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Abstract

There have been many recent theoretical advances in
the recovery of communities from random graphs, un-
der the assumptions of the so called “block models”.
For the DC-SBM, we have witnessed a series of recent
results consisting of sufficient conditions for recovery,
often by spectral algorithms. Since the conditions are
not necessary, one expects that cases exist where recov-
ery is possible, but which are not covered by the theory.
This paper explores experimentally the limits of the cur-
rent theory. We generate benchmark cases, for which
recovery is possible, and with well defined parameters
controlling their difficulty. Then we verify which of the
existing results in the literature predict recovery. If it
is hard to find examples not predicted by theory, then
we may conclude that the theory is strong. This is not
what our experiments show. On the contrary, they sug-
gest that there is much more ground to cover towards
deriving sharp thresholds for community recovery in
the DC-SBM model. The software tool we created is
made publicly available as a tool for researchers. It al-
lows them to create test cases of controlled difficulty,
and can easily be extended to test and compare new re-
covery theorems as they are published.

Motivation
Network modeling for the purpose of community recov-
ery has attracted intense interest in the last decade (Hol-
land et al., 1983; Karypis and Kumar, 1998; Jackson, 2008;
Hoff et al., 2002; Goldenberg et al., 2010; Yang and
Leskovec, 2015). More recently we have been witnessing
rapid progress, and a surge of novel theoretical results on
recovery algorithms with recovery guarantees, under some
modeling assumptions.

At the center of these results are two familiar models
for graphs with communities, the Stochastic Block-Model
(SBM) (Holland et al., 1983) and its extension Degree-
Corrected SBM (DC-SBM) of (Karrer and Newman, 2011).
For the SBM, one is close to establishing thresholds for re-
covery in various regimes, due to the pioneering work of
(Mossel et al., 2014a; Mossel et al., 2014b; Abbe and San-
don, 2015).

For the more general DC-SBM, the recovery thresholds
are not known yet. The recent progress has been in obtaining

recovery guarantees under weaker and weaker conditions on
the model parameters. One drawback of the present results
lies in how complicated these conditions are. They are not
easy to parse and have implicit dependencies on each other.
This makes it hard to understand the space in which the
conditions are satisfied, or to compare conditions between
different papers and methods. Our present work offers an
empirical tool for the theoretician: a software package that
generates benchmark graphs with user controlled parame-
ters and performs the numerical verification of the various
recovery conditions on these graphs for the existing results
in the literature.

We proceed as follows: we generate random graphs from
the DC-SBM model, for which we verify empirically (by
spectral clustering) that the original clustering is recoverable
with low or zero error. Then we check if the theoretical re-
covery conditions from the papers under consideration hold
and discuss the findings. The code we use, which will be
made public, is organized with modularity and extensibility
in mind, so that it can be reused as new results are published.

While no empirical verification can be complete, we ex-
pect to get partial information about a few questions that are
tedious or unresolved theoretically, such as which theorems
cover more recoverable cases, and which conditions are the
most restrictive on the test matrices? Seen this way, our work
is one of benchmarking. While most benchmarks are con-
structed for algorithms, ours is for theorems. Benchmark-
ing and competitions are recognized as drivers of progress
in other areas of research. We expect that this benchmark-
ing exercise will also stimulate and guide useful research in
community detection.

Background: DC-SBM model, community
recovery problem and sparsity regimes

The Degree-Corrected Stochastic Block Model (DC-
SBM) To generate a random graph with n nodes andK clus-
ters C1, . . . CK from a DC-SBM, one constructs a matrix of
edge probabilities S = [Sij ]

n
i,j=1, with Sii = 0, Sij = Sji

in the following way. Each node i is assigned a cluster la-
bel, from 1 to K, and a weight parameter wi > 0 which
indicates how likely the node is to “connect” with other
nodes. The affinity between two clusters Ck, Cl, k, l ∈ [K]
is characterized by Bkl > 0, with Bkl = Blk. Together



w = (wi)
n
i=1, B = [Bkl]

K
k,l=1 represent the parameters of

the SBM, and C = (C1, . . . CK) is the clustering or the com-
munity structure. Then, Sij is set to

Sij = wiwjBkl whenever i ∈ Ck and j ∈ Cl. (1)
To obtain a random graph from the DC-SBM model, one
samples each edge ij, for i, j ∈ [n], i 6= j independently,
with probability Sij .

