 0. For each ϵ > 0,
Theorem 1.3 in Villani (2003) gives the existence of an optimal γϵ ∈ Π(µ, ν) for the Monge-
Kantorovich problem with cost function cϵ. Since Π(µ, ν) is sequentially compact in the topology
of weak convergence, up to considering a subsequence there is a γ ∈ Π(µ, ν) such that γϵ ⇀ γ. The
goal now is to show that γ = γK .

Since γK is a map that transports µ to ν, for all ϵ > 0 the optimality of γϵ with respect to cϵ
gives that

ˆ
cϵdγϵ ≤

ˆ
cϵdγK . (4)

As λk(ϵ)/λk+1(ϵ) → 0 as ϵ → 0, this implies that λk(ϵ) → 0 for all k ∈ {1, . . . , d − 1}. Also, since
both measure µ and ν are assumed to have bounded second moments, all measures π ∈ Π(µ, ν)
have bounded second moment. Let

´
|x− y|2dπ(x, y) ≤ M for a constant M . Notice that for any

i ∈ {1, . . . , d− 1},

λi(ϵ)

ˆ
|xi − yi|2dγϵ(x, y) ≤ λi(ϵ)

ˆ
|x− y|2dγϵ(x, y) ≤ λi(ϵ)M → 0

as ϵ → 0. Let c(d)(x, y) = |xd − yd|2, then it follows by the definition of weak convergence (along
with a limiting argument) that

´
c(d)dγϵ →

´
c(d)dγ. This then gives

ˆ
|xd − yd|2 dγ ≤

ˆ
|xd − yd|2 dγK .

Since each integral is just a function of (xd, yd), letting πd(x, y) = (xd, yd) this implies that

ˆ
|xd − yd|2 d(πd)#γ ≤

ˆ
|xd − yd|2 d(πd)#γK . (5)

However, since γ, γK ∈ Π(µ, ν) we have that (πd)#γ and (πd)#γK are both transport maps from µd
to νd. However, the construction of the KR map guarantees that (πd)#γK is the optimal transport
map. By the uniqueness of Brenier maps, (5) forces that (πd)#γ = (πd)#γK . We denote this
common measure γd.
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Claim: γ
(d−1)
(xd,yd)

= γ
(d−1)
(xd,yd),K

for γd-a.e. (xd, yd)

We now build off of this equality on the dth marginal to demonstrate equality of the joint distribu-
tions on the last two coordinates of γ and γK . As by construction (πd)#γK is the optimal transport
map of µd to νd with respect to quadratic cost, it follows for all ϵ > 0 that

ˆ
|xd − yd|2 d(πd)#γK(xd, yd) +

d−1∑
i=1

λi(ϵ)

ˆ
(xi − yi)

2dγϵ

≤
ˆ

|xd − yd|2 d(πd)#γϵ(xd, yd) +
d−1∑
i=1

λi(ϵ)

ˆ
(xi − yi)

2dγϵ

=

ˆ
cϵdγϵ

≤
ˆ
cϵdγK

=

ˆ
|xd − yd|2 d(πd)#γK(xd, yd) +

d−1∑
i=1

λi(ϵ)

ˆ
(xi − yi)

2dγK .

Getting rid of the
´
|xd − yd|2 d(πd)#γK(xd, yd) term from the first and last lines then gives

d−1∑
i=1

λi(ϵ)

ˆ
(xi − yi)

2dγϵ ≤
d−1∑
i=1

λi(ϵ)

ˆ
(xi − yi)

2dγK .

Dividing by λd−1(ϵ) and letting ϵ → 0, by the same limiting argument of the previous paragraph
we get that ˆ

|xd−1 − yd−1|2 dγ ≤
ˆ
|xd−1 − yd−1|2 dγK .

