The Expressive Power of a Class of Normalizing Flow Models

Medha Agarwal and Garrett Mulcahy

October 25, 2022

UNIVERSITY of WASHINGTON

< (17) × <

Estimating KR maps using input convex neural networks

2 Motivation for studying expressive power

3 Problem Setup

- (4) Proof of Universal Approximation Results, d = 1
 - General Smooth Non-linearity
 - ReLU Non-linearity
- **(5)** Universal Approximation Results, d > 1

6 References

A (10) A (10)

Estimating KR maps using input convex neural networks

æ

Setup

- The goal is to describe a function class \mathcal{F} such that for each $T \in \mathcal{F}$, T^j is a function of $x_{1:j}$ and is a monotonically increasing function of x_j .
- Let each $T \in \mathcal{F}$ be indexed by its model parameters θ s.t. $\forall \theta \in \Theta, T(\theta) \in \mathcal{F}$.
- Then the optimization objective as a function of model parameters is

$$KL(\theta) = -\frac{1}{n} \sum_{j=1}^{n} \left(\log q \circ T(\theta)(\mathbf{x}_j) + \sum_{i=1}^{d} \log(\nabla T(\theta))_i(\mathbf{x}_j) \right).$$
(1)

• Now, since $T(\theta)$ is a triangular map, it can be expressed as

$$S(\theta)(\mathbf{x}) = \left(T^{1}(x_{1}), T^{2}(x_{1:2}), \dots, T^{j}(x_{1:j}), \dots, T^{d}(\mathbf{x})\right)^{T}.$$

Input Convex Neural Network

- Input convex neural networks (ICNN) proposed by Amos et al. (2017) are scalar-valued neural networks $f(x, y; \theta)$ with inputs x and y, and are defined by the model parameters θ .
- $f(x, y; \theta)$ is a convex function of y.
- Now each component T^j can be modelled as the partial derivative (in *j*th input) of a partial ICNN which takes as input $x_{1:j}$ and is convex in the input x_j .
- That is, if $f^{j}(x_{1:j-1}, x_{j}; \theta_{j})$ is the PICNN convex in x_{j} , then

$$T^{j}(x_{1:j}) \coloneqq x_{j} + \frac{\partial f^{j}(x_{j}, x_{1:j-1}; \theta^{j})}{\partial x_{j}}.$$

• This implies that $\theta = (\theta_1, \ldots, \theta_d)$ fully parameterizes the KR map, though some constraints need to be imposed on Θ that we will discuss in next slide.

Input Convex Neural Network

- PICNN $f(x, y; \theta)$ is described by two set of hidden layers $\{u_i\}_{i=1}^k$ and $\{z_i\}_{i=1}^k$ that correspond to the x-path and y-path respectively.
- The architecture of a $K\mbox{-layer PICNN}$ is given by the following following recurring hidden units

$$\begin{split} u_{i+1} &= \tilde{g}_i (\tilde{W}_i u_i + \tilde{b}_i) \\ z_{i+1} &= g_i \left(W_i^{(z)} \left(z_i \circ [W_i^{(zu)} u_i + b_i^{(zu)}] \right) + W_i^{(y)} \left(y \circ [W_i^{(yu)} u_i + b_i^{(yu)}] \right) + \\ & W_i^{(u)} u_i + b_i \,, \end{split}$$

where \tilde{g}_i and g_i are non-linear activation functions. The final scalar-valued output of the PICNN is $f(x, y; \theta) = z_K$.

Training

Proposition 1, Amos et al. (2017)

The function f is convex in y provided that all $\{W_i^{(z)}\}_{i=1}^{k-1}$ are non-negative, and all functions \tilde{g}_i are convex and non-decreasing.

- The proof follows the simple idea that the convex combinations and compositions of convex functions is also convex.
- To ensure that f^j is a convex function of x_j , we need to constrain all its entries of $W^{(z)}$ to be non-negative.
- The learning process optimizes the parameters θ such that $KL(\theta)$ from (1) is minimized.
- A regularization term is added to ensure that the $W^{(z)}$ weight matrix entries for all layers of all d PICNN is positive giving

$$-\frac{1}{n}\sum_{i=1}^{n}\left(\log g \circ T(\theta)(\mathbf{x}_{i}) + \sum_{j=1}^{d}\log(\nabla T(\theta))_{j}(\mathbf{x}_{i})\right) + \lambda\sum_{j=1}^{d}\sum_{k=1}^{K}\|\max(-(W_{j})_{k}^{(z)}, 0)\|_{F}^{2}$$
(2)

October 25, 2022

7/42

where λ is the regularization tuning parameter.

