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Motivation

Motivation

Figure: Samples from distribution of human faces (from Karras et al. (2019))
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Motivation

Motivation (Sampling)

Figure: Schematic of Normalizing Flows
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Motivation

Motivation (Likelihood computation)

Figure: Application of Flows to Likelihood Estimation and Sampling
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Preliminaries

Normalizing Flows

Conventions

• Let µ, ν be probability measures on Rd with Lebesgue densities p and q,
respectively.

• We call µ and p the target measure/density, ν and q that reference
measure/density

Figure: µ is the left, ν is the right
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Preliminaries

Normalizing Flows

A normalizing flow from p to q is a map T : Rd → Rd such that
(i) T is differentiable a.e. and det JT (z) ̸= 0 for a.e. z
(ii) T#µ = ν, or as stated with densities,

q(y) =
p(T−1(y))∣∣det JT (T−1(y))

∣∣ ⇔ p(x) = q(T (x))
∣∣det JT (x)

∣∣ (1)

where JT is the Jacobian of T . We may also write this as q = T#p.
We often consider the log of the quantity in (1):

log p(x) = log q ◦ T (x) + log
∣∣det JT (x)

∣∣
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Preliminaries

Composing Flows

Let T1, T2, . . . , Tn be normalizing flows with T = Tn ◦ Tn−1 ◦ · · · ◦ T1 a normalizing
flow from q to p, then

log p(x) = log q ◦ T (x) + log
∣∣det JT (x)

∣∣
= log q ◦ T (x) +

n∑
j=1

log
∣∣∣det JTj (zj−1)

∣∣∣
where z0 = x, z1 = T1(z0), z2 = T2(z1), . . . , zn−1 = Tn−1(zn−2).

Figure: Composition of Flows
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Preliminaries

Total Variation

We define total variation to be

TV (µ, ν) :=
1

2
|µ− ν| (Rd) =

1

2
∥p− q∥1.

Approximation results will be stated in terms of

TV (T#p− q) =

∥∥∥∥∥ p(T−1(y))∣∣det JT (T−1(y))
∣∣ − q(y)

∥∥∥∥∥
1

.

Figure: Example with TV (µ, ν) = 1
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Preliminaries

Wasserstein p-distance

We define Wasserstein p-distance for p ≥ 1 and p, q ∈ Lp to be

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

ˆ
Rd×Rd

|x− y|p dπ(x, y)

)1/p

.

Figure: Example with TV (µ, ν) = 1
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Preliminaries

KL-divergence

Definition

Given two probability measures with densities π1 and π2, Marzouk et al. (2016)
defines the KL-divergence from π1 with respect to π2 to be

DKL(π1|π2) := Eπ1

(
log

π1

π2

)
= Eπ1

(
− log

π2

π1

)
.

Properties include
(1) DKL(π1|π2) ≥ 0

(2) DKL(π1|π2) = 0 if and only if π1 = π2
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Preliminaries

KL-divergence

Properties of KL-divergence result from Jensen’s inequality:

−DKL(π1|π2) = −Eπ1

(
log

π1

π2

)
= Eπ1

(
log

π2

π1

)
≤ log

(
Eπ1

(
π2

π1

))
since log is concave

= log

(ˆ
{π1(x)>0}

π1(x)
π2(x)

π1(x)
dx

)
≤ log(1) as log increasing
= 0.
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Preliminaries

KL-divergence

From Marzouk et al. (2016), we have

Learning T via Optimization

minDKL(T#p|q)
s.t.det∇T > 0 and T ∈ F .

Since DKL(T#p|q) = DKL(p|T−1
# q), the sample-average approximation with {xi}ni=1

i.i.d. observations from µ is

min− 1

n

n∑
i=1

[log q ◦ T (xi) + log | det∇T (xi)|]

s.t.det∇T > 0 and T ∈ F . (2)

Note: Computing the objective requires calculating the determinant of the Jacobian
matrix which is an O(d3) task for dense matrices.
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Examples of Normalizing Flows

Examples

Normalizing flows we consider include (Kong and Chaudhuri (2020),Kobyzev et al.
(2020))

• Planar flows*
• Radial flows*
• Sylvester flows*
• Householder flows*
• Autoregressive Flows
• Neural Networks
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Examples of Normalizing Flows

Normalizing Flow Basics

• Nonlinearity function h : R → R
• Jacobian computations require “matrix determinant lemma”

det(A+ uvT ) = (1 + vTA−1u) det(A)

Figure: Examples of h
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Examples of Normalizing Flows

Planar Flows

Given u,w ∈ Rd, b ∈ R, and nonlinearity h : R → R, define planar flow
Tpf : Rd → Rd as

Tpf (z) = z + uh(wT z + b).