We define ρd−1(x, y) := ((xd−1, xd), (yd−1, yd)) and let γ(d−1) = (ρd−1)#γ, γ
(d−1)
K = (ρd−1)#γK be

the marginals on ((xd−1, xd), (yd−1, yd)). Note that both integrals depend only on xd−1 and yd−1

which allows us to write the following string of inequalitiesˆ
|xd−1 − yd−1|2 dγ(d−1) ≤

ˆ
|xd−1 − yd−1|2 dγ

(d−1)
Kˆ (ˆ

|xd−1 − yd−1|2 dγ
(d−1)
(xd,yd)

)
dγd(xd, yd) ≤

ˆ (ˆ
|xd−1 − yd−1|2 dγ

(d−1)
(xd,yd),K

)
dγdK(xd, yd)

Recall that (πd)#γ = (πd)#γK = γd, we can rewrite the previous inequality as

ˆ (ˆ
|xd−1 − yd−1|2 dγd−1

(xd,yd)
(xd−1, yd−1)

)
dγd(xd, yd) (6)

≤
ˆ (ˆ

|xd−1 − yd−1|2 dγd−1
(xd,yd),K

(xd−1, yd−1)

)
dγd(xd, yd)

(7)

The impulse here is to invoke the optimality and uniqueness of γd−1
(xd,yd),K

as in the previous para-

graph to finally claim that γd−1
(xd,yd)

= γd−1
(xd,yd),K

. However, to do so we must first verify that γd−1
(xd,yd)
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and γd−1
(xd,yd),K

have the same marginals. That is, we must verify that they are couplings with the
same source and target measures. Once proved that the two conditionals have similar marginals, we

can invoke the optimality of γ
(d−1)
(xd,yd),K

as it has been constructed to provide the optimal transport

from xd−1 to yd−1 once (xd, yd) is fixed. At this juncture inequality (6) poses a contradiction as

even though γ
(d−1)
(xd,yd),K

performs better than γ
(d−1)
(xd,yd)

for almost all (xd, yd), on average it seems like

γ
(d−1)
(xd,yd)

is not worse than γ
(d−1)
(xd,yd),K

. Thus the two results coincide for almost all (xd, yd). In light

of Lemma 1, for fixed (xd, yd) this means showing for all ϕ ∈ Cc(R) thatˆ
ϕ(xd−1)dγ

d−1
(xd,yd)

=

ˆ
ϕ(xd−1)dγ

d−1
(xd,yd),K

as well as ˆ
ϕ(yd−1)dγ

d−1
(xd,yd)

=

ˆ
ϕ(yd−1)dγ

d−1
(xd,yd),K

.

For the time being, we focus on ϕ being a functions of xd−1. Similar proof for yd−1 will follow. As
it will suffice to prove the equality for γd-a.e. (xd, yd), using Lemma 2, we can settle with proving
for all ψ ∈ Cc(R× R) thatˆ

ψ(xd, yd)

(ˆ
ϕ(xd−1)dγ

d−1
(xd,yd)

)
dγd(xd, yd) =

ˆ
ψ(xd, yd)

(ˆ
ϕ(xd−1)dγ

d−1
(xd,yd),K

)
dγd(xd, yd).

But this equality is equivalent toˆ
ψ(xd, yd)ϕ(xd−1)dγ

d−1 =

ˆ
ψ(xd, yd)ϕ(xd−1)dγ

d−1
K .

Recall that proving that γ
(d−1)
(xd,yd)

and γ
(d−1)
(xd,yd),K

have same marginals is equivalent to proving the
above expression for alll ϕ and ψ. A priori, we are considering an expression of three variables:
xd, yd, xd−1, and there may be differing correlation structure in γd−1 and γd−1

K that would cause the
above equality to not hold. However, we have previously shown that the projection of γd−1 and
γd−1
K onto (xd, yd) is the same measure: γd. Moreover, γd is given by a transport map yd = Td(xd).

