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Motivation

Two major goals that drive research in normalizing flows are sampling new data and likelihood
estimation based on given finite samples from a complex target distribution. However, in many real-
world applications, the data generating distribution is either complicated to evaluate or completely
unavailable. While there is a volume of literature on sampling algorithms, like Markov chain Monte
Carlo (MCMC) and sequential Monte Carlo, these methods usually rely on density evaluation for
each iteration. This is computationally expensive in case of complex target densities and impossible
when the target measure is unknown. An efficient and exact way to characterize such complex target
measures is to construct a transport map between the target distribution and a simple reference
distribution.

Since in many practical applications it is impossible to evaluate the target density and only
a finite number of samples are available from the target distribution, the transport maps are
a pushforward from the target to the reference measure. This is called inverse transport and
its approximate estimation can be cast as an optimization problem. The structure of the flow
depends on both the target and reference measure as well as the cost function used to express the
optimization objective. Recall from previous meeting, that the existence of the optimal transport
in case of quadratic cost function is guaranteed by Brenier’s theorem. Further, Carlier et al. (2010)
show that the sequence of Brenier maps minimizing the weighted quadratic cost function converges
to the triangular flow, called Knothe-Rosenblatt rearrangement.

In deep learning paradigm, the class of generative models that strive to estimate these transport
maps are dubbed as normalizing flows. They are usually modeled as a sequence of simple invertible
transformations from the target to normal distribution, hence the name normalizing flows. At this
junction, it is important to point the deviation of normalizing flows from the optimal transport
theory. Let µ be the target measure and ν be the reference measure on Rd. The subspace of measures
on Rd × Rd with marginal measures µ and ν is denoted by Π(µ, ν). Unlike optimal transport,
normalizing flows do not aim to minimize a cost function over π ∈ Π(µ, ν). In fact, implementing
such an optimization problem is not straightforward in practice. Therefore, normalizing flows
estimate the transport map T by minimizing a divergence metric between T#µ and ν, over all
transport maps T belonging to a function class F .

A variety of normalizing flow models have been proposed in literature (see Papamakarios et al.
(2021), Kobyzev et al. (2020) for a detailed overview). Kong and Chaudhuri (2020) provide an
exposition on the expressive power of simple normalizing flows and how it varies with their com-
plexity. Note that, usually high expression power (for example, by using neural networks) comes
at the cost of ease of invertibility, i.e. finding the inverse T−1 becomes more difficult as we increase
the complexity of T . Kong and Chaudhuri (2020) conduct a thorough analysis of expressive power
of planar flows and their multi-dimensional generalizations - Sylvester and Householder flows. The
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authors also point out the dearth of knowledge on universal approximation properties of the subset
of F corresponding to all invertible functions in F . These results will be discussed in next meeting;
for now, we will present an overview on normalizing flows.

Preliminaries

To start, we will define some terminology and conventions that we will use throughout this ex-
position. We let µ and ν denote probability measures on Rd that are absolutely continuous with
respect to Lebesgue measure. We let p(x) denote the density corresponding to µ and q(x) denote
the density corresponding to ν. We will call p and µ the target density/measure and q and ν
the reference density/measure. This means that q is a “nice” distribution such as a Gaussian or
mixture of Gaussians, and p is a complicated distribution that we would like to learn more about.

Following the definition in Kong and Chaudhuri (2020), a normalizing flow from p to q is a
map T : Rd → Rd such that

(i) T is differentiable a.e. and det JT (z) ̸= 0 for a.e. z

(ii) T#µ = ν, or as stated with densities,

q(y) =
p(T−1(y))∣∣det JT (T−1(y))

∣∣ (1)

where JT is the Jacobian of T . We may also write this as q = T#p. Moreover, since T is a
diffeomorphism, T−1 exists and we have that det JT−1(y) = 1

det JT (T−1(y))
giving

q(y) = p(T−1(y))
∣∣det JT−1(y)