We compute

JTpf (z) = Idd +(uwT )h′(wT z + b) =⇒ det JTpf (z) = 1 + wTuh′(wT z + b).

Figure: Geometric intuition from Kong and Chaudhuri (2020)
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Examples of Normalizing Flows

Radial Flows

Given a ∈ R>0, b ∈ R, and z0 ∈ Rd we define radial flow Trf : Rd → Rd by

Trf (z) = z +
b

a+ ∥z − z0∥2
(z − z0)

Figure: Geometric intuition from Kong and Chaudhuri (2020)
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Examples of Normalizing Flows

Sylvester Flows

Given a positive integer m < d, A ∈ Rd×m, B ∈ Rd×m, b ∈ Rm, h : R → R, define
Sylvester flow Tsyl : Rd → Rd by

Tsyl(z) = z +Ah(BT z + b).

We compute

JTsyl(z) = Idd +Adiag(h′(BT z + b))BT ,

By Sylvester’s determinant identity (Kobyzev et al. (2020)), we get that

det JTsyl(z) = det(Idd +Adiag(h′(BT z + b))BT )

= det(Idm +diag(h′(BT z + b))BTA).
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Examples of Normalizing Flows

Householder Flows

Given a unit vector v ∈ Rd, we define the householder flow Thh : Rd → Rd by

Thh(z) = z − 2vvT z.

We compute

JThh(z) = Id−2vvT = Id+(−
√
2v)(

√
2v)T

and thus

det JThh(z) = 1 + (−
√
2v)T (

√
2v) = 1− 2vT v = −1.

Figure: Geometric intuition
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Examples of Normalizing Flows

Neural Networks

• The coupling layers of normalizing flows can be modeled using neural networks.
• Typically, neural networks are not invertible. However, invertibility is often

ensured by showing that the network is bijective.

Lemma

If NN() : R → R is a multilayer percepton, such that all weights are positive and all
activation functions are strictly monotone, then NN(·) is a strictly monotone
function.

Other options for forcing invertibility include
• Force NN(·) : R → R>0 and integrate
• Force NN(·) : R → R to be convex and differentiate (input convex neural

networks)

University of Washington October 18, 2022 23 / 35



Examples of Normalizing Flows

Autoregressive Flows

Autoregressive flows are essentially triangular flows. Calculating the determinant of
the Jacobian is an O(d) operation.

Lemma

If µ and ν are absolutely continuous Borel probability measures on Rd, then there
exists an increasing triangular transformation T : Rd → Rd, such that ν = T#µ. This
transformation is unique up to null sets of µ. A similar result holds for measures on
[0, 1]d.

Proof of Universality
• First show that the function class considered is dense in the set of all monotone

triangular functions in the pointwise convergence topology.
• Then by Lemma 2, ∃T ∗ ∈ F such that T ∗ (X) ∼ ν.
• By denseness of F , there exists a sequence of functions {Tn} ⊂ F such that

Tn → T ∗ pointwise as n → ∞.
• Using dominated convergence theorem, followed by Pormanteau’s theorem, we

have that Tn(X)
d−→ T ∗(X).
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Examples of Normalizing Flows

Challenges

• Universality results are not as impressive as they appear!
• Existence of a solution does not give any idea about how the expressiveness of

the function class is related to its complexity.
• It is possible that even to estimate simple transformation in the function class,

the model needs depth that is beyond computational reason.
• Kong and Chaudhuri (2020) describe the expressive power of a simple class of

normalizing flows.
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Statement of Approximation Results

d = 1

When d = 1, planar flows are universal approximators under moderate assumptions
on p and q.