The model defined by (1) becomes the standard Stochas-
tic Block Model when wi ≡ 1. Compared to the SBM
model, DC-SBM allows for more degrees of freedom, (or-
der n instead of orderK2) and can represent a wider class of
network models. Therefore, recovery theorems for the DC-
SBM model are well worth attention.

Definition of “community recovery” The main research
question in community recovery, and in particular regarding
the DC-SBM is this: Given a simple undirected graph G on n
nodes, with adjacency matrix A, sampled from an unknown
DC-SBM, can we estimate the clustering C and model pa-
rameters (w,B)?1 It is evident that the crux of the prob-
lem is finding C. Once this is known, the parameters (w,B)
can be estimated from A and C by the Maximum Likelihood
method. Thus, our paper as well as most results in the liter-
ature focus on the community recovery problem. (Chen and
Xu, 2014) establishes a scale of definitions of “recovery”;
in particular, strong (or exact) recovery denotes identifying
C exactly; weak recovery denotes estimating C with an error
err2 of order o(n); partial recovery (or detection) denotes
finding C with err < 1/2. The most promising in real ap-
plications is the weak recovery; therefore in the rest of the
paper the term “recovery” will be understood to mean “weak
recovery”. This is also the scenario under which most results
about the DC-SBM are obtained.

Weak recovery was shown to be possible (Coja-Oghlan
and Lanka, 2009; Rohe et al., 2011; Balcan et al., 2012;
Qin and Rohe, 2013; Wan and Meila, 2015) in the dense
and sparse regimes3, according again to the classification
of (Chen and Xu, 2014). These regimes are defined based
on the minimum expected degree dmin = min d1:n, where
di =

∑
j Sij is the expected degree of node i, and corre-

spond respectively to dmin = Ω(n) and dmin = Ω(lnn).
The papers cited above vary in the conditions they require

to guarantee recovery, due to using different combination of
parameters, and sometimes different algorithms. But their
requirements lie in four main categories: (1), good separa-
tion between the communities, which can be interpreted as
the near block-diagonality of S; (2), the density of the graphs
cannot be too low; (3), the degree distribution within clus-
ters needs to be balanced; and (4), the cluster sizes are also
required to be balanced.

1It is standard to assume that K the number of clusters is
known; however, several notable recovery algorithms do not re-
quire knowing K.

2The recovery error between the true C and the estimated Ĉ is
defined as err= 1− 1

n
maxφ:[K]→[K]

∑
k |Cφ(k) ∩ Ĉk|..

3We note however that several more recent results break the
sparsity barrier, by proving recovery is possible when only a lim-
ited number of node degress are below the lnn threshold (Coja-
Oghlan and Lanka, 2009; Qin and Rohe, 2013).

Yet, the variations in the conditions make it hard to com-
pare the stringency of the assumptions among different pa-
pers. Even the domains of applicability of these assumptions
are inexplicit. For instance, it is not always explicit at what
values of n some of the asymptotic conditions start holding .
And more generally, it is not known how large is the gap be-
tween recoverability and the existing conditions. Therefore,
this paper sets out to probe the state of the art experimen-
tally.

Experiment design
Our experiment is designed as follows. First, we define a
range of parameters controlling the difficulty of the bench-
mark problems. For each combination of parameters in this
range, we

1. Generate a benchmark DC-SBM and its S matrix, accord-
ing to Algorithm 1.
Sample an adjacency matrix A from S (multiple times).

2. For each paper and for each condition in it
Verify if the condition holds for the current model and
A.

By construction all S matrices are perfectly clusterable by
standard spectral clustering (Wan and Meila, 2015; Rohe
et al., 2011; Ng et al., 2002). In addition, we verify for each
A that the clusters can be recovered with small error.

