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Introduction

Makkuva et al. (2020) propose a minimax formulation for the Kantorovich duality problem under
Wasserstein-2 cost, eliminating the constraints in the Kantorovich duality by restricting search
to the set of of convex functions. They also provide a numerical scheme to learn the Kantorovich
potentials that involves learning two convex functions with the help of input convex neural networks
(ICNNs).

Preliminaries

Let P and Q be two probability distribution on Rd with finite second order moments. Throughout
this paper, we assume Q admits a density in Rd. The Monge optimal transportation problem is to
find a map transport probability mass under Q to P with the least amount of cost:

min
T :T#Q=P

1

2
EX∼Q∥X − T (X)∥2

where T#Q = P means T pushforwards Q to P , i.e., for any Borel subset B of Rd, Q(T−1(B)) =
P (B).

Kantorovich introduced a relaxation of the problem:

W 2
2 (P,Q) = inf

π∈Π(P,Q)

1

2
E(X,Y )∼π∥X − Y ∥2,

where Π(P,Q) stands for the set of all couplings whose marginal distributions are P and Q. The
optimal value of it is the 2-Wasserstein distanceW2(P,Q), and the coupling π reaching the infimum
is called the optimal coupling.

Kantorovich duality is a dual formulation for this problem:

W 2
2 (P,Q) = sup

f,g∈Φc

EP [f(X)] + EQ[g(Y )],

where Φc denotes the constrained space of functions, {(f, g) ∈ L1(P ) × L1(Q) : f(x) + g(y) ≤
1
2 ||x− y||

2
2,∀(x, y) dP ⊗ dQ a.e.}

By writing 1
2 ||x− y||

2
2 as 1

2 ||x||
2
2 +

1
2 ||y||

2
2 − ⟨x, y⟩, ΦC is equivalent to {(f, g) ∈ L1(P )×L1(Q) :

1
2 ||x||

2
2 − f(x) + 1

2 ||y||
2
2 − g(y) ≥ ⟨x, y⟩,∀(x, y) dP ⊗ dQ a.e.} Reparametrizing 1

2 || · ||
2 − f(·) and
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1
2 || · ||

2 − g(·) by ϕ, ψ, respectively, we yield

W 2
2 (P,Q) = sup

ϕ,ψ∈Φ̃c

EP [
1

2
||X||22 − ϕ(X)] + EQ[

1

2
||Y ||22 − ψ(Y )]

=
1

2
E[|X|2 + |Y |2]− inf

ϕ,ψ∈Φ̃c

{EP [ϕ(X)] + EQ[ψ(Y )]}

= CP,Q − inf
ϕ,ψ∈Φ̃c

{EP [ϕ(X)] + EQ[ψ(Y )]}

where CP,Q = 1
2E[|X|

2 + |Y |2] is independent of (ϕ, ψ), and Φ̃c = {(ϕ, ψ) ∈ L1(P ) × L1(Q) :

ϕ(x) + ψ(y) ≥ ⟨x, y⟩,∀(x, y) dP ⊗ dQ a.e.}
To keep notation consistent with Makkuva et al. (2020), we denote (f, g) for (ϕ, ψ):

W 2
2 (P,Q) = CP,Q − inf

f,g∈Φ̃c

{EP [f(X)] + EQ[g(Y )]}

where Φ̃c = {(f, g) ∈ L1(P )× L1(Q) : f(x) + g(y) ≥ ⟨x, y⟩,∀(x, y) dP ⊗ dQ a.e.}
Thanks to the double convexification trick ((Villani (2003), Theorem 2.9)), the constrained

optimization problem can be formulated as:

W 2
2 (P,Q) = CP,Q −

(
inf

f∈CVX(P )
EP [f(X)] + EQ[f∗(Y )]

)
(1)

where f∗(y) = supx{⟨x, y⟩ − f(x)} is the convex conjugate of convex function f(·). For a convex
and lower semicontinuous function f , the convex conjugate of its convex conjugate is itself (i.e.
f∗∗ = f). Additionally, another useful property of the convex conjugate in optimal transport is as
follows:

Theorem 1. (Villani (2003), Proposition 2.4) Let f be a proper lower semi-continuous convex
function on Rn. Then, for all x, y ∈ Rn,

⟨x, y⟩ = f(x) + f∗(y)⇔ y ∈ ∂f(x)⇔ x ∈ ∂f∗(y)

We let ∂f(x) and ∂f∗(y) denote subdifferentials. Namely, we have

∂f(x) := {y ∈ Rn : f(z) ≥ f(x) + ⟨y, z − x⟩ for all z ∈ Rn}.

