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Estimating KR maps using input convex neural networks

Setup

The goal is to describe a function class F such that for each T € F, T7 is a
function of z1.; and is a monotonically increasing function of ;.

Let each T' € F be indexed by its model parameters 6 s.t. V0 € ©, T'(0) € F.

Then the optimization objective as a function of model parameters is

KL(G):*%Z logq o T(0)(x;) + »_ log(VT(0))i(x;) | - (1)

=1 i=1

® Now, since T'(0) is a triangular map, it can be expressed as

S(0)(x) = (Tl(x1)7T2(x1:2)7...,Tj(ml;j),...,Td(x))T :
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Input Convex Neural Network

® Input convex neural networks (ICNN) proposed by Amos et al. (2017) are
scalar-valued neural networks f(z,y;6) with inputs = and y, and are defined by
the model parameters 6.

® f(x,y;0) is a convex function of y.

® Now each component 77 can be modelled as the partial derivative (in jth input)
of a partial ICNN which takes as input x1.; and is convex in the input z;.

® That is, if f/(x1:j-1,2;;6;) is the PICNN convex in z;, then

n 3fj(l’j»l’1:j—1;9j)_
axj

T (215) = w;

® This implies that 6 = (01,...,604) fully parameterizes the KR map, though some
constraints need to be imposed on © that we will discuss in next slide.
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Input Convex Neural Network

® PICNN f(x,y;0) is described by two set of hidden layers {u;}f—, and {z}},
that correspond to the x-path and y-path respectively.

® The architecture of a K-layer PICNN is given by the following following
recurring hidden units

Uit1 = §i(V~V¢U¢ + Bz)
Zit1 = Gi (Wi(z) (Zz S [Wi(zu)ui + bEZ“)]) + Wi(y) (y o [Wi(yu)uz' + bEy“)]) +
Wi<u)u2‘ + b; s

where §; and g; are non-linear activation functions. The final scalar-valued
output of the PICNN is f(z,y;60) = zk.
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Training

Proposition 1, Amos et al. (2017)

The function f is convex in y provided that all {W(z)}k 11 are non-negative, and all
functions g; are convex and non-decreasing.

® The proof follows the simple idea that the convex combinations and
compositions of convex functions is also convex.

To ensure that f7 is a convex function of x;, we need to constrain all its entries
of W to be non-negative.

® The learning process optimizes the parameters 6 such that K L(6) from (1) is
minimized.

® A regularization term is added to ensure that the W{*) weight matrix entries for
all layers of all d PICNN is positive giving

n d K
—%Z log g o T(6)(x: +Zlog vT(6) ZZHmax W), 0%,
=1

j=1 Jj=1k=1
(2)
where ) is the regularization tuning parameter.
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Motivation

Universality
® Universal approximation results are often asymptotic in nature and prove to be
of little help in practice.

® (Careful analysis of expressive power is required as a function of problem
dimension and desired accuracy
[see Lu et al. (2017), Lin and Jegelka (2018) for neural networks].

Invertibility
® Analyzing expressive power of the subset of invertible functions in F is a
different problem than analyzing F. Let C := {f € F : f'exits}.
» If F is a universal approximator =4 C can transform between any two
distributions.
» If F has limited expressivity =% C cannot transform between any two
distributions.
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Reference Density, q Target Density, p

Figure: Normalizing Flow Schematic Diagram



Problem Setup

Notations

® Let i, v be probability measures on R? with Lebesgue densities p and g,
respectively.

® We call p and p the target measure/density, v and ¢ that reference
measure/density

® Unlike previous notation, Kong and Chaudhuri (2020) construct flow that
transports g to p, we seek f such that i.e. fuq=p.

® Using change of variable formula

ooy — 40 @)

= ‘det Jf(f_l(x))‘ - Q(fv) = p(f(m))’det Jf(;p)|
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Sylvester Flows

Given a positive integer m < d, A € R>*™ B € R™™ b e R™, h: R — R, define
Sylvester flow Ty, : R¢ — R? by

Toyi(2) = 2z + AR(B" z 4 b).
We compute
Jr,,,(2) = Ida +Adiag(h' (B” z + b)) B”
By Sylvester’s determinant identity (Kobyzev et al. (2020)), we get that

det Jr,,, (2) = det(Idq +Adiag(h'(B z + b)) B")
= det(Id,, +diag(h'(B" z + b)) BT A).
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General Universal Approximation

Theorem 3.1, Kong and Chaudhuri (2020)

Let p, q be densities on R such that p is supported on a finite union of intervals and
supp ¢ = R. Then, for any € > 0, there exists a planar flow f,s such that
(for)wa —pllr <e.

