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Estimating KR maps using input convex neural networks

Setup

• The goal is to describe a function class F such that for each T ∈ F , T j is a
function of x1:j and is a monotonically increasing function of xj .

• Let each T ∈ F be indexed by its model parameters θ s.t. ∀ θ ∈ Θ, T (θ) ∈ F .
• Then the optimization objective as a function of model parameters is

KL(θ) = − 1

n

n∑
j=1

log q ◦ T (θ)(xj) +
d∑

i=1

log(∇T (θ))i(xj)

 . (1)

• Now, since T (θ) is a triangular map, it can be expressed as

S(θ)(x) =
(
T 1(x1), T

2(x1:2), . . . , T
j(x1:j), . . . , T

d(x)
)T

.
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Estimating KR maps using input convex neural networks

Input Convex Neural Network

• Input convex neural networks (ICNN) proposed by Amos et al. (2017) are
scalar-valued neural networks f(x, y; θ) with inputs x and y, and are defined by
the model parameters θ.

• f(x, y; θ) is a convex function of y.
• Now each component T j can be modelled as the partial derivative (in jth input)

of a partial ICNN which takes as input x1:j and is convex in the input xj .
• That is, if f j(x1:j−1, xj ; θj) is the PICNN convex in xj , then

T j(x1:j) := xj +
∂f j(xj , x1:j−1; θ

j)

∂xj
.

• This implies that θ = (θ1, . . . , θd) fully parameterizes the KR map, though some
constraints need to be imposed on Θ that we will discuss in next slide.
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Estimating KR maps using input convex neural networks

Input Convex Neural Network

• PICNN f(x, y; θ) is described by two set of hidden layers {ui}ki=1 and {zi}ki=1

that correspond to the x-path and y-path respectively.
• The architecture of a K-layer PICNN is given by the following following

recurring hidden units

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi

(
W

(z)
i

(
zi ◦ [W (zu)

i ui + b
(zu)
i ]

)
+W

(y)
i

(
y ◦ [W (yu)

i ui + b
(yu)
i ]

)
+

W
(u)
i ui + bi ,

where g̃i and gi are non-linear activation functions. The final scalar-valued
output of the PICNN is f(x, y; θ) = zK .
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Estimating KR maps using input convex neural networks

Training

Proposition 1, Amos et al. (2017)

The function f is convex in y provided that all {W (z)
i }k−1

i=1 are non-negative, and all
functions g̃i are convex and non-decreasing.

• The proof follows the simple idea that the convex combinations and
compositions of convex functions is also convex.

• To ensure that f j is a convex function of xj , we need to constrain all its entries
of W (z) to be non-negative.

• The learning process optimizes the parameters θ such that KL(θ) from (1) is
minimized.

• A regularization term is added to ensure that the W (z) weight matrix entries for
all layers of all d PICNN is positive giving

− 1

n

n∑
i=1

log g ◦ T (θ)(xi) +
d∑

j=1

log(∇T (θ))j(xi)

+λ
d∑

j=1

K∑
k=1

∥max(−(Wj)
(z)
k , 0)∥2F ,

(2)
where λ is the regularization tuning parameter.
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Motivation for studying expressive power

Motivation

Universality
• Universal approximation results are often asymptotic in nature and prove to be

of little help in practice.
• Careful analysis of expressive power is required as a function of problem

dimension and desired accuracy
[see Lu et al. (2017), Lin and Jegelka (2018) for neural networks].

Invertibility
• Analyzing expressive power of the subset of invertible functions in F is a

different problem than analyzing F . Let C := {f ∈ F : f−1exits}.
▶ If F is a universal approximator ≠⇒ C can transform between any two

distributions.
▶ If F has limited expressivity ≠⇒ C cannot transform between any two

distributions.
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Problem Setup
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Problem Setup

Problem Setup

Figure: Normalizing Flow Schematic Diagram
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Problem Setup

Notations

• Let µ, ν be probability measures on Rd with Lebesgue densities p and q,
respectively.

• We call µ and p the target measure/density, ν and q that reference
measure/density

• Unlike previous notation, Kong and Chaudhuri (2020) construct flow that
transports q to p, we seek f such that i.e. f#q = p.