Motivation for studying expressive power

æ

Motivation

Universality

- Universal approximation results are often asymptotic in nature and prove to be of little help in practice.
- Careful analysis of expressive power is required as a function of problem dimension and desired accuracy [see Lu et al. (2017), Lin and Jegelka (2018) for neural networks].

Invertibility

- Analyzing expressive power of the subset of invertible functions in \mathcal{F} is a different problem than analyzing \mathcal{F} . Let $\mathcal{C} := \{f \in \mathcal{F} : f^{-1} \text{exits}\}.$
 - ▶ If \mathcal{F} is a universal approximator $\implies \mathcal{C}$ can transform between any two distributions.
 - ▶ If \mathcal{F} has limited expressivity $\implies \mathcal{C}$ cannot transform between any two distributions.

Problem Setup

			October
--	--	--	---------

æ

(日) (四) (三) (三)

Problem Setup

Figure: Normalizing Flow Schematic Diagram

11/42

・ロト ・日下・ ・ヨト

Notations

- Let μ, ν be probability measures on \mathbb{R}^d with Lebesgue densities p and q, respectively.
- We call μ and p the target measure/density, ν and q that reference measure/density
- Unlike previous notation, Kong and Chaudhuri (2020) construct flow that transports q to p, we seek f such that i.e. $f_{\#}q = p$.
- Using change of variable formula

$$p(x) = \frac{q(f^{-1}(x))}{\left|\det J_f(f^{-1}(x))\right|} \Leftrightarrow q(x) = p(f(x))\left|\det J_f(x)\right|$$

Sylvester Flows

Given a positive integer m < d, $A \in \mathbb{R}^{d \times m}$, $B \in \mathbb{R}^{d \times m}$, $b \in \mathbb{R}^m$, $h : \mathbb{R} \to \mathbb{R}$, define **Sylvester flow** $T_{syl} : \mathbb{R}^d \to \mathbb{R}^d$ by

$$T_{syl}(z) = z + Ah(B^T z + b).$$

We compute

$$J_{T_{syl}}(z) = \mathrm{Id}_d + A\mathrm{diag}(h'(B^T z + b))B^T,$$

By Sylvester's determinant identity (Kobyzev et al. (2020)), we get that

$$\det J_{T_{syl}}(z) = \det(\mathrm{Id}_d + A\mathrm{diag}(h'(B^T z + b))B^T)$$
$$= \det(\mathrm{Id}_m + \mathrm{diag}(h'(B^T z + b))B^T A).$$

Proof of Universal Approximation Results, d = 1

イロト イヨト イヨト イヨト

æ

General Universal Approximation

Theorem 3.1, Kong and Chaudhuri (2020)

Let p, q be densities on \mathbb{R} such that p is supported on a finite union of intervals and **supp** $q = \mathbb{R}$. Then, for any $\epsilon > 0$, there exists a planar flow f_{pf} such that $||(f_{pf})_{\#}q - p||_1 \leq \epsilon$.

Steps:

- (1) Approx p with \tilde{p} in L^1 such that supp $\tilde{p} = \mathbb{R}$.
- (2) We ensure that $\tilde{p} \approx p$ on supp p and $\tilde{p} \approx 0$ on supp p.
- (3) Find f_{pf} such that $(f_{pf})_{\#}q = \tilde{p}$. This gives

$$\|(f_{pf})_{\#}q - p\|_{1} \le \|(f_{pf})_{\#}q - \tilde{p}\|_{1} + \|\tilde{p} - p\|_{1}$$
$$= \|\tilde{p} - p\|_{1}$$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our goal is the following construction

Figure: Approx of p with \tilde{p} such that $\mathbf{supp}\ \tilde{p} = \mathbb{R}$