Importantly, if f is differentiable at x, then ∂f(x) = {∇f(x)}.
The function pair (f, f∗) reaching the infimum in (1) is called Kantorovich potentials. Brenier’s

work provides a way to find the optimal solutions:

Theorem 2. (Villani (2003),Theorem 2.12) If Q admits a density with respect to the Lebesgue
measure on Rd, then there is a unique optimal coupling π for the primal problem under the Kan-
torovich’s formulation, π = (∇f∗× Id)#Q, and the convex pair (f, f∗) reaches the minimum in the
dual problem under the Kantorovich’s formulation. Moreover, ∇f∗ is the unique solution to Monge
transportation problem from Q to P.

Now we are ready to propose the main results of Makkuva et al. (2020), which transforms the
problem in (1) into a minimax problem.
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Main Results

Consistency

As Theorem 2 demonstrates, the problem of computing W 2
2 can be solved by considering the space

of convex functions. However, it also requires computing the convex conjugate. Makkuva et al.
(2020) overcome this limitation by instead introducing another convex function and transforming
the computation of W 2

2 into a minimax problem. The motivation for such a transformation is that
ICNNs are able to approximate any convex function over a compact domain with respect to the
supremum norm (Chen et al. (2018)). Thus, this formulation provides the theoretical foundation
for using ICNNs to learn W 2

2 distance and optimal transport maps. To be precise, Makkuva et al.
(2020) prove:

Theorem 3. (Makkuva et al. (2020), Theorem 3.3) Whenever Q admits a density in Rd, we have

W 2
2 (P,Q) = sup

f∈CVX(P ),
f∗∈L1(Q)

inf
g∈CVX(Q)

V(f, g) + CP,Q (2)

where VP,Q(f, g) is a functional of f, g defined as

VP,Q(f, g) = −EP [f(X)]− EQ[⟨Y,∇g(Y )⟩ − f(∇g(Y ))]. (3)

In addition, there exists an optimal pair (f0, g0) achieving the infimum and supremum respectively,
where ∇g0 is the optimal transport map from Q to P .

Proof. Let g ∈ CVX(Q) and f ∈ CVX(P ) with f∗ ∈ L1(Q), we will first establish that g and f∗

are differentiable Q-a.e. As
´
gdQ < ∞, we must have Q({g = ∞}) = 0. As Dom g = {g ̸= ∞},

this gives that Q(Dom g) = 1 and thus Q(Dom g) = 1. Since Dom g is a convex set, we have
m(∂Dom g) = 0 (Lang (1986)). As Q is given by a density, this gives that Q(∂Dom g) = 0. These
observations combine to give Q(IntDom g) = 1. Since a convex function is differentiable on the
interior of its domain (Chapter 2, Villani (2003)), we have that g is differentiable Q-a.e. As we
have insisted that f∗ ∈ L1(Q), it follows that f∗ is also differentiable Q-a.e.

As the union of two Q-null sets is still Q-null, we have for Q-a.e. y ∈ Rd that ∇g(y) exists and
f∗ is differentiable (so ∂f∗(y) = {∇f∗(y)}). Hence, by (1) we have for Q-a.e. y ∈ Rd that

⟨∇g(y), y⟩ − f(∇g(y)) ≤ ⟨∇f∗(y), y⟩ − f(∇f∗(y)) = f∗(y).

Taking expectation with respect to Q then gives

EQ[⟨∇g(Y ), Y ⟩ − f(∇g(Y ))] ≤ EQ[f∗(Y )]

with equality if and only if g = f∗. Hence, we have that

inf
g∈CVX(Q)

VP,Q(f, g) = inf
g∈CVX(Q)

−EP [f(X)]− EQ[⟨Y,∇g(Y )⟩ − f(∇g(Y ))]

= −EP [f(X)]− EQ[f∗(Y )].

