Wasserstein gradient flows Material taken Warserstein space as an infinite dimensional Riemannian Notes from textbook P2(Rd) - space of all Bord prob Listributions. Ambrosio - Giali - Savané with finite second moments. $\mu_1, \mu_2 \in \mathcal{P}_2(\mathbb{R}^d)$ $\lambda(\mu_1, \mu_2) = W_2(\mu_1, \mu_2).$ Numbers in red $(P_2(\mathbb{R}^d), W_2)$ metric space. Textbook - AGS Chapters 7 and 8. How does the topology book like? Proposition 7.1.5 (P2 (Rd), W2) is a complete sepondole metric space. $\lim_{n\to\infty}W_2\left(\mu_n,\mu\right)=0$ \iff $\begin{cases} (\mu_n) \text{ converges weakly to } \mu' \\ (\mu_n) \text{ has } u.i. 2nd \text{ moments.} \end{cases}$ Tightness = KE [IRd Remark sup SIIXII2 dun < E. Approximation by convolutions Lemma 7.1.10 family of moltifiers $(P_{\epsilon}) \in C_{\infty}(\mathbb{R}^d)$. $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. Counder a PE (X) = E-4 P(XE). prob deunty PE(X) ~ N(O, E2 I). $w = \int |x|^2 \rho(x) dx$ then W_2 $(M, M_E) \leq E m$. LOX

 $\lim_{\epsilon \to 0} M_{\epsilon} = M \quad \text{in} \quad (\beta_2, W_2)$.

 $\left(\mathbb{R}^{(\mathbb{R}^{4})}, \mathbb{W}_{2}\right)$ Absolutely Continuous Curves in Wasserstein space. Definition Continuity equation Eqn. 8.1.1 Here (Mr) is a family of prob measures v: (x, t) -> V_L(x) t Rd is a Book velocity field. weak sense. $\forall \varphi \in C_c^{\infty}(\mathbb{R}^d)$ the $\frac{\lambda}{\lambda L} \int_{\mathbb{R}^{N}} \varphi(L) \, d\mu_{L}(L) = \int_{\mathbb{R}^{N}} \left\langle \nabla \varphi(L), \, \chi_{L}(L) \right\rangle \, d\mu_{L}(L) \, .$ Interpretation 1: Flow of push-bornows. $x_o(x) = x \in \mathbb{R}^d$ Comider the ODE: $\left[\frac{d}{dt}X_{t}(a)\right] = 0_{t}(X_{t}(a)).$ Given a μ_0 , let $\mu_t = (X_t) \# \mu_0$ ruinimal conditions, Proposition 8.1.8 $\mu_t = (x_t) \# \mu_0$ \iff solution of the continuity equation. $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$ Take $\mu_t = \mu_0 * \mathcal{N}(0, t_1)$ Take i.e. Xo ~ Mo, them (Mt) is an AC come XF = X° + 1E 5 ~ WF of = - 1 pox ht what are AC comes? Defn. III A come (μ_{+}) , $+ \in (0,T)$, is said to be AC

J some on $\in L^{1}(0,T)$ such

If I some on & L'(O,T) such that $W_2\left(M_S,M_t\right) \leq \int m(u) du$ $\delta < S < t < T$ - If m is a courtant, then the coure in Lip. (m)
- reparametrize an AC course to make it Lip. - Such a course is continuous Metric dérivative Given au AC crove the limit $\left| \mu_{t}^{\prime} \right| = \lim_{s \to t} \frac{W_{2}(\mu_{s}, \mu_{t})}{|s-t|}$ exists for a.e. tim (0,T). Moreover $|\mu't| \leq m(t)$ are. Theorem Suppose $(M_{\xi}, \xi \in (0,T))$ is AC and let $[M_{\xi}]$ denote its metric desurative. Then I Bosel reported such that $v_{\perp} \in L^{2}(\mu_{\perp})$ and $\|v_{\perp}\|_{L^{2}(\mu_{\perp})} = |\mu_{\perp}'|$ $t = \infty$. and CE holds $\partial_{\xi} \mu_{\xi} + \nabla \cdot (\nu_{\xi} \mu_{\xi}) = 0$. Conversely, if (M+) satisfies CE for $O_{+} \in L^{2}(M+)$, then (M+) is AC and $|M+| \leq ||O_{+}||_{L^{2}(M+)}$. Rmk Gaven an AC coure, there is an infinite family of let that generates the same coure. But there is a unique one satisfying 110+11 1= 1 m/1. Define (Tangent bundle.) Définition 8.4.1 $\frac{1}{2} \nabla \varphi$, $\varphi \in C_c^{\infty}(\mathbb{R}^d)$ $\left\{ L^2(A) \right\}$ For $\mu \in P_2(\mathbb{R}^d)$, define $Tan_{\mu}P_2 =$

te maisse verteitn of

Proposition Let (Mt) be AC. Then the unique velocity of $||v_t|| = |\mu'_t| \iff v_t \in Tan_{\mu_t} P_2$ Sabstying Proposition 8.4.6

(Mt) be AC and let Up (Tan Mt P2(Rd)) Safisfying $\partial_{L} M_{L} + \nabla \cdot (a_{L} M_{L}) = 0$. $W_2 \left(\frac{M+h}{h} \right) \left(id + h^{3k} \right) \# M = 0$ Then t a.e. in (0, T), let $OT_{\mu_{t}}^{M+h}$ denote For the OT map trampoling Me to Meth, $\lim_{h\to 0} \frac{1}{h} \left(OT_{\mu_{L}}^{\mu_{L+h}} - id \right) = 2 \ell \quad \text{in} \quad \mathcal{L}(M_{L}).$

Next time

1. How to define gradients $\nabla_W F(\mu)$ 2. Special AC comes "ogradient tows". $\frac{d}{dt} \mu_f = - \nabla_W F(\mu_f).$