Steps:

(1) Approx p with p in L' such that supp = R.

(2) We ensure that p ~ p on supp p and p ~ 0 on supp p.
(3) Find f,y such that (fpr)zq = p. This gives

I(for)ea = pllt < 1(for)a — Bl + 115 — plla
=p—plh



Approximation

Approx Step

Our goal is the following construction

1

Y Y
0y il dy il t},

Figure: Approx of p with p such that supp p =R
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Approx Step

WLOG insist supp p = Uj_, (li; i) with —oo <l; <r; < oo for all i

® Set cutoff height as
2

Z?:l ri — i
Let m(A) be the measure of the set of points = such that p(z) > A.

Then observe

A =

1 :/p(m)da::A(A)p(x)dx—k/m(mcp(:r)dx

> d
_/m(A)p(:B) T
> Am(A)

= m(A)S%

v = / p(z)dz <1
{0<p(z)<A}

® Define
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Approx Step

Now we will construct a p that is supported on R but approximates p up to € error.
Let € > 0, define p as

o It p(x) > A, set j(x) = p(x)

* If 0 < p(z) < A, set p(z) = (1 - 5) p(x)

® If € [ri, lipa] then p(z) = 57—
o [f x <y or x > 7y, let p be the tail of a Gaussian that integrates to %

Is p a distribution?

~ € ~
=] @+ (1 - 5) o)+ [ )
{p(z)=A} {0<p(z)<A} {p(z)=0}

€ € &y
={1-7 +*/ )+ (lil—Ti)-FQ(*)
( 2) 2 {p(a:)>A} ZQn 7,+1_T + 4n

—1
(1—7> 51—7)+7(” )y &
2
1.

2n 2n
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Approx Step

Does j approx p in L'?

Hp—ﬁll1=/ Ip—ﬁ\+/ Ip—ﬁ|+/ p— 7]
{p(z)>A} {0<p(z)<A} {p(z)=0}

= / lp — Bl + / P
{0<p(a)<A} {p(x)=0}

€ ey
=3 + liyr —mi) +2| —
2 /0<7<Ap ]Z 2n(livy —73) ( i ) (4”)

1

_ye am=1) e

_2+ 2n +2n

= Y€

<e
]
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Exact Planar Flow

® We have p, ¢ with supp p = supp ¢ = R
® Let @5, P, denote distribution functions of p, q (resp)

Set f = @gl o &4, which is continuous on R
® Via argument from Week 2, f transports ¢ to p
Let h(z) = f(z) — z, then

for(2) = z+h(1-2+0)



al Approximation

Proof of Theorem 3.1

Lemma A.1, Possible Transformations (single flow)
If p and ¢ are densities on R supported on n non-intersecting intervals:

n n

supp p=J(i”, (") and supp ¢=|J@”,r")

i=1 i=1

and if <I>q(r£';’)) = Qp(rgp)) for all i =1,...,n, then there exists a planar flow f such
that fuq =p, a.e.

Picture proof!
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ReLU Universal Approximation

Theorem 3.2, Universal Approximation

Let p be a density on R supported on a finite union of intervals. Then, for any € > 0,
there exists a flow f composed of finitely many RelLU planar flows and a Gaussian
distribution gar such that || fxqn — pll1 <e.




al Approximation

Some definitions

Some definitions first:

Definition A.2, Piecewise Distributions in C

Let Co be the set of distributions with continuous densities. Suppose C C Cp, then we
define PW(n,C) to be the set of all distributions p on R satisfying: there exists real
numbers —oco =to < t1 < ..., < tn—1 < t, = oo such that for any ¢ = 1,...,n, on the
ith interval {¢;—1,t:}, p is equal to some distribution p; € C. For conciseness, we say
p is described by {pi41,ti};y . We define PW(n) = PW(n,Co). If n’ > n, then

PW(n) C PW(n').