This gives that

sup
f∈CVX(P ),
f∗∈L1(Q)

inf
g∈CVX(Q)

V(f, g) + CP,Q = sup
f∈CVX(P ),f∗∈L1(Q)

1

2
EP [X2] +

1

2
EQ[Y 2]− EP [f(X)]− EQ[f∗(Y )]

=W 2
2 (P,Q),

where the last equality follows from (1). In particular, we see that the optimal pair (f, f∗) from
Theorem 2 will be the optimal pair achieving the infimum and supremum respectively, and ∇f∗ is
indeed the optimal transport map from Q to P .
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Stability

For any pair (f, g), we define the minimization gap ϵ1 and maximization gap ϵ2 as follows:

ϵ1(f, g) = V(f, g)− inf
g̃∈CVX(Q)

V(f, g̃) (4)

ϵ2(f) = sup
f̃∈CVX(P )

{
inf

g̃∈CVX(Q)
V(f̃ , g̃)

}
− inf
g̃∈CVX(Q)

V(f, g̃) (5)

Theorem 4. (Makkuva et al. (2020), Theorem 3.6) In the optimization problem 2, suppose Q
admits a density and let ∇g0(·) denote the optimal transport map from Q to P . Then for any pair
(f, g) such that f is α-strongly convex, we have

||∇g −∇g0||2L2(Q) ≤
2

α

(
ϵ1(f, g) + ϵ2(f)

)
(6)

where ϵ1 and ϵ2 are defined in 4 and 5, respectively, and || · ||L2(Q) denotes the L
2-norm with respect

to measure Q.

When we solve the min-max problem in (2) up to a small error, ϵ1 can be interpreted as an error
of the minimum problem in the min-max problem (2), while ϵ2 can be interpreted as an error of
the maximum problem in it. Theorem 4 provides a bound of the error between ∇g and the optimal
transport map ∇g0, as a function of ϵ1 and ϵ2.

Proof. The proof of (6) follows from the bounds proved below

||∇g −∇f∗||2L2(Q) ≤
2

α
ϵ1(f, g) (7)

||∇f∗ −∇g0||2L2(Q) ≤
2

α
ϵ2(f) (8)

With the triangle inequality,

||∇g −∇g0||2L2(Q) ≤ ||∇g −∇f
∗||2L2(Q) + ||∇f

∗ −∇g0||2L2(Q) ≤
2

α

(
ϵ1(f, g) + ϵ2(f)

)
Before we prove those two bounds, we need to derive a useful lemma. Since f is α-strongly convex,
f∗ is 1

α smooth (by Kakade and Shalev-Shwartz (2009) Theorem 6), which means:

f∗(z) ≤ f∗(y) + ⟨∇f∗(y), z − y⟩+ 1

2α
||z − y||2, ∀y, z ∈ Rd.

Let hy(z) denote f
∗(y) + ⟨∇f∗(y), z− y⟩+ 1

2α ||z− y||
2, the right-hand side of the inequality. From

f∗(z) ≤ hy(z), it follows that the convex conjugate

f(x) = f∗∗(x) = sup
z
(⟨z, x⟩ − f∗(z)) ≥ sup

z
(⟨z, x⟩ − hy(z)) = h∗y(x) (9)

To obtain h∗y(x), we use the definition of the convex conjugate:

h∗y(x) = sup
z
(⟨z, x⟩ − hy(z))

= sup
z
(⟨z, x⟩ − f∗(y)− ⟨∇f∗(y), z − y⟩ − 1

2α
||z − y||2)

= sup
z
(⟨z, x⟩ − ⟨∇f∗(y), z⟩ − 1

2α
||z − y||2)− f∗(y)− ⟨∇f∗(y),−y⟩
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To find the supremum, we take the gradient:

0 = ∇z(⟨z, x⟩ − ⟨∇f∗(y), z⟩ −
1

2α
⟨(z − y), (z − y)⟩)

= x−∇f∗(y)− 1

α
(z − y)