Generating the benchmark matrices
All DC-SBMs we generate have K = 5 clusters, and sizes
n = 300, . . . 30, 000. Node weights in each cluster are sam-
pled from the same Generalized Pareto (GPareto) distribu-
tion. The remaining input parameters are:
• cluster relative sizes: balanced (all equal) or
unbalanced (in ratio 4 : 7 : 10 : 13 : 16)

• the cluster level relations are parametrized by the spec-
trum Λ = (λ1 = 1 > λ2 ≥ . . . ≥ λK > 0) and the
distribution ρ = (ρ1, . . . ρK)4

• weight distribution: balanced (σl = 0), perturbed
(σl = 0.01), unbalanced (σl = 0.1) with respect to ρ
(see Algorithm 1)

The parameters Λ control how separate the clusters are
via the value λK , known as the eigengap. It was shown
in (Meilă and Shi, 2001; Rohe et al., 2011) that for
S constructed as above, the Laplacian matrix L =
diag(d1:n)−1/2S diag(d1:n)−1/2, which plays a central role
in spectral clustering of graphs, has exactly K non-zero
eigenvalues given by Λ. We do the experiments with three
different sets of eigenvalues Λ, having λK = 0.01, 0.4, 0.99
respectively; the last value corresponding to an almost ex-
actly block diagonal matrix S.

The variation from balanced to unbalanced degree distri-
bution is further controlled by the magnitude of noise added
to the cluster weight volume. In Figure 1 we exemplify the
B and S matrices we generate. The figure also shows that in
this simulation, di increases linearly with respect to n.

4In (Wan and Meila, 2015) the role of ρ is explained in detail.
Essentially, ρ is a “default” cluster size distribution.



Input : spectrum K, Λ, ρ, cluster sizes n1:K , σl
Output: S
1. Set u =

√
ρ, create U = [uu1 . . . uK−1] orthogonal

matrix, compute B = diag u−1UΛUT diag u−1.
2.For l = 1, . . .K

2.1. Sample weights in cluster Cl
∼ GPareto(k = 0, σ = 1, µ = 1).

2.2. Normalize the weights to sum to Wl = ρl + sl
with σl ∼ unif(−σl, σl).
3. Construct S using (1). Normalize S by maxij Sij .

Algorithm 1: Construction of the DC-SBM benchmark
matrices.

Λ =
[

1.00 .75 .50 .26 .01
]

B =


1.46 .57 .69 1.59 .29
.57 5.20 .49 .66 1.42
.69 .49 2.44 .35 .07

1.59 .66 .35 1.92 .27
.29 1.42 .07 .27 4.19



Figure 1: Left: example of Λ, B, the resulting S. Note
that the order of the clusters in S is not the same as in B.
In particular, the first row of B corresponds to the second
cluster in S, this cluster has stronger links to another clus-
ter than within itself. Bottom right: the easiest S we use
(λK = 0.01), top right: the average degree versus n.

Checking the conditions
In this study, the theorems we compare come from (Coja-
Oghlan and Lanka, 2009; Rohe et al., 2011; Balcan et al.,
2012; Chaudhuri et al., 2012; Qin and Rohe, 2013; Wan and
Meila, 2015). We also include two spectral clustering papers
(Ng et al., 2002; Balakrishnan et al., 2011) which provide re-
covery guarantees and are compatible with our experimental
setup.

For the main recovery theorem in each paper we check for
each test case if the conditions of the theorem are satisfied.
Table 1 describes the specific conditions we tested for each
paper, for a total of about 20 conditions. For the spectral
clustering papers, S is treated like the adjacency matrix of
a weighted graph, in other words as a similarity matrix, and
consequently we check the recovery conditions directly on
S, without sampling.