• Using change of variable formula

p(x) =
q(f−1(x))∣∣det Jf (f−1(x))

∣∣ ⇔ q(x) = p(f(x))
∣∣det Jf (x)

∣∣
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Problem Setup

Sylvester Flows

Given a positive integer m < d, A ∈ Rd×m, B ∈ Rd×m, b ∈ Rm, h : R → R, define
Sylvester flow Tsyl : Rd → Rd by

Tsyl(z) = z +Ah(BT z + b).

We compute

JTsyl(z) = Idd +Adiag(h′(BT z + b))BT ,

By Sylvester’s determinant identity (Kobyzev et al. (2020)), we get that

det JTsyl(z) = det(Idd +Adiag(h′(BT z + b))BT )

= det(Idm +diag(h′(BT z + b))BTA).
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Proof of Universal Approximation Results, d = 1
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Proof of Universal Approximation Results, d = 1 General Smooth Non-linearity

General Universal Approximation

Theorem 3.1, Kong and Chaudhuri (2020)

Let p, q be densities on R such that p is supported on a finite union of intervals and
supp q = R. Then, for any ϵ > 0, there exists a planar flow fpf such that
∥(fpf )#q − p∥1 ≤ ϵ.

Steps:
(1) Approx p with p̃ in L1 such that supp p̃ = R.
(2) We ensure that p̃ ≈ p on supp p and p̃ ≈ 0 on supp p.
(3) Find fpf such that (fpf )#q = p̃. This gives

∥(fpf )#q − p∥1 ≤ ∥(fpf )#q − p̃∥1 + ∥p̃− p∥1
= ∥p̃− p∥1
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Proof of Universal Approximation Results, d = 1 General Smooth Non-linearity

Approx Step

Our goal is the following construction

Figure: Approx of p with p̃ such that supp p̃ = R
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Proof of Universal Approximation Results, d = 1 General Smooth Non-linearity

Approx Step

• WLOG insist supp p =
⋃n

j=1(li, ri) with −∞ < li < ri < ∞ for all i
• Set cutoff height as

∆ =
2∑n

j=1 ri − li

• Let m(∆) be the measure of the set of points x such that p(x) ≥ ∆.
• Then observe

1 =

ˆ
p(x)dx =

ˆ
m(∆)

p(x)dx+

ˆ
m(∆)C

p(x)dx

≥
ˆ
m(∆)

p(x)dx

≥ ∆m(∆)

=⇒ m(∆) ≤ 1

∆

• Define
γ =

ˆ
{0<p(x)<∆}

p(x)dz ≤ 1
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Proof of Universal Approximation Results, d = 1 General Smooth Non-linearity

Approx Step

Now we will construct a p̃ that is supported on R but approximates p up to ϵ error.
Let ϵ > 0, define p̃ as

• If p(x) ≥ ∆, set p̃(x) = p(x)

• If 0 < p(x) < ∆, set p̃(x) =
(
1− ϵ

2

)
p(x)

• If x ∈ [ri, li+1] then p̃(x) = ϵγ
2n(li+1−ri)

• If x ≤ l1 or x ≥ rn, let p̃ be the tail of a Gaussian that integrates to ϵγ
4n

Is p̃ a distribution?

∥p̃∥1 =

ˆ
{p(x)≥∆}

p(x) +

ˆ
{0<p(x)<∆}

(
1− ϵ

2

)
p(x) +

ˆ
{p(x)=0}

p̃(x)

=

(
1− ϵ

2

)
+

ϵ

2

ˆ
{p(x)≥∆}

p(x) +

n−1∑
i=1

ϵγ

2n(li+1 − ri)
(li+1 − ri) + 2

(
ϵγ

4n

)
=

(
1− ϵ

2

)
+

ϵ

2
(1− γ) +

ϵγ(n− 1)

2n
+

ϵγ

2n

= 1.
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Proof of Universal Approximation Results, d = 1 General Smooth Non-linearity

Approx Step

Does p̃ approx p in L1?

