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1 Proof of Proposition 1,3.

We first prove the following Lemma.
Proposition 1. If f : S ⊆ RD → R is convex, non-negative and ∇2f exists for all x ∈ intS, then
1
2f

2(x) is convex.

Proof ∇
(

1
2f

2
)

= f∇f ; ∇2
(

1
2f

2
)

= f∇2f +∇f∇f ′ which is positive definite whenever f∇2f
is. 2.

Using the above Lemma, and the fact that ||Hk − In|| is non-negative and infinitely differentiable
almost everywhere , we obtain the desired result. 2

2 Proof of Proposition 2

||G||G0+εIs = sup
u 6=0

u′Gu
u′G0u+ ε||u||2

(1)

= sup
u 6=0

v′G−1
ε GG−1

ε v

||v||2
with Gε = (G0 + εI)1/2 and v = Gεu (2)

= ||G̃||2 with G̃ = (G0 + εI)−1/2G(G0 + εI)−1/2 (3)

For (2), we first prove the following fact

sup
u∈Rs

|uTGu|
uTG0u+ ε||u||2

 = supu∈Null G⊥
|uT Gu|

uT G0u+ε||u||2 if Null(G) = Null(G0)

≤ maxα2+β2=1
β2λ†(G)+α2λmax(G)+2αβΘmax(G,G0)

β2ε+α2(λ∗min(G0)+ε) if Null(G) 6= Null(G0)

(4)
where λmax(G) is the spectral radius of G, Θ(G,G0) = sup||u||=||v||=1,v∈Null G,u∈Null G0

u′Gv is
the cosine of the principal angle between Null G and Null G0, and λ∗min(G0) is the smallest non-
zero eigenvalue of G0.

Denote for simplicity g(u) = |uT Gu|
uT G0u+ε||u||2 . (1) If Null(G) = Null(G0) then for u ∈ Null G the

value is 0, which cannot be the sup. Let u1 = v ⊕ u0 with u0 ∈ Null G, v ∈ Null G⊥. Then
uT1 G0u1 + ε||u1||2 = vTG0v + ε||v||2 + ε||u0||2 > vTG0v + ε||v||2. Hence, the u which attains
the supremum must be in Null G.

Now note that, if Null G 6= Null G0, Rs = Null G0⊕Null G⊥0 , and Null G0 = (Null G0∩Null G)⊕
V , with V the orthogonal complement of Null G0 ∩Null G in Null G0 and the supremum of g(u) =

is attained on U = V⊕Null G⊥0 (as adding any component along the orthogonal complement of this
space only adds a positive value to the denominator, increasing g(u)). Any u ∈ U can be written
as u = αu0 ⊕ βv0 with u0 ∈ Null G⊥0 and v0 ∈ V unit vectors. By upper bounding every term in

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

the numerator and lower bounding u′0G0u0 we obtain the result. Note that for ε small enough, the
expression in 4 is close to 1

ελ
†(G).

For (2), let v ∈ V and compute g(v) as above, with α = 0. It follows that g(v) = |v′Gv|
ε||v||2 and by

taking the supremum over v ∈ V we obtain that supV g(v) = 1
ελ
†(G) < r, from which the result

follows.

For (3), it is obvious that when ε → 0, g(v) → ∞ on V , but remains finite for u 6∈ V . More
precisely, ||G||G0

=∞ iff Null G0 6⊆ G. To verify that ||||G0
is a norm, we must verify the triangle

inequality, since the other two properties obviously hold. If ||A||G0
= ∞ or ||B||G0

= ∞, triangle
inequality holds trivially. Assume then that ||A||G0

, ||B||G0
<∞. Since ||A||G0+εIs + ||B||G0+εIs ≥

||A + B||G0+εIs for every ε > 0, then in the limit we will have that ||A||G0
+ ||B||G0

≥ ||A + B||G0
.