∣∣
Equivalently, we can write µ = T−1

# ν which allows us to write

p(x) = q(T (x))
∣∣det JT (x)∣∣ or

log p(x) = log q ◦ T (x) + log
∣∣det JT (x)∣∣ . (2)

Later on we will want to consider the composition of normalizing flows. That is, if we have
T = Tn ◦ Tn−1 ◦ · · · ◦ T1 is a normalizing flow from p to q with each Ti satisfying (i), then by the
chain rule we get

log p(x) = log q ◦ T (x) + log
∣∣det JT (x)∣∣

= log q ◦ T (x) +
n∑

j=1

log
∣∣∣det JTj (zj−1)

∣∣∣
where z0 = x, z1 = T1(z0), z2 = T2(z1), . . . , zn−1 = Tn−1(zn−2).

Distances in P(Rn)

The primary goal is to find a transport map T such that T#µ = ν. However, this exact computation
is rarely possible and the problem of estimating T is cast as optimization where we try to minimize
some measure of distance between T#µ and ν. There are several natural ways to quantify distance.
We define the total variation between µ and ν to be

TV (µ, ν) :=
1

2
|µ− ν| (Rn).
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However, since µ and ν have Lebesgue densities, we can obtain

TV (µ, ν) =
1

2
∥p− q∥1,

where ∥.∥1 is the L1-norm. We will drop the scaling factor of 1
2 and consider the problem of mini-

mizing the total variation as minimizing the L1 distance between two densities. This notion is used
in Kong and Chaudhuri (2020) to formulate approximation results. Using 1, given a normalizing
flow f we measure how “close” f#p is to q (in a sense, how “good” of a flow f is) via

TV (T#p− q) =

∥∥∥∥∥ p(T−1(y))∣∣det JT (T−1(y))
∣∣ − q(y)

∥∥∥∥∥
1

.

The approximation results of Kong and Chaudhuri (2020) are then given in terms of the above
quantity.

Another population notion of distance between two probability measures is Wasserstein dis-
tances. For any p ≥ 1 we define the Wasserstein p-distance between two probability measures
µ, ν with finite pth moment to be

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

ˆ
Rd×Rd

|x− y|p dπ(x, y)

)1/p

.

The Wp metric metrizes weak convergence in the space of probability measures with finite pth
moment (Villani (2003)). It is immediate that Wp distance is closely connected with optimal
transport. There are many situations where Wp may be preferred to total variation. For example,
suppose µ is a probability measure with bounded support, and let µ′ be a translation of µ such that
the support of µ′ has empty intersection with the support of µ. Then TV (µ, µ′) = 1, suggesting
that the two distributions are very dissimilar. However, since there is a clear transport map
between these two measures, the Wasserstein distance may be more reasonable and thus reflect the
similarities between µ and µ′. However, for the purposes of this exposition we will not consider
Wasserstein distance any further.

Another distance popularly used by Marzouk et al. (2016) is theKullback-Leibler divergence
due to its connections with likelihood function. Given two probability measures with densities π1
and π2, Marzouk et al. (2016) defines the KL-divergence from π1 with respect to π2 to be

DKL(π1|π2) := Eπ1

(
log

π1
π2

)
.

In a sense, KL-divergence measures the extent to which π1 is “different” from π2. We observe
that in our application of learning normalized flows, we will want to compute the KL-divergence
of π1 = f#p with respect to our reference measure π2 = q. We have choice over q and often choose
it to be a Gaussian. Thus, π2(x) > 0 for all x ∈ Rd and the quantity DKL(π1|π2) is well-defined as
we can compute the expectation by integrating over {x : π1(x) > 0}.