∥p− p̃∥1 =

ˆ
{p(x)≥∆}

|p− p̃|+
ˆ
{0<p(x)<∆}

|p− p̃|+
ˆ
{p(x)=0}

|p− p̃|

=

ˆ
{0<p(x)<∆}

|p− p̃|+
ˆ
{p(x)=0}

p̃

=
ϵ

2

ˆ
0<γ<∆

p+

n−1∑
j=1

ϵγ

2n(li+1 − ri)
(li+1 − ri) + 2

(
ϵγ

4n

)
=

γϵ

2
+

ϵγ(n− 1)

2n
+

ϵγ

2n

= γϵ

≤ ϵ.
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Proof of Universal Approximation Results, d = 1 General Smooth Non-linearity

Exact Planar Flow

• We have p̃, q with supp p̃ = supp q = R
• Let Φp̃,Φq denote distribution functions of p̃, q (resp)
• Set f = Φ−1

p̃ ◦ Φq, which is continuous on R
• Via argument from Week 2, f transports q to p

• Let h(z) = f(z)− z, then

fpf (z) = z + h(1 · z + 0)
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Proof of Universal Approximation Results, d = 1 General Smooth Non-linearity

Proof of Theorem 3.1

Lemma A.1, Possible Transformations (single flow)

If p and q are densities on R supported on n non-intersecting intervals:

supp p =
n⋃

i=1

(l
(p)
i , r

(p)
i ) and supp q =

n⋃
i=1

(l
(q)
i , r

(q)
i )

and if Φq(r
(q)
i ) = Φp(r

(p)
i ) for all i = 1, . . . , n, then there exists a planar flow f such

that f#q = p, a.e.

Picture proof!
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

ReLU Universal Approximation

Theorem 3.2, Universal Approximation

Let p be a density on R supported on a finite union of intervals. Then, for any ϵ > 0,
there exists a flow f composed of finitely many ReLU planar flows and a Gaussian
distribution qN such that ∥f#qN − p∥1 ≤ ϵ.
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Some definitions

Some definitions first:

Definition A.2, Piecewise Distributions in C
Let C0 be the set of distributions with continuous densities. Suppose C ⊂ C0, then we
define PW(n, C) to be the set of all distributions p on R satisfying: there exists real
numbers −∞ = t0 < t1 < . . . , < tn−1 < tn = ∞ such that for any i = 1, . . . , n, on the
ith interval {ti−1, ti}, p is equal to some distribution pi ∈ C. For conciseness, we say
p is described by {pi+1, ti}n−1

i=0 . We define PW(n) = PW(n, C0). If n′ > n, then
PW(n) ⊂ PW(n′).

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

y

Figure: PW(6,C) where C is Gaussian probability distributions
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Some definitions

Definition A.3, Piecewise Gaussian Distributions

Let G be the set of Gaussian distributions {N (µ, σ2) : µ ∈ R, σ > 0}. We define the
set of piecewise Gaussian distributions to be PW(n,G).

Figure: PW(4,G) where G is Gaussian probability distributions
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Some definitions

Definition A.4, Tail-consistency

Suppose p ∈ PW(n) is described by {pi, ti}n−1
i=0 . We say p is tail-consistent w.r.t. tk if

k∑
i=1

ˆ ti

ti−1

pi(z)dz +

ˆ
tk

pk+1(z)dz = 1 .

If p is tail-consistent w.r.t. tk for any k = 1, . . . , n− 1, we say p is tail-consistent.

Figure: Tail-consistent PWG w.r.t. t2
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Sketch

We want f composed of finitely many planar flows such that ∥(f#)qN − p∥1 ≤ ϵ

(1) There exists qpwc such that ∥p− qpwc∥1 ≤ ϵ/2 (Lin and Jegelka, 2018)
(2) There exists tail-consistent qpwg ∈ PW(n,G) such that ∥qpwg − qpwc∥1 ≤ ϵ/2

(3) There exists a flow f as previously described such that qpwg = (f#)qN
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Technical Lemma (Inductive Step)

Lemma A.2, Possible Transformations (single flow)

Let p, q ∈ PW(n,G) where p is given by {pi+1, ti}n−1
i=0 , q is given by {qi+1, ti}n−1

i=0 and
pi = qi for i < n. Then there exists a ReLU planar flow f such that f#q = p.