This gives us z − y = αx− α∇f∗(y) or z = y + αx− α∇f∗(y). We fill them back into h∗y(x):

h∗y(x) = ⟨y + αx− α∇f∗(y), x⟩ − ⟨∇f∗(y), y + αx− α∇f∗(y)⟩

− 1

2α
||αx− α∇f∗(y)||2 − f∗(y)− ⟨∇f∗(y),−y⟩

= ⟨y, x⟩+ αx2 − α⟨∇f∗(y), x⟩ − ⟨∇f∗(y), y⟩ − α⟨∇f∗(y), x⟩+ α∇f∗(y)2

− α

2
||x−∇f∗(y)||2 − f∗(y)− ⟨∇f∗(y),−y⟩

= ⟨y, x⟩+ α||x−∇f∗(y)||2 − α

2
||x−∇f∗(y)||2 − f∗(y)

= ⟨y, x⟩+ α

2
||x−∇f∗(y)||2 − f∗(y)

With (9), we get:

f(x) ≥ ⟨y, x⟩+ α

2
||x−∇f∗(y)||2 − f∗(y)

f(x) + f∗(y)− ⟨y, x⟩ ≥ α

2
||x−∇f∗(y)||2 (10)

Now we are ready to prove the two bounds claimed at the beginning.

ϵ1(f, g) = V(f, g)− inf
g̃∈CVX(Q)

V(f, g̃)

= V(f, g)− V(f, f∗) (as proved in Theorem 3)

= −EP [f(X)]− EQ[⟨Y,∇g(Y )⟩ − f(∇g(Y ))] + EP [f(X)] + EQ[⟨Y,∇f∗(Y )⟩ − f(∇f∗(Y ))]

= −EQ[⟨Y,∇g(Y )⟩ − f(∇g(Y ))] + EQ[⟨Y,∇f∗(Y )⟩ − f(∇f∗(Y ))]

= −EQ[⟨Y,∇g(Y )⟩ − f(∇g(Y ))] + EQ[f∗(Y )] (by Theorem 1)

= EQ[f(∇g(Y )) + f∗(Y )− ⟨Y,∇g(Y )⟩]

≥ α

2
EQ[||∇g(Y )−∇f∗(Y )||2] (by 10, with x = ∇g(y))

Let (f0, f
∗
0 ) denotes the optimal pair achieving the infimum and supremum in problem 2. Then

ϵ2(f) = sup
f̃∈CVX(P )

{
inf

g̃∈CVX(Q)
V(f̃ , g̃)

}
− inf
g̃∈CVX(Q)

V(f, g̃)

= V(f0, f∗0 )− inf
g̃∈CVX(Q)

V(f, g̃)

= V(f0, f∗0 )− V(f, f∗) (by Theorem 3)

= −EP [f0(X)]− EQ[⟨Y,∇f∗0 (Y )⟩ − f0(∇f∗0 (Y ))] + EP [f(X)] + EQ[⟨Y,∇f∗(Y )⟩ − f(∇f∗(Y ))]

= −EP [f0(X)]− EQ[f∗0 (Y )] + EP [f(X)] + EQ[f∗(Y )] (by Theorem 1)

= −EQ[f0(∇f∗0 (Y ))]− EQ[f∗0 (Y )] + EQ[f(∇f∗0 (Y ))] + EQ[f∗(Y )] (∇f∗0 (·) pushforwards from Q to P )

= −EQ[⟨Y,∇f∗0 (Y )⟩] + EQ[f(∇f∗0 (Y ))] + EQ[f∗(Y )] (by Theorem 1)

= EQ[f(∇f∗0 (Y )) + f∗(Y )− ⟨Y,∇f∗0 (Y )⟩]

≥ α

2
EQ[||Y −∇f∗0 (Y )||2] (by 10, with x = ∇f∗0 (y))

With these two bounds and the triangle inequality at the beginning, we finish the proof.
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Algorithm

Makkuva et al. (2020) parametrizes the convex function f , g using the same ICNN architecture.
For θf , they enforce all weights Wl’s to be non-negative, as maximization over g can be unbounded
whenever f is non-convex. However, for θg, any function g ∈ L1(Q) reaching the infimum in the
problem 2 equals f∗ and is convex, so they relax the non-negative constraint on the weights and
introduce a regularization term instead:

R(θg) = λ
∑
Wl∈θg

||max(Wl, 0)||2F

where λ > 0 is a regularization constant. Empirically, it is observed that this relaxation makes it
converge faster.