Theorem 3.1, Kong and Chaudhuri (2020)

Let p and q be densities on R such that supp p is contained in a finite union of
intervals and supp q = R. Then for all ϵ > 0 there exists a planar flow Tpf such that
∥(Tpf )#q − p∥1 ≤ ϵ.

Figure: Illustrative example with p̃ = T#q

University of Washington October 18, 2022 27 / 35



Statement of Approximation Results

d > 1

When d > 1, Kong and Chaudhuri (2020) prove negative results about various flows
based on a topology matching condition. A sampling of these results include

Corollary 4.1.1, Kong and Chaudhuri (2020)

If p and q are two mixture of Gaussian distributions, there generally does not exist a
finite composition of Sylvester flows f such that f#q = p.

Corollary 4.2.1, Kong and Chaudhuri (2020)

If p ∼ N(0,Σp) and q ∼ N(0,Σq) are such that Σ−1
q − Σ−1

p has high rank, then it is
impossible with a limited number of either planar flows or Sylvester flows to
transport q to p.
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Estimation of KR maps with ICNNs

Setup

• The goal is to describe a function class F such that for each T ∈ F , T j is a
function of x1:j and is a monotonically increasing function of xj .

• Let each T ∈ F be indexed by its model parameters θ s.t. ∀ θ ∈ Θ, T (θ) ∈ F .
• Then the optimization objective as a function of model parameters is

KL(θ) = − 1

n

n∑
j=1

log q ◦ T (θ)(xj) +
d∑

i=1

log(∇T (θ))i(xj)

 . (3)

• Now, since T (θ) is a triangular map, it can be expressed as

S(θ)(x) =
(
T 1(x1), T

2(x1:2), . . . , T
j(x1:j), . . . , T

d(x)
)T

.
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Estimation of KR maps with ICNNs

Input Convex Neural Network

• Input convex neural networks (ICNN) proposed by Amos et al. (2017) are
scalar-valued neural networks f(x, y; θ) with inputs x and y, and are defined by
the model parameters θ.

• f(x, y; θ) is a convex function of y.
• Now each component T j can be modelled as the partial derivative (in jth input)

of a partial ICNN which takes as input x1:j and is convex in the input xj .
• That is, if f j(x1:j−1, xj ; θj) is the PICNN convex in xj , then

T j(x1:j) = ∂f j(xj , x1:j−1; θ
j).

• This implies that θ = (θ1, . . . , θd) fully parameterizes the KR map, though some
constraints need to be imposed on Θ that we will discuss in next slide.
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Estimation of KR maps with ICNNs

Input Convex Neural Network

• PICNN f(x, y; θ) is described by two set of hidden layers {ui}ki=1 and {zi}ki=1

that correspond to the x-path and y-path respectively.
• The architecture of a K-layer PICNN is given by the following following

recurring hidden units

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi

(
W

(z)
i

(
zi ◦ [W (zu)

i ui + b
(zu)
i ]

)
+W

(y)
i

(
y ◦ [W (yu)

i ui + b
(yu)
i ]

)
+

W
(u)
i ui + bi ,

where g̃i and gi are non-linear activation functions. The final scalar-valued
output of the PICNN is f(x, y; θ) = zK .
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Estimation of KR maps with ICNNs

Training

Proposition 1, Amos et al. (2017)

The function f is convex in y provided that all {W (z)
i }k−1

i=1 are non-negative, and all
functions g̃i are convex and non-decreasing.

• The proof follows the simple idea that the convex combinations and
compositions of convex functions is also convex.

• To ensure that f j is a convex function of xj , we need to constrain all its entries
of W (z) to be non-negative.

• The learning process optimizes the parameters θ such that KL(θ) from (3) is
minimized.

• A regularization term is added to ensure that the W (z) weight matrix entries for
all layers of all d PICNN is positive giving

− 1

n

n∑
i=1

log g ◦ T (θ)(xi) +
d∑

j=1

log(∇T (θ))j(xi)

+λ
d∑

j=1

K∑
k=1

∥max(−(Wj)
(z)
k , 0)∥2F ,

(4)
where λ is the regularization tuning parameter.
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