Some results, such as (Coja-Oghlan and Lanka, 2009;
Ng et al., 2002), depend on unspecified constants; in such
cases, we calculate upper or lower bounds on these con-
stants from the data and check if the interval obtained is non-

Paper Theorem Conditions
Balakrishnan et al Thm 1 and 2 Assumptions 1-3
Check the hierarchical structure
Balcan et al Thm. 3.1 and 4.1 Definition 1
Check the self-determined structure. Restrictions are on block-
diagonality
Coja-Oglan, et al Thm. 1 C0 - C5
Restrictions on density of the graph
Chaudhuri et al Thm. 3 Assumption 1-5
Restrictions on the balance of the node degree distribution and
density of the graph
Ng&Jordan&Weiss Thm. 2 A1-A5
Restrictions on block-diagonality
Qin&Rohe Thm. 4.4 (a-b)
Restrictions on block-diagonality and density of the graph
Rohe, Chatter-
jee&Yu

Thm. 3.1 Equations (1-2)

Restrictions on block-diagonality and density of the graph
Wan&Meila Thm. 3 Assumption 3-6
Restrictions on the balance of the node degree and density of
the graph

Table 1: Theorems and conditions tested.

empty. The next section describes the conditions in more de-
tail and summarizes our findings.

Results
Throughout our simulation, we find that most of the papers
fail to cover even a single test case; the exceptions are (Wan
and Meila, 2015) and (Balcan et al., 2012). The other papers
approach the satisfaction of the conditions as the parameters
are tuned towards their favor.

(Wan and Meila, 2015) Since S is generated from the
DC-SBM model , assumptions 1, 2 and 5 hold immediately.
From Figure 2, we observe that as n gets larger, assumptions
3 and 4 hold more often, which is because the node degree
which grows with n is faster than log(n) in the assumptions.
Another interesting fact is that these two assumptions pre-
fer harder case where S is less block-diagonal, because as
the off-diagonal entries of S increase, the magnitudes of S
spread out, as a result the node degree increases above the
assumption thresholds. Assumption 6 is highly associated
with the balance of the degree distribution across various
clusters. It can tolerate slight perturbation to the degree dis-
tribution but fails with significant unbalance. Comparing the
balanced and unbalanced cluster size setting from figure 2
and 3, unbalanced case violates assumption assumption 3
and 4 more often, while assumption 6 stays the same.

(Balcan et al., 2012) The main assumption proposed by
this paper is that the clusters are self-determined communi-
ties, aka each node is more connected with the nodes within
the same cluster than outside the same cluster. Because node
weights are unequal, this is hard to satisfy for low weight
nodes, occurring only in the cases when λK is almost 1, and
S is almost block-diagonal.

(Coja-Oghlan and Lanka, 2009) Assumptions C0, C1,
C5 automatically hold from the DC-SBM model configura-
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Figure 2: Results for Wan&Meila with balanced cluster
sizes. For each of the 6 conditions, T (F) indicates whether
the condition is true (false).

The range of n mean(min(w̄)
max(w̄ )

{1000, 3000, 10000, 30000} 0.08
{300, 1000, 3000, 10000} 0.07

{300, 1000, 3000, 10000, 30000} 0.03

Table 2: Changes in the range of D over different n ranges.

tion. This model has several dependent assumptions.

C2: wi ≤ n1−ε, ∀i ∈ V (2)

C3: wi ≥ εw̄, ∀i ∈ V , w̄ =
∑

wi/n (3)

C4: w̄ ≥ D > 0 (4)

We use C2 and C3 to normalize the w and fix ε. We then
record w̄ the maximum value of the unknown D. Since this
value should be independent of n, we examine its range over
various sets of n. From table 2, we observe that w̄ decreases
significantly as the range of n increases. This suggests that
asymptotically the value of D, if it exists, could be very
small.