Idea: Select parameters so that flow is constant on (−∞, tn−1] and shifts/scales
appropriately on [tn,∞)
We have p(y) = q(y) for y < tn−1. Now, on [tn−1,∞) assume q ∼ N (µn, σ

2
n) and

p ∼ N (µ̂, σ̂2). Let f be a ReLU planar flow

f(z) = z + uh(wz + b)

with u = sgn(σ̂ − σn), w =
∣∣∣1− σ̂

σn

∣∣∣, b = −wtn−1. Observe

f(z) = z +

(
σ̂

σn
− 1

)
h(z − tn−1) =

z if z ≤ tn−1

σ̂
σn

z +
(

σ̂
σn

− 1
)
tn−1 if z > tn−1
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Technical Lemma

We compute
f−1(y) =

{
σn
σ̂
y −

(
1− σn

σ̂

)
tn−1 if y > tn−1

which gives
det Jf−1(y) =

{
σn
σ̂

if y > tn−1

For y > tn−1

(f#q) = q(f−1(y))
∣∣det Jf−1(y)

∣∣
=

σn

σ̂
N

(
σn

σ̂
y −

(
1− σn

σ̂

)
tn−1;µn, σ

2
n

)
= N (y; µ̃, σ̂2)

We get on [tn+1,∞) that f#q ∼ N (µ̃, σ̂2) for some µ̃. But since
ˆ ∞

tn−1

N (µ̃, σ̂2) =

ˆ ∞

tn−1

N (µ̂, σ̂2),

so µ̃ = µ̂ as desired.
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Transport N to PW(n,G)

Lemma A.3, Possible Transformations (flows)

Let p ∈ PW(n,G), if p is tail-consistent, then there exists n− 1 ReLU planar flows
{ft}n−1

t=1 and a Gaussian distribution qN such that (fn−1 ◦ · · · ◦ f1)#qN = p.

Proceed by induction on n.
Case n = 1: p is a Gaussian, so pick qN = p.
n =⇒ (n+ 1) For p = {pi+1, ti}ni=0 ∈ PW(n+ 1,G) set
p′ = {pi+1, ti}n−1

i=0 ∈ PW(n,G) by tail-consistency. IH gives f1, . . . , fn−1 and qN such
that

(fn−1 ◦ · · · ◦ f1)#qN = p′

Notice that p′ and p only differ in [tn,∞). Using Lemma A.2 gives fn such that
(fn)#p′ = p. Then {ft}nt=1 is as desired.
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Approx by PW(n,G)

Lemma A.4

Given any piecewise constant distribution qpwc supported on a finite union of
compact intervals, for all ϵ > 0 there exists a tail-consistent piecewise Gaussian
distribution qpwg such that ∥qpwc − qpwg∥1 ≤ ϵ.

Picture construction of piecewise Gaussian approximation

Figure: Piecewise Gaussian approximation of piecewise uniform
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Proof of Universal Approximation Results, d = 1 ReLU Non-linearity

Issues with Lemma A.4

• Proof is incorrect as the piecewise-Gaussian approximation of the piece-wise
constant density is not "tail consistent".

• Tail consistency condition: consider the ith interval [t, t+ δi], the Gaussian
N (µ, σ2) in this interval should satisfy

ˆ ∞

t

N (x;µ, σ2)dx =

(
1− 2ϵ

3

) ˆ ∞

t

qpwc(x)dx

• Tail consistency not satisfied at the base case. If t = t− and δi = t+ − t−, then
ˆ ∞

t−

N (x;µ, σ2)dx =

(
1− 2ϵ

3

)
• Remedy not immediate
• Lemma A.3 requires tail consistency to construct f such that f#qN = ppwg.
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Universal Approximation Results, d > 1

Universal Approximation Results, d > 1
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Universal Approximation Results, d > 1

Structure of Arguments

Kong and Chaudhuri (2020) prove several non-approximation results using the
following structure
(1) Establish a “topology matching condition”
(2) Exploit structure of flow to demonstrate some degenerate Jacobian structure
(3) Use (1) and (2) to show that if p = f#q then p must be similar to q
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Universal Approximation Results, d > 1

Topology Matching Condition

Planar Flow Topology Matching

Suppose distribution q is defined on Rd and a Sylvester flow on Rd has tangent
matrix B and smooth non-linearity. Let p = f#q. Then for all z ∈ Rd we have

∇z log p(f(z))−∇z log q(z) ∈ span(B).

We have f(z) = z +Ah(BT z + b). Let α ∈ R and w ∈ span{B}⊥, then

f(z + αw) = z + αw + h(BT z + αBTw + b)

= z + αw + h(BT z + b)

= f(z) + αw.