The norm for comparing Riemannian metric The norm of a bilinear functional f : R2×R2 → R
is defined as sup||u||=||v||=1 |f(u, v)|, or since for a fixed orthonormal base of Rs f(u, v) = u′Av,
||f || = sup||u||=||v||=1 |u′Av|. If A is hermitian, then ||f || = maxλ(A)|λi| where λ(A) de-
notes the spectrum of A. One can define the norm with respect to any metric G0 on Rs
where G0 is a symmetric, positive definite matrix by ||f ||G0

= sup||u||G0
=||v||G0

=1 |u′Av| =

sup||ũ||=||ṽ||=1 |ũ′G
−1/2
0 AG−1/2

0 ṽ| = max
λ(G−1/2

0 AG−1/2
0
|λi| In other words, the appropriate op-

erator norm we seek can be expressed as a (generalized) matrix spectral norm. In our cases G0 = Id
and A = Hk − Id

3 Proof of Propositions 3

Note that we can write the loss as:
n∑
k=1

∣∣∣∣∣∣∣∣12Π′kY′LkYΠk −ΠkUkUkΠk

∣∣∣∣∣∣∣∣2
2

Where Πk = (UkU′k + (εorth)kIs)−1/2. We take the Πk matrices to be fixed and don’t depend
on the data points Y (in practice they do, however, after taking a gradient step we update the Πk

in an E-M style algorithm). Since UkU′k and Πk are the identity matrix (the latter multiplied by
1/(1 + εorth)) when s = d we can compute the derivative when s > d without loss of generality.

3.1 Proof of Derivative

Since the derivative is a linear operator it’s sufficient to show that the derivative of a single loss
function is of the form:

∂lk
∂Y

= (2|λ∗k|)sgn(λ∗k)LkYΠkuku
′
kΠ
′
k

To compute the derivative we will make use of the chain rule. First define the function lk as a
composition of functions:

lk(Y) ≡ ρ(Pk(Hk(Y))− Ck)

With Ck = ΠkUkUkΠk and

ρ(U) = (max
k
|λk(U)|)2

Pk(H) = Π′kHΠk

Hk(Y) =
1

2
Y′LkY

Where U,H are both symmetric. Here we note that the matrix spectral norm reduces to the spectral
radius if U is symmetric. Since Hk(Y) is defined to be symmetric and Ck is symmetric this is the
case. By the chain rule:

Dlk(Y) = Dρ(Pk(Hk(Y))− Ck)DPk(Hk(Y))DHk(Y)

Taking these from left to right:

2
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3.1.1 Dρ

Since ρ is defined to be the largest (in absolute value) eigenvalue of U (squared) the derivative1 is
the kronecker product between the corresponding eigenvector and itself multiplied by the sign of the
eigenvalue:

D
√
ρ(U) = sgn(λ∗k)(u′k ⊗ u′k)

Where |λ∗k| =
√
ρ(U) and Uuk = λ∗kuk Then since we square the spectral radius we add the factor

of (2|λ∗k|) so that:
D(ρ(U) = (2|λ∗k|)sgn(λ∗k)(u′k ⊗ u′k)

3.1.2 DPk

DPk(H) = (Π′k ⊗Π′k)

Proof.

Pk(H) = Π′kHΠk

dPk(H) = Π′kdHΠk

⇒ vec(dPk(H)) = vec(Π′kdHΠk)

= (Π′k ⊗Π′k)dvec(H)

3.1.3 DHk

DHk(Y) = Ns(Is ⊗ Y′Lk)

Where Ns = Is2 + Kss for Kss the commutation matrix defined in Magnus & Neudecker ch. 3 §7.

Proof.