The objective for optimization is an empirical counterpart of 2:

max
θf :Wl≥0,∀l∈[L−1]

min
θg

J(θf , θg) +R(θg) (11)

where

J(θf , θg) =
1

M

M∑
i=1

{f(∇g(Yi))− ⟨Yi,∇(Yi)⟩ − f(Xi)}

The algorithm is summarized below:

Algorithm 1: Algorithm: the numerical procedure to solve the optimization (11)

Input: Source distribution Q, Target distribution P, Batch size M, Generator iterations K,
Total iterations T

1 for t=1,...,T do
2 Sample batch {Xi}Mi=1 ∼ P
3 for k = 1,...K do
4 Sample batch {Yi}Mi=1 ∼ Q
5 Update θg to minimize (11) using Adam

6 end
7 Update θf to maximize (11) using Adam

8 Projection: w ← max(w, 0), for all w ∈ {W l} ∈ θf
9 end

10 return: optimizer θ∗f , θ
∗
g , optimal transport ∇(gθ∗g )

Experimental Results

To illustrate the strength of the algorithm proposed in the previous section, Makkuva et al. (2020)
compare their method to other standard algorithms that learn optimal transport maps, namely
Barycentric OT, W1-LP, and W2GAN. The there are two main benefits to the approach of Makkuva
et al. (2020) when compared to these methods

(1) Ability to learn discontinuous maps

(2) Robustness of learned maps to initialization
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Figure 1: From Makkuva et al. (2020), behavior of proposed algorithm on “checkerboard” data set

Figure 2: From Makkuva et al. (2020), the transport maps learned under different approaches for
“checkerboard” data set (top row) and mixture of eight Gaussians (bottom rows)

These feature are readily apparent in Figure 1, in which Makkuva et al. (2020) apply their
algorithm to a “checkerboard” data set. We note that the support of both the source and target
distributions of these data sets can be given by a disjoint union of sets with sharp boundaries.
Panel (b) shows that the algorithm is indeed effective at learning a good transportation map, and
the vertical tangents in panel (c) show that the learned map is discontinuous.

To show the desirability of these features and how they are not present in other approaches,
Makkuva et al. (2020) perform several experiments. We will now summarize the experimental setup
that led to these observations.

Discontinuities

We recall that the method of Makkuva et al. (2020) computes the optimal transport map by taking
the gradient of a convex function. This differentiation steps allows for the possibility of obtaining
discontinuous maps (for example, consider differentiating ReLU). This trait is desirable as optimal
transport maps may often have to be discontinuous, such as if the target or source distribution is
supported on disjoint separated sets. To see that this method learns discontinuous maps in practice,
Makkuva et al. (2020) applied their algorithm and three others to two data sets: a “checkerboard
data set” and a mixture of eight Gaussians. The learned maps are shown in Figure 2.

In Figure 2, the image of the source samples under the learned map are shown in red. In this
case, it is clear that in both tasks the algorithm of Makkuva et al. (2020) had superior performance
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Figure 3: From Makkuva et al. (2020), transport maps learned by different approaches under
different initializations

to the other approaches. This is due precisely to the algorithm’s ability to learn discontinuous
maps, as an optimal transport map in both situations would have to be discontinuous due to the
disjoint structure of the support of at least one of the target or source distributions. Moreover,
the forced continuity in the other three methods is made apparent by the relative abundance of
“trailing points” in panels (a)-(c) compared to panel (d).

Robustness to Initialization

Another benefit of the algorithm proposed by Makkuva et al. (2020) is that the optimal transport
map learned is robust to the initialization of the ICNN. Other methods based on generative adver-
sarial networks (GANs), such as W2GAN and W1-LP, only use the optimal transport metric as a
distance. Thus, the transport maps learned from these methods are sensitive to intialization. This
behavior is shown in Figure 3, where under different initializations both W1-LP and W2GAN learn
very different mappings.
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