16/42

- WLOG insist supp $p = \bigcup_{j=1}^{n} (l_i, r_i)$ with $-\infty < l_i < r_i < \infty$ for all i
- Set cutoff height as

$$\Delta = \frac{2}{\sum_{j=1}^{n} r_i - l_i}$$

- Let $m(\Delta)$ be the measure of the set of points x such that $p(x) \ge \Delta$.
- Then observe

$$1 = \int p(x)dx = \int_{m(\Delta)} p(x)dx + \int_{m(\Delta)^C} p(x)dx$$
$$\geq \int_{m(\Delta)} p(x)dx$$
$$\geq \Delta m(\Delta)$$
$$\implies m(\Delta) \leq \frac{1}{\Delta}$$

• Define

$$\gamma = \int_{\{0 < p(x) < \Delta\}} p(x) dz \le 1$$

Now we will construct a \tilde{p} that is supported on \mathbb{R} but approximates p up to ϵ error. Let $\epsilon > 0$, define \tilde{p} as

• If
$$p(x) \ge \Delta$$
, set $\tilde{p}(x) = p(x)$

• If
$$0 < p(x) < \Delta$$
, set $\tilde{p}(x) = \left(1 - \frac{\epsilon}{2}\right) p(x)$

• If
$$x \in [r_i, l_{i+1}]$$
 then $\tilde{p}(x) = \frac{\epsilon \gamma}{2n(l_{i+1} - r_i)}$

• If $x \leq l_1$ or $x \geq r_n$, let \tilde{p} be the tail of a Gaussian that integrates to $\frac{\epsilon \gamma}{4n}$

Is \tilde{p} a distribution?

$$\begin{split} \|\tilde{p}\|_1 &= \int_{\{p(x) \ge \Delta\}} p(x) + \int_{\{0 < p(x) < \Delta\}} \left(1 - \frac{\epsilon}{2}\right) p(x) + \int_{\{p(x) = 0\}} \tilde{p}(x) \\ &= \left(1 - \frac{\epsilon}{2}\right) + \frac{\epsilon}{2} \int_{\{p(x) \ge \Delta\}} p(x) + \sum_{i=1}^{n-1} \frac{\epsilon \gamma}{2n(l_{i+1} - r_i)} (l_{i+1} - r_i) + 2\left(\frac{\epsilon \gamma}{4n}\right) \\ &= \left(1 - \frac{\epsilon}{2}\right) + \frac{\epsilon}{2} (1 - \gamma) + \frac{\epsilon \gamma(n-1)}{2n} + \frac{\epsilon \gamma}{2n} \\ &= 1. \end{split}$$

Does \tilde{p} approx p in L^1 ?

$$\begin{split} \|p - \tilde{p}\|_{1} &= \int_{\{p(x) \ge \Delta\}} |p - \tilde{p}| + \int_{\{0 < p(x) < \Delta\}} |p - \tilde{p}| + \int_{\{p(x) = 0\}} |p - \tilde{p}| \\ &= \int_{\{0 < p(x) < \Delta\}} |p - \tilde{p}| + \int_{\{p(x) = 0\}} \tilde{p} \\ &= \frac{\epsilon}{2} \int_{0 < \gamma < \Delta} p + \sum_{j=1}^{n-1} \frac{\epsilon \gamma}{2n(l_{i+1} - r_i)} (l_{i+1} - r_i) + 2\left(\frac{\epsilon \gamma}{4n}\right) \\ &= \frac{\gamma \epsilon}{2} + \frac{\epsilon \gamma(n-1)}{2n} + \frac{\epsilon \gamma}{2n} \\ &= \gamma \epsilon \\ &\leq \epsilon. \end{split}$$

æ

Exact Planar Flow

- We have \tilde{p}, q with supp $\tilde{p} =$ supp $q = \mathbb{R}$
- Let $\Phi_{\tilde{p}}, \Phi_q$ denote distribution functions of \tilde{p}, q (resp)
- Set $f = \Phi_{\tilde{p}}^{-1} \circ \Phi_q$, which is continuous on \mathbb{R}
- Via argument from Week 2, f transports q to p
- Let h(z) = f(z) z, then

$$f_{pf}(z) = z + h(1 \cdot z + 0)$$

Proof of Theorem 3.1

Lemma A.1, Possible Transformations (single flow)

If p and q are densities on R supported on n non-intersecting intervals:

$$\mathbf{supp} \ p = \bigcup_{i=1}^{n} (l_{i}^{(p)}, r_{i}^{(p)}) \quad \text{ and } \quad \mathbf{supp} \ q = \bigcup_{i=1}^{n} (l_{i}^{(q)}, r_{i}^{(q)})$$

and if $\Phi_q(r_i^{(q)}) = \Phi_p(r_i^{(p)})$ for all i = 1, ..., n, then there exists a planar flow f such that $f_{\#}q = p$, a.e.