Hk(Y) =
1

2
Y′LkY

⇒ dHk(Y) =
1

2
[(dY)′LkY + Y′LkdY]

⇒ vec(dHk(Y)) =
1

2
[(Y′L′k ⊗ Is)dvec(Y′) + (Is ⊗ Y′Lk)dvec(Y)]

=
1

2
[(Y′L′k ⊗ Is)Knsdvec(Y) + (Is ⊗ Y′Lk)dvec(Y)]

=
1

2
[Kss(Is ⊗ Y′L′k)dvec(Y) + (Is ⊗ Y′Lk)dvec(Y)]

=
1

2
[(Kss + Is2)(Is ⊗ Y′Lk)dvec(Y)] Lk is symmetric

=
1

2
[2Ns(Is ⊗ Y′Lk)dvec(Y)]

= Ns(Is ⊗ Y′Lk)dvec(Y)

3.1.4 Dck

Putting it all together

Dck(Y) = (2|λ∗k|)sgn(λ∗k)(u′k ⊗ u′k)(Π′k ⊗Π′k)Ns(Is ⊗ Y′Lk) = vec

(
∂ck
∂Y

)′
1see Matrix Differential Calculus With Applications in Statistics And Economics by Magnus & Neudecker

ch. 9 §12 for proof

3
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We can simplify this to get the claim:

∂ck
∂Y

= (2|λ∗k|)sgn(λ∗k)LkYΠkuku
′
kΠ
′
k

Proof.

Dck(Y) = (2|λ∗k|)sgn(λ∗k)(u′k ⊗ u′k)(Π′k ⊗Π′k)Ns(Is ⊗ Y′Lk)

= (2|λ∗k|)sgn(λ∗k)(u′k ⊗ u′k)(Π′k ⊗Π′k)
1

2
(Kss + Is2)(Is ⊗ Y′Lk)

= (2|λ∗k|)sgn(λ∗k)
1

2
(u′kΠ

′
k ⊗ u′kΠ

′
k)(Kss + Is2)(Is ⊗ Y′Lk)

= (2|λ∗k|)sgn(λ∗k)
1

2

[
(u′kΠ

′
k ⊗ u′kΠ

′
k)Kss(Is ⊗ Y′Lk) + (u′kΠ

′
k ⊗ u′kΠ

′
k)(Is ⊗ Y′Lk)

]
= (2|λ∗k|)sgn(λ∗k)

1

2

[
(u′kΠ

′
k ⊗ u′kΠ

′
k)(Y′Lk ⊗ Is)Kns + (u′kΠ

′
k ⊗ u′kΠ

′
k)(Is ⊗ Y′Lk)

]
= (2|λ∗k|)sgn(λ∗k)

1

2

[
(u′kΠ

′
kY′Lk ⊗ u′kΠ

′
k)Kns + (u′kΠ

′
k ⊗ u′kΠ

′
kY′Lk)

]
= (2|λ∗k|)sgn(λ∗k)

1

2

[
K11(u′kΠ

′
k ⊗ u′kΠ

′
kY′Lk) + (u′kΠ

′
k ⊗ u′kΠ

′
kY′Lk)

]
= (2|λ∗k|)sgn(λ∗k)(u′kΠ

′
k ⊗ u′kΠ

′
kY′Lk) K11 = 1

= (2|λ∗k|)sgn(λ∗k)(Πkuk ⊗ LkYΠkuk)′

Then note that:

vec((2|λ∗k|)sgn(λ∗k)LkYΠkuku
′
kΠ
′
k) = (2|λ∗k|)sgn(λ∗k)vec([LkYΠkuk][1][u′kΠ

′
k])

= (2|λ∗k|)sgn(λ∗k)(Πkuk ⊗ LkYΠkuk)vec(1)

= (2|λ∗k|)sgn(λ∗k)(Πkuk ⊗ LkYΠkuk)

= (Dck(Y)′

So that
∂ck
∂Y

= (2|λ∗k|)sgn(λ∗k)LkYΠkuku
′
kΠ
′
k

The proposition then follows by removing the absolute value and multiplication by the sign.
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Figure 1: The average number of neighbors m(r) vs the neighborhood radius r, on a log-log scale,
for the SDSS spectra data, computed on the whole sample of 675,000 galaxies. The blue regres-
sion line, is fitted to the graph points in the shown r range, and has slope 2.87. The absence of a
linear region on this graph suggests that the data dimension varies with the scale. The analysis and
visualization in this paper corresponds to the largest meaningful scale.
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