(AN

Figure: PW(6,C) where C is Gaussian probability distributions



Some definitions

Definition A.3, Piecewise Gaussian Distributions

Let G be the set of Gaussian distributions {N(u,0?) : u € R, 0 > 0}. We define the
set of piecewise Gaussian distributions to be PW(n, G).

Figure: PW(4,G) where G is Gaussian probability distributions



Some definitions

Definition A.4, Tail-consistency

Suppose p € PW(n) is described by {p;,t;}7=,'. We say p is tail-consistent w.r.t. tj if

koot
Z/ pi(z)dz +/ pe+1(z)dz = 1.
i=17ti—1 tr

If p is tail-consistent w.r.t. ¢y for any k = 1,...,n — 1, we say p is tail-consistent.

& i e

Figure: Tail-consistent PWG w.r.t. to
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Sketch

We want f composed of finitely many planar flows such that ||(fz)gnv — pll1 < €
(1) There exists gpwe such that ||p — gpwell1 < €/2 (Lin and Jegelka, 2018)

(2) There exists tail-consistent ¢puwg € PW(n,G) such that ||gpuwg — gpuwel|1 < €/2
(3) There exists a flow f as previously described such that gpwg = (f#)qn
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Technical Lemma (Inductive Step)

Lemma A.2, Possible Transformations (single flow)

Let p,q € PW(n,G) where p is given by {pi+1,t:}77, q is given by {gi+1,t:}7= and
pi = ¢; for i < n. Then there exists a ReLU planar flow f such that fxzq = p.

Idea: Select parameters so that flow is constant on (—oo, t,—1] and shifts/scales
appropriately on [ty, c0)

We have p(y) = q(y) for y < tn—1. Now, on [tn—1,00) assume g ~ N (pn,02) and
p~N(f1,6%). Let f be a ReLU planar flow

f(z) = z+ uh(wz + b)

6

o> b= —wtr_1. Observe

with u = sgn(é6 — o), w :‘1 —

5 Do P if 2z <tn_1
- Z —tho1) =< 4 ; :
fz)=z+ (Un ) (= 1) Lo+ (i_l) tho1 if 2>t 1
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Technical Lemma

We compute
iy = {%"y —(1=22)thy ify>ta

which gives

log

det J;—1(y) = {‘tn iy >ty

For y >t

(f#a) = a(f ™" (y))|det Ty ()|

= O;n-/\/ <UA"y— (1 - o;n) tnl;ﬂn70721>
ag ag g

= N(y; 1, 6°)

We get on [t,+1,00) that fuq ~ N(fi,5°) for some fi. But since
[ M@= [ Ned,
tn—1 tn—1

so fi = [i as desired.
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Transport N to PW(n, G)

Lemma A.3, Possible Transformations (flows)

Let p e PW(n,G), if p is tail-consistent, then there exists n — 1 ReLU planar flows
{fi}7=}! and a Gaussian distribution ga such that (fr—10---0 fi)zqn = p.

Proceed by induction on n.
Case n = 1: p is a Gaussian, so pick gn = p.
n => (n+1) For p={pit1,ti}ico € PW(n+1,G) set
P = {pi+1,t: )12y € PW(n,G) by tail-consistency. TH gives fi,..., fo_1 and gy such
that
(fa—r0--0 fi)pan =p'

Notice that p’ and p only differ in [t,, c0). Using Lemma A.2 gives f,, such that
(fn)#p = p. Then {fi}7—; is as desired.
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Approx by PW(n, G)

Lemma A.4

Given any piecewise constant distribution gpw. supported on a finite union of

compact intervals, for all € > 0 there exists a tail-consistent piecewise Gaussian
distribution gpwg such that ||gpwe — @puwgll1 < €.

Picture construction of piecewise Gaussian approximation

Figure: Piecewise Gaussian approximation of piecewise uniform



Approximation

Issues with Lemma A.4

® Proof is incorrect as the piecewise-Gaussian approximation of the piece-wise
constant density is not "tail consistent".