Picture proof!

ReLU Universal Approximation

Theorem 3.2, Universal Approximation

Let p be a density on \mathbb{R} supported on a finite union of intervals. Then, for any $\epsilon > 0$, there exists a flow f composed of finitely many ReLU planar flows and a Gaussian distribution $q_{\mathcal{N}}$ such that $\|f_{\#}q_{\mathcal{N}} - p\|_1 \leq \epsilon$.

22/42

Some definitions

Some definitions first:

Definition A.2, Piecewise Distributions in \mathcal{C}

Let C_0 be the set of distributions with continuous densities. Suppose $C \subset C_0$, then we define $\mathcal{PW}(n, C)$ to be the set of all distributions p on \mathbb{R} satisfying: there exists real numbers $-\infty = t_0 < t_1 < \ldots, < t_{n-1} < t_n = \infty$ such that for any $i = 1, \ldots, n$, on the *i*th interval $\{t_{i-1}, t_i\}$, p is equal to some distribution $p_i \in C$. For conciseness, we say p is described by $\{p_{i+1}, t_i\}_{i=0}^{n-1}$. We define $\mathcal{PW}(n) = \mathcal{PW}(n, C_0)$. If n' > n, then $\mathcal{PW}(n) \subset \mathcal{PW}(n')$.

Figure: PW(6, C) where C is Gaussian probability distributions

				-	
	0	ctober 2	25, 2022		23

Some definitions

Definition A.3, Piecewise Gaussian Distributions

Let \mathcal{G} be the set of Gaussian distributions $\{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma > 0\}$. We define the set of piecewise Gaussian distributions to be $\mathcal{PW}(n, \mathcal{G})$.

Figure: $PW(4,\mathcal{G})$ where \mathcal{G} is Gaussian probability distributions

24/42

< 17 > <

Some definitions

Definition A.4, Tail-consistency

Suppose $p \in \mathcal{PW}(n)$ is described by $\{p_i, t_i\}_{i=0}^{n-1}$. We say p is tail-consistent w.r.t. t_k if

$$\sum_{i=1}^{k} \int_{t_{i-1}}^{t_i} p_i(z) dz + \int_{t_k} p_{k+1}(z) dz = 1.$$

If p is tail-consistent w.r.t. t_k for any $k = 1, \ldots, n-1$, we say p is tail-consistent.

Figure: Tail-consistent PWG w.r.t. t_2

Sketch

We want f composed of finitely many planar flows such that $||(f_{\#})q_{\mathcal{N}} - p||_1 \leq \epsilon$

- (1) There exists q_{pwc} such that $||p q_{pwc}||_1 \le \epsilon/2$ (Lin and Jegelka, 2018)
- (2) There exists tail-consistent $q_{pwg} \in \mathcal{PW}(n,\mathcal{G})$ such that $\|q_{pwg} q_{pwc}\|_1 \le \epsilon/2$
- (3) There exists a flow f as previously described such that $q_{pwg} = (f_{\#})q_{\mathcal{N}}$

Technical Lemma (Inductive Step)

Lemma A.2, Possible Transformations (single flow)

Let $p, q \in \mathcal{PW}(n, \mathcal{G})$ where p is given by $\{p_{i+1}, t_i\}_{i=0}^{n-1}$, q is given by $\{q_{i+1}, t_i\}_{i=0}^{n-1}$ and $p_i = q_i$ for i < n. Then there exists a ReLU planar flow f such that $f_{\#}q = p$.