This gives

det Jf (z) = det Jf (z + αw)

University of Washington October 25, 2022 34 / 42



Universal Approximation Results, d > 1

Topology Matching Condition

By change of variable formula for pushfowards,

log p(f(z)) = log q(z)− log det Jf (z)

log p(f(z + αw)) = log(q(z + αw))− log det Jf (z + αw).

Subtracting and dividing by α gives

log p(f(z) + αw)− log p(f(z))

α
=

log q(z + αw)− log q(z)

α

Letting α → 0 gives

(∇z log p(f(z))) · w = (∇z log q(z)) · w
(∇z log p(f(z))−∇z log q(z)) · w = 0.

As this holds for all w ∈ span(B)⊥, we have that

∇z log p(f(z))−∇z log q(z) ∈
(
span(B)⊥

)⊥
= span(B).
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Universal Approximation Results, d > 1

Planar Flow cannot map Gaussian to Gaussian

Planar Flow cannot map N → N

Let p ∼ N (0,Σp), q ∼ N (0,Σq) be two Gaussian distributions on Rd. If there exists
a planar flow f on Rd with smooth non-linearity such that p = f#q, then
rank(Σq − Σp) ≤ 1.

Planar flow has form f(z) = z + uh(wT z + b), so by topology matching condition

∇z log p(f(z))−∇z log q(z) ∈ span{w}

Since p(z) ∝ exp
(
− 1

2
zTΣ−1

p z
)
, using change of variables formula

log p(z) = −1

2
zTΣ−1

p z − C

and thus

∇z log p(f(z)) = −Σ−1
p f(z)

∇z log q(z) = −Σ−1
q z.

For all w⊥ ∈ span{w}⊥ we have

f(z)TΣ−1
p w⊥ = zTΣ−1

q w⊥
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Universal Approximation Results, d > 1

Planar Flow cannot map Gaussian to Gaussian

Since f(z)− z = h(wT z + b)u we get

zT (Σ−1
q − Σ−1

p )w⊥ = h(wT z + b)uTΣ−1
p w⊥

Setting z = 0 gives

h(b)uTΣ−1
p w⊥ = 0.

Setting z = w⊥ gives

(w⊥)T (Σ−1
q − Σ−1

p )w⊥ = h(wTw⊥ + b)uTΣ−1
p w⊥

= h(b)uTΣ−1
p w⊥

= 0.

Thus for all w ∈ span{w}⊥

(w⊥)T (Σ−1
q − Σ−1

p )w⊥ = 0.
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Universal Approximation Results, d > 1

Planar Flow cannot map Gaussian to Gaussian

It remains to consider wT (Σ−1
q − Σ−1

p )w

• If wT (Σ−1
q − Σ−1

p )w = 0 then Σ−1
q = Σ−1

p

• If wT (Σ−1
q − Σ−1

p )w < 0, repeat next analysis with Σ−1
p − Σ−1

q

• If wT (Σ−1
q − Σ−1

p )w > 0, then Σ−1
q − Σ−1

p is PSD and we can write

Σ−1
q − Σ−1

p = QTΛQ

For all w⊥ ∈ span{w}⊥

Λ1/2Qw⊥ = 0,

so rank Λ1/2 = 1 and thus rank(Σ−1
q − Σ−1

p ) = 1.
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Universal Approximation Results, d > 1

Other negative results

Planar ReLU

Let p and q be mixture of Gaussians on Rd. In general, it is impossible to find f
composed of finitely many ReLU Slyvester flows such that p = f#q.

Radial Flows

Let p ∼ N (0,Σp), q ∼ N (0,Σq). If there is a radial flow on Rd such that p = f#q
then Σq = Σp.
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Universal Approximation Results, d > 1

Positive Results with Linear Maps

Linear Transformations

For any A ∈ Rd×d, the linear transformation g(z) = Az can be generated by (4d− 4)
ReLU planar flows and d Householder flows.

Proof sketch
• Write A = LUP

• P can be written as product of d Householder matrices
• L and U can each be written as product of (d− 1) matrices of form I + uwT

• A matrix of form I + uwT can be learned with two ReLU planar flows

f1(z) = z + h(wT z)u

f2(z) = z − h(−wT z)u,

so f2 ◦ f1(z) = z + uwT z = (I + uwT )z
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