® Tail consistency condition: consider the ith interval [¢,¢ 4 d;], the Gaussian
N (u, 02) in this interval should satisfy

/C>o N(I,,U/, 0'2)d$ = (1 - %> /Oo QZMuc(x)dm
t 3 t

® Tail consistency not satisfied at the base case. If t =t_ and §; = t4 — t_, then
i 2
/ N(z; p, 0°)dx = (1 - g)
t

® Lemma A.3 requires tail consistency to construct f such that fuqn = Ppwg-

® Remedy not immediate
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Universal Approximation Results, d > 1




Structure of Arguments

Kong and Chaudhuri (2020) prove several non-approximation results using the
following structure

(1) Establish a “topology matching condition”
(2) Exploit structure of flow to demonstrate some degenerate Jacobian structure
(3) Use (1) and (2) to show that if p = fxq then p must be similar to ¢
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Topology Matching Condition

Planar Flow Topology Matching

Suppose distribution ¢ is defined on R? and a Sylvester flow on R? has tangent
matrix B and smooth non-linearity. Let p = fxq. Then for all z € R? we have

V:logp(f(2)) — V:logq(z) € span(B).

We have f(z) = z + Ah(BTz +b). Let o € R and w € span{B}*, then

f(z+aw) = z+ aw + h(B" 24+ aB"w + b)
=z+4aw+h(BTz+b)
= f(2) + aw.

This gives

det J¢(z) = det Jf(z + aw)
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Topology Matching Condition

By change of variable formula for pushfowards,
log p(f(2)) = logq(z) — logdet J¢(z)
logp(f(z + aw)) = log(q(z + aw)) — log det Jf(z + aw).
Subtracting and dividing by « gives

log p(f(2) + aw) —logp(f(2)) _ logq(z + aw) —logg(z)

Letting a — 0 gives

(V:logp(f(2))) w=(V:logq(2)) - w
(Vzlogp(f(2)) — V:logg(z)) - w = 0.

As this holds for all w € span(B)*, we have that

V.logp(f(z)) — V.logq(z) € (span(B)J‘)L = span(B).
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Planar Flow cannot map Gaussian to Gaussian

Planar Flow cannot map N' — N

Let p ~ N(0,%,), ¢ ~ N(0,%,) be two Gaussian distributions on R?. If there exists
a planar flow f on R? with smooth non-linearity such that p = fuq, then
rank(3X, — X,) < 1.

Planar flow has form f(z) = z 4+ uh(w”z + b), so by topology matching condition
V:logp(f(2)) — V:logq(z) € span{w}

Since p(z) x exp (—%ZTEglz), using change of variables formula

logp(z) = —%ZTE;,Z -C

and thus
Valogp(f(2)) = =%, f(2)
V:.logq(z) = —E;lz,
For all w' € span{w}* we have

f(Z)TZ;IwJ_ _ Zngle
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Planar Flow cannot map Gaussian to Gaussian

Since f(z) — z = h(wT z + b)u we get
28 -2 Ywt = h(w” 2+ b)uTEgle‘
Setting z = 0 gives
h(b)u" %, wt = 0.

Setting z = w gives

('U)J_)T(Egl o E;l)wl (wTwJ_ + b)unglwl

h
h(b)u" s,
0

Thus for all w € span{w}~*

(whH)' (= =2, Hwt = 0.
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Planar Flow cannot map Gaussian to Gaussian

It remains to consider w” (£, — S, Hw

e Ifw" (S, =%, )w=0then &;' =5,!
e If wT(E;1 — E;l)w < 0, repeat next analysis with E;l — Eq_l
o If w' (S, — 3, Hw > 0, then ¥;' — =1 is PSD and we can write

2 -2, =0Q"AQ

For all w* € span{w}*
A?Qut =0,

so rank A2 =1 and thus rank(E;1 - E;l) =1.
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Other negative results

Planar ReLLU

Let p and ¢ be mixture of Gaussians on R?. In general, it is impossible to find f
composed of finitely many ReLU Slyvester flows such that p = fxq.

Radial Flows

Let p ~ N(0,%,), ¢ ~ N(0,%,). If there is a radial flow on R? such that p = fxq
then ¥, = X,.
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Positive Results with Linear Maps

Linear Transformations

For any A € R%*? the linear transformation g(z) = Az can be generated by (4d — 4)
ReLU planar flows and d Householder flows.

Proof sketch
® Write A= LUP
® P can be written as product of d Householder matrices
® L and U can each be written as product of (d — 1) matrices of form I 4 uw?”

T

® A matrix of form I + uw”® can be learned with two ReLU planar flows

filz) =2+ h(sz)u
fo(z) =2 — h(—sz)u7

so f20 f1(2) = z +uwTz = (I + uw”)z
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