Idea: Select parameters so that flow is constant on $(-\infty, t_{n-1}]$ and shifts/scales appropriately on $[t_n, \infty)$ We have p(y) = q(y) for $y < t_{n-1}$. Now, on $[t_{n-1}, \infty)$ assume $q \sim \mathcal{N}(\mu_n, \sigma_n^2)$ and $p \sim \mathcal{N}(\hat{\mu}, \hat{\sigma}^2)$. Let f be a ReLU planar flow

$$f(z) = z + uh(wz + b)$$

with $u = \operatorname{sgn}(\hat{\sigma} - \sigma_n), w = \left|1 - \frac{\hat{\sigma}}{\sigma_n}\right|, b = -wt_{n-1}$. Observe

$$f(z) = z + \left(\frac{\hat{\sigma}}{\sigma_n} - 1\right) h(z - t_{n-1}) = \begin{cases} z & \text{if } z \le t_{n-1} \\ \frac{\hat{\sigma}}{\sigma_n} z + \left(\frac{\hat{\sigma}}{\sigma_n} - 1\right) t_{n-1} & \text{if } z > t_{n-1} \end{cases}$$

(D) (A) (A) (A) (A)

Technical Lemma

We compute

$$f^{-1}(y) = \left\{ \frac{\sigma_n}{\hat{\sigma}} y - \left(1 - \frac{\sigma_n}{\hat{\sigma}}\right) t_{n-1} \quad \text{if } y > t_{n-1} \right\}$$

which gives

$$\det J_{f^{-1}}(y) = \begin{cases} \frac{\sigma_n}{\hat{\sigma}} & \text{if } y > t_{n-1} \end{cases}$$

For $y > t_{n-1}$

$$(f_{\#}q) = q(f^{-1}(y)) \left| \det J_{f^{-1}}(y) \right|$$
$$= \frac{\sigma_n}{\hat{\sigma}} \mathcal{N}\left(\frac{\sigma_n}{\hat{\sigma}}y - \left(1 - \frac{\sigma_n}{\hat{\sigma}}\right)t_{n-1}; \mu_n, \sigma_n^2\right)$$
$$= \mathcal{N}(y; \tilde{\mu}, \hat{\sigma}^2)$$

We get on $[t_{n+1}, \infty)$ that $f_{\#}q \sim \mathcal{N}(\tilde{\mu}, \hat{\sigma}^2)$ for some $\tilde{\mu}$. But since

$$\int_{t_{n-1}}^{\infty} \mathcal{N}(\tilde{\mu}, \hat{\sigma}^2) = \int_{t_{n-1}}^{\infty} \mathcal{N}(\hat{\mu}, \hat{\sigma}^2),$$

so $\tilde{\mu} = \hat{\mu}$ as desired.

28 / 42

Transport \mathcal{N} to $\mathcal{PW}(n, \mathcal{G})$

Lemma A.3, Possible Transformations (flows)

Let $p \in \mathcal{PW}(n, \mathcal{G})$, if p is tail-consistent, then there exists n-1 ReLU planar flows $\{f_t\}_{t=1}^{n-1}$ and a Gaussian distribution q_N such that $(f_{n-1} \circ \cdots \circ f_1)_{\#} q_N = p$.

Proceed by induction on n.

Case n = 1: p is a Gaussian, so pick $q_{\mathcal{N}} = p$. $n \implies (n+1)$ For $p = \{p_{i+1}, t_i\}_{i=0}^n \in \mathcal{PW}(n+1, \mathcal{G})$ set $p' = \{p_{i+1}, t_i\}_{i=0}^{n-1} \in \mathcal{PW}(n, \mathcal{G})$ by tail-consistency. IH gives f_1, \ldots, f_{n-1} and $q_{\mathcal{N}}$ such that

$$(f_{n-1}\circ\cdots\circ f_1)_{\#}q_{\mathcal{N}}=p'$$

Notice that p' and p only differ in $[t_n, \infty)$. Using Lemma A.2 gives f_n such that $(f_n)_{\#}p' = p$. Then $\{f_t\}_{t=1}^n$ is as desired.

・ロト ・ 同ト ・ ヨト ・ ヨト

Approx by $\mathcal{PW}(n,\mathcal{G})$

Lemma A.4

Given any piecewise constant distribution q_{pwc} supported on a finite union of compact intervals, for all $\epsilon > 0$ there exists a tail-consistent piecewise Gaussian distribution q_{pwg} such that $||q_{pwc} - q_{pwg}||_1 \leq \epsilon$.