It is important to note that KL-divergence is not a metric. However, it does satisfy some
important properties. Namely, we have DKL(π1|π2) ≥ 0 and DKL(π1|π2) = 0 if and only if π1 = π2.
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This is a consequence of Jensen’s inequality, as we have

−DKL(π1|π2) = −Eπ1

(
log

π1
π2

)
= Eπ1

(
log

π2
π1

)
≤ log

(
Eπ1

(
π2
π1

))
since log is concave

= log

(ˆ
{π1(x)>0}

π1(x)
π2(x)

π1(x)
dx

)
≤ log(1) as log increasing

= 0.

Moreover, Jensen’s inequality gives that we have equality if and only if − log is affine (which is
false) or π2

π1
constant. Thus, π2

π1
is constant, but since these are both probability measures this forces

that π1 = π2 a.e.
Returning to the problem of finding a normalizing flow T from target measure p to reference

measure q, the KL-divergence arises in the following optimization problem stated by Marzouk et al.
(2016):

minDKL(T#p|q)
s.t. det∇T > 0 and T ∈ F .

The global minimizer of the above optimization problem is such that DKL(S#p|g) = 0, i.e. S#p = q.
Since DKL(T#p|q) = DKL(p|T−1

# q), the population objective can also be written as

minEp[− log q ◦ T (x)− log | det∇T (x)|]
s.t. det∇T > 0 and T ∈ F .

Since the objective involves an expected with respect to the target distribution, we can use its
Monte Carlo estimator to approximate the optimization objection. If {xi}ni=1 are i.i.d. observations
from measure space (Rd,B(Rd), µ), then the sample-average approximation to the objective is

min− 1

n

n∑
i=1

[log q ◦ T (xi) + log |det∇T (xi)|]

s.t. det∇T > 0 and T ∈ F . (3)

Notice that the above objective is the negative log-likelihood of data following the change of variable
formula in (1). Moreover, we observe that the above quantity is given entirely in terms of known
quantities: namely the samples {xi} from µ, the reference density q, and the normalizing flow T .
Importantly, it does not require any knowledge of the target distribution p. Hence, we can learn T
by solving the above optimization problem.

To summarize this section, we have introduced three common notions of distance in the space
of probability measures: total variation, Wasserstein p-distance, and KL-divergence. Both total
variation and Wasserstein p-normalized are metrics, whereas KL-divergence is not. KL-divergence
is used in learning normalizing flows, whereas universal approximation will be stated in terms of
total variation.
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Normalizing Flows

Before diving into specific normalizing flow models, let us consider some key applications and what
kind of properties drive research in these applications. Considering that the data generating target
distribution is difficult to evaluate, the two main applications are - density estimation (for likelihood
based inference) and sampling. Note that calculating the density at each data point x ∈ Rd, requires
us to evaluate T as well as the determinant of its Jacobian at x using (2). Therefore, it is important
that both operations are efficient. On the other hand, we can sample from µ by applying T−1 on
a sample from ν. As a consequence, when sampling is the main goal, normalizing flows are often
modelled in the generative direction (reference to target).

Recall that evaluating data likelihood (or KL divergence) to solve the optimization problem
(3) requires calculating the determinant of the Jacobian matrix, which is a O(d3) operation. This
can be computationalluy prohobitive in high-dimensional problems. To ameliorate this problem, a
triangular structure can be imposed on T so that the determinant is the product of the diagonal
elements making it anO(d) operation. We know that Knothe-Rosenblatt map is a specific triangular
map which is also monotone in lexicographic order. In fact, KR map is the unique global minimizer
of (3) if F is restricted to the vector space of smooth triangular maps. Due to the desirable
properties of KR map, we will later focus on its estimation via input convex neural network.

However, one must keep in mind that while being excellent to work with, the expressiveness
of triangular flows is sensitive to coordinate reordering. In addition, except for universality result
(Bogachev et al., 2005), not enough literature exists on relation between depth of triangular flow
models and their expressiveness. Therefore, we will first study Kong and Chaudhuri (2020) to build
an understanding on proof techniques one can use to study the expressiveness of simple flows. The
approximation results proven in Kong and Chaudhuri (2020) not only consider certain pairs (p,q)
but also specific normalizing flows. These normalizing flows will be the first four that we discuss.
For completeness, we will also discuss neural networks and splines. In this section we will define the
structure of each normalizing flow, discuss how we can enforce invertibility, and (when tractable)
compute its Jacobian.