(Chaudhuri et al., 2012) The paper assumes the extended
planted partition model, which is more restricted than DC-
SBM by reducing K ×K parameters in B to only 2 param-
eters p = Bkk and q = Bkl, k 6= l, p > q (we do not test
for this condition). Since it assumes simpler model structure,
the other assumptions for recovery should be easier to sat-
isfy.
Assumption 1 requires the balance of cluster sizes; Assump-
tions 2-4 put restrictions on the degree distribution, among
which Assumption 4 is the hardest to satisfy, since it requires
the degree distribution having small variance in a squared
degree setting normalized by the average degree. We denote
as Assumption 5 the extra assumption inside Theorem 3:

E[di] ≥
128

9
ln(6n/δ), for i ∈ V (5)
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Figure 3: Results for Wan&Meila with unbalanced cluster
sizes. For each of the 6 conditions, T (F) indicates whether
the condition is true (false).

where δ � 1 is the probability of success. From figure 4,
we see that Assumptions 1-3 hold and Assumptions 4-5 fail
regardless of the value of n. We further plot a critical value
coming from equation (5)

1−min(di)/ [128/9 ln(6n/δ)] , (6)

which should be negative for Assumption 5 to hold. This
value is getting smaller when n gets larger, which indicates
that assumption 5 will hold when n is sufficiently large.

Figure 4: Typical results for (Chaudhuri et al., 2012). Left:
the satisfaction of the 5 conditions versus n; middle: critical
value of (6) vs. n in balanced cluster size setting; right: the
same in unbalanced cluster setting.

(Qin and Rohe, 2013) Assumption (a) lower bounds the
smallest eigenvalue. Assumption (b) lower bounds the ex-
pected node degree. From Figure 1 and Figure 5, we observe
that, as n increases, so does the average degree and assump-
tion (b) starts to hold. Assumption (a) is not met regardless
of the value of n. Assumption (a) is

1

8
√

3

√
K ln(4n/ε)

min di + γ
≤ λK , (7)

which puts a lower bound on λK depending on the mini-
mum di. The mis-clustering rate is bounded with probability
(1 − ε) if these assumptions hold; γ is a constant. We set
γ = d̄i as suggested by the paper. Figure 5 displays the



lower bound, which stays larger than 1 in all cases. As a
result assumption (a) fails since λK < 1. As n increases,
lower bound in (7) decreases. We may anticipate the
satisfaction of assumption (b) when n is sufficiently large.
Meanwhile, the balanced cluster size setting performs better
than the unbalanced setting.

Figure 5: Typical results for (Qin and Rohe, 2013). Left:
the satisfaction of the 2 conditions versus n; middle: criti-
cal value of (7) vs. n in balanced cluster size setting; right:
the same in unbalanced cluster setting. These results are ob-
tained with largest eigengap λK = 0.99 and balanced degree
distribution.

(Rohe et al., 2011) Assumption (1) requires that the
eigengap not be too small, and Assumption (2) requires the
graph to be dense enough, i.e.

min d2
i log n

n2
> 2 (8)

From figure 6, we observe that Assumption (1) always holds
and Assumption (2) always fails. The critical value is the
left hand side of the inequality (8). We can see that the crit-
ical value is staying far below 2 in all cases. This is because
Assumption (2) requires the expected degrees to grow faster
than n, while in our setting di grows linearly with n.

Figure 6: Typical results for (Rohe et al., 2011), with largest
eigengap λK = 0.99 and balanced degree distribution. Left:
the satisfaction of the 2 conditions versus n; middle: critical
value of (8) vs. n in balanced cluster size setting; right: the
same in unbalanced cluster setting.

Now we discuss the two spectral clustering papers.
(Ng et al., 2002) This paper also has dependent conditions.
We eliminate the unknown parameters from Assumptions
A1−A4 and plug them intoA5, then check whether it holds
or not. Assumption A5 is defined as

δ − (2 +
√

2)ε > 0, (9)
In the above, δ is obtained from A1, and 0 < δ < 1; ε is
obtained from A2 and A3, and is small as long as the simi-
larity within the cluster is higher than that between clusters.

However, in the experiments A5 always fails. Calculating ε
from various parameter setting, we find that it is always big-
ger than 1. The plots in Figure 7 show a clear trend that as
n increases, δ gets larger. We also observe that the balanced
cluster size setting has smaller ε than the unbalanced setting,
and is thus closer to satisfying condition A5.