Picture construction of piecewise Gaussian approximation

Figure: Piecewise Gaussian approximation of piecewise uniform

Issues with Lemma A.4

- Proof is incorrect as the piecewise-Gaussian approximation of the piece-wise constant density is not "tail consistent".
- Tail consistency condition: consider the *i*th interval $[t, t + \delta_i]$, the Gaussian $\mathcal{N}(\mu, \sigma^2)$ in this interval should satisfy

$$\int_{t}^{\infty} \mathcal{N}(x;\mu,\sigma^{2}) dx = \left(1 - \frac{2\epsilon}{3}\right) \int_{t}^{\infty} q_{pwc}(x) dx$$

• Tail consistency not satisfied at the base case. If $t = t_{-}$ and $\delta_i = t_{+} - t_{-}$, then

$$\int_{t_{-}}^{\infty} \mathcal{N}(x;\mu,\sigma^2) dx = \left(1 - \frac{2\epsilon}{3}\right)$$

- Remedy not immediate
- Lemma A.3 requires tail consistency to construct f such that $f_{\#}q_{\mathcal{N}} = p_{pwg}$.

(D) (A) (A) (A) (A)

Universal Approximation Results, d>1

University of Washington	Octo
--------------------------	------

æ

Structure of Arguments

Kong and Chaudhuri (2020) prove several non-approximation results using the following structure

- (1) Establish a "topology matching condition"
- (2) Exploit structure of flow to demonstrate some degenerate Jacobian structure
- (3) Use (1) and (2) to show that if $p = f_{\#}q$ then p must be similar to q

・ロト ・ 同ト ・ ヨト ・ ヨト

Topology Matching Condition

Planar Flow Topology Matching

Suppose distribution q is defined on \mathbb{R}^d and a Sylvester flow on \mathbb{R}^d has tangent matrix B and smooth non-linearity. Let $p = f_{\#}q$. Then for all $z \in \mathbb{R}^d$ we have

 $\nabla_z \log p(f(z)) - \nabla_z \log q(z) \in \operatorname{span}(B).$

We have $f(z) = z + Ah(B^T z + b)$. Let $\alpha \in \mathbb{R}$ and $w \in \text{span}\{B\}^{\perp}$, then

$$f(z + \alpha w) = z + \alpha w + h(B^T z + \alpha B^T w + b)$$

= $z + \alpha w + h(B^T z + b)$
= $f(z) + \alpha w$.

This gives

$$\det J_f(z) = \det J_f(z + \alpha w)$$

Topology Matching Condition

By change of variable formula for pushfowards,

$$\log p(f(z)) = \log q(z) - \log \det J_f(z)$$
$$\log p(f(z + \alpha w)) = \log(q(z + \alpha w)) - \log \det J_f(z + \alpha w).$$

Subtracting and dividing by α gives

$$\frac{\log p(f(z) + \alpha w) - \log p(f(z))}{\alpha} = \frac{\log q(z + \alpha w) - \log q(z)}{\alpha}$$

Letting $\alpha \to 0$ gives

$$(\nabla_z \log p(f(z))) \cdot w = (\nabla_z \log q(z)) \cdot w$$
$$(\nabla_z \log p(f(z)) - \nabla_z \log q(z)) \cdot w = 0.$$

As this holds for all $w \in \operatorname{span}(B)^{\perp}$, we have that

$$\nabla_z \log p(f(z)) - \nabla_z \log q(z) \in \left(\operatorname{span}(B)^{\perp}\right)^{\perp} = \operatorname{span}(B).$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Planar Flow cannot map Gaussian to Gaussian

Planar Flow cannot map $\mathcal{N} \to \mathcal{N}$

Let $p \sim \mathcal{N}(0, \Sigma_p)$, $q \sim \mathcal{N}(0, \Sigma_q)$ be two Gaussian distributions on \mathbb{R}^d . If there exists a planar flow f on \mathbb{R}^d with smooth non-linearity such that $p = f_{\#}q$, then rank $(\Sigma_q - \Sigma_p) \leq 1$.

Planar flow has form $f(z) = z + uh(w^T z + b)$, so by topology matching condition

$$\nabla_z \log p(f(z)) - \nabla_z \log q(z) \in \operatorname{span}\{w\}$$

Since $p(z) \propto \exp\left(-\frac{1}{2}z^T \Sigma_p^{-1}z\right)$, using change of variables formula $\log p(z) = -\frac{1}{2}z^T \Sigma_p^{-1}z - C$

and thus

$$\nabla_z \log p(f(z)) = -\Sigma_p^{-1} f(z)$$
$$\nabla_z \log q(z) = -\Sigma_q^{-1} z.$$