Planar Flows

Given u,w ∈ Rd, b ∈ R, and nonlinearity h : R → R (such as ReLU), we define planar flow
Tpf : Rd → Rd as

Tpf (z) = z + uh(wT z + b).

Thus, we consider w as specifying a tangent direction, u as a scaling factor (how must to weigh the
nonlinearity), and b as a bias term.

For j ∈ {1, . . . , d} we compute

∂(Tpf (z))j
∂zi

(z) =
∂

∂zi

(
zj + ujh(w

T z + b)
)
= δij + ujwih

′(wT z + b)

and thus

JTpf
(z) = Idd+(uwT )h′(wT z + b).

By the matrix determinant lemma (Kobyzev et al. (2020)) we have

det JTpf
(z) = 1 + (wT Id−1

d u)h′(wT z + b) = 1 + wTuh′(wT z + b).
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In particular, Kong and Chaudhuri (2020) will use this computation with h equal to ReLU, in
which case we get

det JTpf
(z) = 1 + wTu · 1{wT z+b>0}.

Under certain bounds on w and u, Tpf with h = ReLU will be invertible as it will be Lipshitz (come
back to later).

Radial Flows

Given a ∈ R>0, b ∈ R, and z0 ∈ Rd we define radial flow Trf : Rd → Rd by

Trf (z) = z +
b

a+ ∥z − z0∥2
(z − z0)

The occurrence of ∥z − z0∥2 in the denominator makes computing det Jrf (z) unpleasant to put in
a compact form.

Sylvester Flows

Given a positive integer m < d, A ∈ Rd×m, B ∈ Rd×m, b ∈ Rm, and nonlinearity h : R → R, we
define Sylvester flow Tsyl : Rd → Rd by

Tsyl(z) = z +Ah(BT z + b)

where we understand h as mapping coordinate-wise.
For j ∈ {1, . . . , d} we compute

∂(Tsyl(z))j
∂zi

(z) =
∂

∂zi

zj +

m∑
k=1

Ajkh
′

 d∑
ℓ=1

BT
kℓzℓ + bj




= δij +

m∑
k=1

Ajkh
′

 n∑
ℓ=1

Bℓjzℓ + bj

BT
ki.

This gives that

JTsyl
(z) = Idd+Adiag(h′(BT z + b))BT .

By Sylvester’s determinant identity (Kobyzev et al. (2020)), we get that

det JTsyl
(z) = det(Idd+Adiag(h′(BT z + b))BT )

= det(Idm+diag(h′(BT z + b))BTA).

Since we have chosen m < d, the second formula for detJTsyl
(z) is computationally advantageous.
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Householder Flows

Given a unit vector v ∈ Rd, we define the householder flow Thh : Rd → Rd by

Thh(z) = z − 2vvT z.

For j ∈ {1, . . . , d} we compute

∂(Thh(z))j
∂zi

(z) =
∂

∂zi

zj −
d∑

k=1

2vjvkzk


= δij − 2vjvi

It follows that

JThh
(z) = Id−2vvT = Id+(−

√
2v)(

√
2v)T ,

so again by the matrix determinant lemma we have

det JThh
(z) = 1 + (−

√
2v)T (

√
2v) = 1− 2vT v = −1.