Thus, ψ(xd, yd)ϕ(xd−1) is just a function of (xd−1, xd). We have that γd−1 and γd−1
K have the same

projection onto (xd−1, xd), namely the marginal of µ on (xd−1, xd). Thus, the above equality holds,
so by the Lemma 2, we have for γd-a.e. (xd, yd) that

´
ϕ(xd−1)dγ

d−1
(xd,yd)

=
´
ϕ(xd−1)dγ

d−1
(xd,yd),K

for

all ϕ ∈ Cc(R). By applying Lemma 1 we get that the marginals of γd−1
(xd,yd)

and γd−1
(xd,yd),K

on xd−1 are

equal. We conclude that the marginals of γd−1
(xd,yd)

and γd−1
(xd,yd),K

on yd−1 are equal by an analogous

argument. The main difference is that we must use the assumption (H-target) to get a Brenier map
xd = T−1

d (yd), but then the argument proceeds identically.

To summarize, we have shown that γd−1
(xd,yd)

and γd−1
(xd,yd),K

have the same marginals for γd-a.e.

(xd, yd). By the construction of the KR map, we then have for γd-a.e. (xd, yd) thatˆ
|xd−1 − yd−1|2 dγd−1

(xd,yd),K
(xd−1, yd−1)−

ˆ
|xd−1 − yd−1|2 dγd−1

(xd,yd)
(xd−1, yd−1) ≤ 0.

But rearranging (6) shows that integrating a nonpositive function results in a nonnegative value.
The only way this can occur is if for γd-a.e. (xd, yd) we haveˆ

|xd−1 − yd−1|2 dγd−1
(xd,yd),K

(xd−1, yd−1) =

ˆ
|xd−1 − yd−1|2 dγd−1

(xd,yd)
(xd−1, yd−1).

By the uniqueness of 1-dimensional optimal transport with quadratic cost, we then have for γd-a.e.
(xd, yd) that γ

d−1
(xd,yd),K

= γd−1
(xd,yd)

. In turn, this forces that γd−1 = γd−1
K .
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Claim: If γh = γh
K for 1 < h < d, then γh−1 = γh−1

K

We now proceed inductively. The essence of this argument is identical to that of the previous claim,
just with some additional notational bookkeeping. Using the optimality of (πk)#γK for k ≥ h and
(4), we can get the following inequalities∑
k≥h

ˆ
λk(ϵ)|xk − yk|2 d(πk)#γK(xk, yk) +

∑
k<h

λk(ϵ)

ˆ
(xk − yk)

2dγϵ(xk, yk)

≤
∑
k≥h

ˆ
|xk − yk|2 d(πk)#γϵ(xk, yk) +

∑
k<h

λk(ϵ)

ˆ
(xk − yk)

2dγϵ

=

ˆ
cϵdγϵ ≤

ˆ
cϵdγK

=
∑
k≥h

ˆ
|xk − yk|2 d(πk)#γK(xk, yk) +

∑
k<h

λk(ϵ)

ˆ
(xk − yk)

2dγK .

As before, by getting rid of the common terms, dividing by λh−1(ϵ), and passing to the limitˆ
c(h−1)dγ ≤

ˆ
c(h−1)dγK .

Again, we disintegrate the marginals γh−1 and γh−1
K in a sequence of conditionals until we finally

have the integral with respect to (xh−1, yh−1) through the measure γh−1
(xd:h,yd:h)

and γh−1
(xd:h,yd:h),K

. The
task of proving that these two conditional measures have same marginal distribution along xh−1

and yh−1 is achieved via the test functions of the form

ψ(xh, . . . , xd, yh, . . . , yd)ϕ(xh−1)

and
ψ(xh, . . . , xd, yh, . . . , yd)ϕ(yh−1) .

To apply the same trick in the first case, we replace the (yh, . . . , yd) variables by (TK(xh), . . . , TK(xd)).
In the other case, we need to invert the Knothe-Rosenblatt map which is straightforward as each
yk for k ∈ {h, . . . , d}, is a 1-d monotone transformation of xk conditioned on xk+1:d which have
already been calculated. As before, in the end we obtain that γh−1 = γh−1

K .
Using this recursive routine, we ultimately prove that γ = γK .
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