For all $w^{\perp} \in \operatorname{span}\{w\}^{\perp}$ we have

$$f(z)^T \Sigma_p^{-1} w^\perp = z^T \Sigma_q^{-1} w^\perp$$

Planar Flow cannot map Gaussian to Gaussian

Since $f(z) - z = h(w^T z + b)u$ we get $z^T (\Sigma_q^{-1} - \Sigma_p^{-1})w^{\perp} = h(w^T z + b)u^T \Sigma_p^{-1} w^{\perp}$

Setting z = 0 gives

$$h(b)u^T \Sigma_p^{-1} w^{\perp} = 0.$$

Setting $z = w^{\perp}$ gives

$$(w^{\perp})^{T} (\Sigma_{q}^{-1} - \Sigma_{p}^{-1}) w^{\perp} = h(w^{T}w^{\perp} + b)u^{T}\Sigma_{p}^{-1}w^{\perp}$$

= $h(b)u^{T}\Sigma_{p}^{-1}w^{\perp}$
= 0.

Thus for all $w \in \operatorname{span}\{w\}^{\perp}$

$$(w^{\perp})^T (\Sigma_q^{-1} - \Sigma_p^{-1}) w^{\perp} = 0.$$

Planar Flow cannot map Gaussian to Gaussian

It remains to consider $w^T (\Sigma_q^{-1} - \Sigma_p^{-1}) w$

- If $w^T (\Sigma_q^{-1} \Sigma_p^{-1}) w = 0$ then $\Sigma_q^{-1} = \Sigma_p^{-1}$
- If $w^T (\Sigma_q^{-1} \Sigma_p^{-1}) w < 0$, repeat next analysis with $\Sigma_p^{-1} \Sigma_q^{-1}$
- If $w^T (\Sigma_q^{-1} \Sigma_p^{-1}) w > 0$, then $\Sigma_q^{-1} \Sigma_p^{-1}$ is PSD and we can write

$$\Sigma_q^{-1} - \Sigma_p^{-1} = Q^T \Lambda Q$$

For all $w^{\perp} \in \operatorname{span}\{w\}^{\perp}$

 $\Lambda^{1/2}Qw^{\perp} = 0,$

so rank $\Lambda^{1/2} = 1$ and thus rank $(\Sigma_q^{-1} - \Sigma_p^{-1}) = 1$.

Other negative results

Planar ReLU

Let p and q be mixture of Gaussians on \mathbb{R}^d . In general, it is impossible to find f composed of finitely many ReLU Slyvester flows such that $p = f_{\#}q$.

Radial Flows

Let $p \sim \mathcal{N}(0, \Sigma_p), q \sim \mathcal{N}(0, \Sigma_q)$. If there is a radial flow on \mathbb{R}^d such that $p = f_{\#}q$ then $\Sigma_q = \Sigma_p$.

(D) (A) (A) (A) (A)

Positive Results with Linear Maps

Linear Transformations

For any $A \in \mathbb{R}^{d \times d}$, the linear transformation g(z) = Az can be generated by (4d - 4)ReLU planar flows and d Householder flows.

Proof sketch

- Write A = LUP
- P can be written as product of d Householder matrices
- L and U can each be written as product of (d-1) matrices of form $I + uw^T$
- A matrix of form $I + uw^T$ can be learned with two ReLU planar flows

$$f_1(z) = z + h(w^T z)u$$
$$f_2(z) = z - h(-w^T z)u$$

so $f_2 \circ f_1(z) = z + uw^T z = (I + uw^T)z$

References

References

University of Washington	October 25,
--------------------------	-------------

æ

・ロト ・四ト ・ヨト ・ヨト

- Amos, B., Xu, L., and Kolter, J. Z. (2017). Input convex neural networks. In International Conference on Machine Learning, pages 146–155. PMLR.
- Kobyzev, I., Prince, S. J., and Brubaker, M. A. (2020). Normalizing flows: An introduction and review of current methods. *IEEE transactions on pattern analysis* and machine intelligence, 43(11):3964–3979.
- Kong, Z. and Chaudhuri, K. (2020). The expressive power of a class of normalizing flow models. *International Conference on Artificial Intelligence and Statistics*, 108:3599–3609.
- Lin, H. and Jegelka, S. (2018). Resnet with one-neuron hidden layers is a universal approximator. Advances in neural information processing systems, 31.
- Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks: A view from the width. Advances in neural information processing systems, 30.