Neural Networks

As reflected in the survey provided by Kobyzev et al. (2020), there has been success using neural
networks to learn normalizing flows. As mentioned in the motivation, the key obstacle in using
neural networks for this task is guaranteeing invertibility of the functions in the class modeled by
the neural network. In 1-dimension, we have the following result: a multilayer perception NN(·) :
R → R with positive weights and strictly monotone activation function is a strictly monotone
function. However, forcing the weights to be positive makes training more difficult. There are two
workarounds: one with integration and one with differentiation. Namely, if instead we train a neural
network NN(·) : R → R>0 and integrate it, we obtain a strictly monotone function. Conversely, if
we learn NN(·) : R → R such that NN is convex, then since we are dealing with one dimensional
transport, its derivative will be an increasing function (see later section on input convex neural
networks).

Splines

Splines provide another class of normalizing flows. A spline is a piecewise polynomial function
which passes through a specified number of points (xi, yi)

K
i=0. We call these points knots. In order

for a spline to be strictly increasing, it is necessary that xi < xi+1 and yi < yi+1. Kobyzev et al.
(2020) reports several successful methods of using splines to learn one-dimensional normalizing
flows.

Autoregressive Flows

Autoregressive flows are essentially triangular flows that are implemented by using autoregressive
models in form of flows. As discussed before, the key property of autoregressive flows that make then
computationally lucrative normalizing flows is the O(d) complexity of determinant calculation. The
existing universality proofs for autoregressive flows are based on the following result by Bogachev
et al. (2005)

7



Lemma 1. If µ and ν are absolutely continuous Borel probability measures on Rd, then there exists
an increasing triangular transformation T ∗ : Rd → Rd, such that ν = T ∗

#µ. This transformation is

unique up to null sets of µ. A similar result holds for measures on [0, 1]d.

For specific models, the proof of universality proceeds by showing that the function class consid-
ered is dense in the set of all monotone triangular functions in the pointwise convergence topology.
Then by using Lemma 1, we know that there exists a T ∗ ∈ F such that T ∗ (X) ∼ ν and by dense-
ness of F , we have that there exists a sequence of functions {Tn} ⊂ F such that Tn → T ∗ pointwise
as n → ∞. Then using dominated convergence theorem, followed by Pormanteau’s theorem, we

have that Tn(X)
d−→ T ∗(X). Huang et al. (2018) showed this for autoregressive flows constructed

using monotone neural networks and Jaini et al. (2019) showed this for monotone polynomials.
However, one should keep in mind that universality results are not as impressive as they appear.

Existence of a solution does not give any idea about how the expressiveness of the function class
is related to its complexity. It is possible that even to estimate simple transformation, the model
needs depth that is beyond computational reason. At this juncture, one can appreciate the work
of Kong and Chaudhuri (2020) in describing the expressive power of a class of normalizing flows.

Approximation Results

At this moment, we now cite from Kong and Chaudhuri (2020) several approximation results.
N.B. In these results, we are reversing the roles of the target and reference measure. Namely, a
normalizing flow T will satisfy T#q = p.

Case d = 1

In short, Kong and Chaudhuri (2020) show that when d = 1 planar flows are universal approxima-
tors under moderate assumptions on p and q.

Theorem 1. (Theorem 3.1) Let p and q be densities on R such that supp p is contained in a finite
union of intervals and supp q = R. Then for all ϵ > 0 there exists a planar flow Tpf such that
∥(Tpf )#q − p∥1 ≤ ϵ.

We note that we do not even have to compose planar flows to get universal approximation. An
example of such a permissible q would be a Gaussian distribution.

Case d > 1

Unfortunately, Kong and Chaudhuri (2020) prove negative results about various flows when d > 1
based on a topology matching condition. A sampling of these results include

Theorem 2. (Corollary 4.1.1) If p and q are two mixture of Gaussian distributions, there generally
does not exist a finite composition of Sylvester flows f such that f#q = p.

Theorem 3. (Corollary 4.2.1) If p ∼ N(0,Σp) and q ∼ N(0,Σq) are such that Σ−1
q − Σ−1

p has
high rank, then it is impossible with a limited number of either planar flows or Sylvester flows to
transport q to p.
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