Figure 7: The best results for Ng, Jordan and Weiss, 2002.
They are produced with balanced degree distribution and
largest eigengap λK = 0.99. Left: the satisfaction of the
5 conditions versus n; middle: critical value of (9) vs. n in
balanced cluster size setting; right: the same in unbalanced
cluster setting.

(Balakrishnan et al., 2011) The paper proposes two al-
gorithms, one for hierachical clustering, and the other for
k-way clustering with spectral method. For the hierarchical
clustering, it assumes that S is constructed from the combi-
nation of a noise matrix and a hierarchical block matrix. We
tested Assumptions 1–3 under all the possible hierarchical
structures of the 5 clusters, and Assumption 3 is constantly
violated. This is because the cluster separation is not large
enough.

Discussion, conclusion and further work
In summary, because each of the eight papers we studied
gives sufficient (but not necessary) guarantees for recovery,
our experiments consist of generating networks for which re-
covery is possible and check which theory predicts it more
often. We were able to generate such examples because it
has been known for a long time, empirically, how to gener-
ate cases that are (likely to be) clusterable. Thus, this exper-
iment tested the limits of the current theory. As we already
mentioned, if necessary and sufficient conditions for com-
munity recovery were known, i.e sharp recovery thresholds,
such experiments would have been uninformative. If the cur-
rent results were close to the unknown thresholds, then it
would have been difficult to find clusterable examples not
covered by the theory. Our results show that this is not the
case.

We started with the aim of providing empirical compar-
isons between theoretical results in order to help readers un-
derstand their strenghs and weaknesses. We were also ex-
pecting to see a gradual degradation of the agreement be-
tween theory and reality as the test cases became harder. To
our surprise, it turned out that we had to create the trivially
easy λK = 0.99 set of test cases in order to observe some
theorems predict recoverability.

We were also expecting that the theoretical result by and
large improve with time, as newer results build on previous



ones. This was partially confirmed by the most recent paper,
(Wan and Meila, 2015), whose conditions are the only ones
to cover a number of instances with non-trivially separated
clusters.

We now turn to examining if any particular type of condi-
tion can be held responsible for the negative results. Before
we start, we need to caution the reader on drawing hasty
conclusions from examining Figures 2–7. As we have al-
ready mentioned, several theorems have interdependent con-
ditions, or conditions that depend on the same unknown
value. Between theses, one can trade-off violating one con-
dition for satisfying another.

For every one of the eight papers studied, the require-
ments for cluster separation failed to be met, always or occa-
sionally. This suggest that in many cases they are too severe.
Interestingly enough, (Wan and Meila, 2015), which fared
by far the best in terms of tolerance to intercluster edges, the
separation conditions involve neither the off-diagonal blocks
of S, nor λK . Rather, they are based on the separation in
the spectral mapping obtained by spectral clustering, and de-
pend on the imbalance between the sums of the node degrees
in each cluster, with respect to the distribution ρ.

Furthermore, it appears that all four types of conditions
previously mentioned were violated for some of the theo-
rems. The biggest surprise is that the requirements on graph
density were also occasionally too restrictive. For instance,
even though Figure 1 shows that in our examples the average
degree grows linearly with n, and the graphs are relatively
dense (average di ≈ 0.1n), equation (7) does not hold for
any n up to 30,000. Extrapolating from our graphs, we see
that it may start holding if n increases by another 2–4 orders
of magnitude.

What we have observed with these benchmarking exper-
iments suggests that the current results are not close to the
yet unknown thresholds for recovery. They suggest that our
understanding of the problem is not complete, and that the
existing conditions do not yet align with the actual combi-
nations of parameters that make recovery challenging.

As any benchmarking work, this one, too, can be im-
proved on. Our second contribution is the Matlab code
we wrote. This is being made avilable as the package
ThmBench on github/mmp2. The code is written with
ease of use and modularity in mind. We invite researchers in
the field to construct their own test cases, which may offer
new perspectives on the limits of our current understanding
in this area. We also have made it easy to add new testing
modules, so that as new results are published, their condi-
tions can be benchmarked as well.
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