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Manifold learning (ML): Results depend on data

Success
Original
(Swiss Roll)

Isomap

Failure
Original
(Swiss Roll with hole)

Isomap



Results depend on algorithm

Original data
(Swiss Roll with hole)

Isomap

Laplacian Eigenmaps
(LE)

Local Linear
Embedding (LLE)

Hessian Eigenmaps
(HE)

Local Tangent Space
Alignment (LTSA)



Distortion occurs even for the simplest examples



“Which ML method better?” vs “Can we make them all
better?”

I A great number of ML algorithms exist
I Isomap, Laplacian Eigenmaps (LE), Diffusion Maps (DM),

Hessian Eigenmaps (HE), Local Linear Embedding (LLE),
Latent Tangent Space Alignment (LTSA)

I Each of them “work well” in special cases, “fail” in other cases

I Current paradigm: Design a ML method that “works better”
(i.e “succeeds” when current ones “fail”)

I Our goal/New paradigm: make existing ML methods (and
future ones) “successful”

i.e., given a ML method that “fails” on a data set from a
manifold, we will augment it in a way that can make it
“succeed”

I for rigurous, general definition of “success”/“failure”
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Basic notation

I D = original dimension of the data (high in real examples)

I d = intrinsic dimension of the manifold d << D

I m = embedding dimension m ≥ d (chosen by user)

m = d = 2 m = 2 > d = 1



Preserving topology vs. preserving (intrinsic) geometry
I ML Algorithm maps data x ∈ RD −→ φ(x) ∈ Rm

I Mapping M −→ φ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping φ preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. φ is isometry
For most algorithms, in most cases, φ is not isometry

Preserves topology
Preserves topology +

intrinsic geometry



Previous known results in geometric recovery

Positive results
I Consistency results for

Laplacian and eigenvectors
I [Hein & al 07,Coifman &

Lafon 06, Ting & al 10,
Gine & Koltchinskii 06]

I implies isometric recovery
for LE, DM in special
situations

I Isomap recovers (only) flat
manifolds isometrically

Negative results

I obvious negative examples

I No affine recovery for
normalized Laplacian
algorithms [Goldberg&al 08]

I Sampling density distorts
the geometry for LE
[Coifman& Lafon 06]



Consistency is not sufficient

Necessary conditions for consistent geometric recovery

φ(D) isometric with M in the limit

I n → ∞ sufficient data
I ε → 0 with suitable rate

I consistent tangent plane estimation

I cancel effects of (non-uniform) sampling density [Coifman &
Lafon 06]

I These conditions are not sufficient

I In particular, consistency of φ is not sufficient



Our approach, restated

Given

I mapping φ that preserves topology

true in many cases

Objective

I augment φ with geometric information g
so that (φ, g) preserves the geometry

g is the Riemannian metric.
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The Riemannian metric g

I M = manifold

I p point on M
I TpM = tangent plane at p

I g = Riemannian metric on M
g defines inner product on TpM

< v ,w >= vTg(p)w for v ,w ∈ TpM and for p ∈M

I g is symmetric and positive definite tensor field
I g also called first differential form
I (M, g) is a Riemannian manifold



All geometric quantities on M involve g
I Length of curve c

l(c) =

∫ b

a

√√√√∑
ij

gij
dx i

dt

dx j

dt
dt,

I Volume of W ⊂M

Vol(W ) =

∫
W

√
det(g)dx1 . . . dxd .

I Angle cos(v ,w) = <v ,w>√
<v ,v><w ,w>

I Under a change of parametrization, g changes in a way that
leaves geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)
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Problem formulation

I Given:
I data set D = {p1, . . . pn}

sampled from manifold M ⊂ RD

I embedding {φ(p), p ∈ D }
by e.g LLE, Isomap, LE, . . .

I Estimate gp ∈ Rm×m the Riemannian metric for p ∈ D
in the embedding coordinates φ

I The embedding (φ, g) will preserve the geometry of the
original data manifold



Relation between g and ∆

I ∆ = Laplace-Beltrami operator on M
I ∆ = div · grad
I on C 2, ∆f =

∑
j

∂2f
∂x2

j

I on weighted graph with similarity matrix S , and
tp =

∑
pp′ Spp′ , ∆ = diag { tp} − S

Proposition 1 (Differential geometric fact)

∆f =
1√

det(g)

∑
l

∂

∂x l

(√
det(g)

∑
k

g lk ∂

∂xk
f

)
,

where [g lk ] = g−1



Estimation of g

Proposition 2 (Main Result 1)

g ij =
1

2
∆(φi − φi (p)) (φj − φj(p))|φi (p),φj (p)

where [g lk ] = g−1 (matrix inverse)

Intuition:

I at each point p ∈M, g(p) is a d × d matrix

I apply ∆ to embedding coordinate functions φ1, . . . φm

I this produces g−1(p) in the given coordinates

I our algorithm implements matrix version of this operator result

I consistent estimation of ∆ is solved [Coifman&Lafon
06,Hein&al 07]



The case m > d

I Technical point: if m > d then “g−1”not full rank
I Denote

I φ :M −→ φ(M) embedding
I dφ Jacobian of φ

< v ,w >gp in TpM −→ < dφpv , dφpw >hp in Tφ(p)φ(M)

Proposition 3

hp = h̃†p, where

h̃p =
1

2
∆(φi − φi (p)) (φj − φj(p))|φi (p)φj (p)

I h is the push-forward of g on φ(M)

I hp = dφpgpdφ
T
p or in matrix notation H = JGJT

I rank of hp is d = dimM < m



Algorithm to Estimate Riemann metric g
(Main Result 2)

1. Preprocessing (construct neighborhood graph, ...)

2. Estimate discretized Laplace-Beltrami operator ∆

3. Find an embedding φ of D into Rm

4. Estimate h†p and hp for all p

Output (φp, hp) for all p
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Algorithm RiemannianEmbedding

Input data D, m embedding dimension, ε resolution

1. Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
2. Construct similary matrix

Spp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors, S = [Spp′ ]p,p′∈D

3. Construct (renormalized) Laplacian matrix [Coifman & Lafon
06]

3.1 tp =
∑

p′∈D Spp′ , T = diag tp, p ∈ D
3.2 S̃ = I − T−1ST−1

3.3 t̃p =
∑

p′∈D S̃pp′ , T̃ = diag t̃p, p ∈ D
3.4 P = T̃−1S̃ .

4. Embedding [φp ]p∈D = GenericEmbedding(D, m)

5. Estimate embedding metric Hp at each point

denote Z = X ∗ Y , X ,Y ∈ RN iff Zi = XiYi for all i
5.1 For i , j = 1 : m,

H ij = 1
2 [P(φi ∗ φj)− φi ∗ (Pφj)− φj ∗ (Pφi )] (column

vector)
5.2 For p ∈ D, H̃p = [H ij

p ]ij and Hp = H̃†p

Ouput (φp,Hp)p∈D



Computational cost

n = |D|, D = data dimension,m= embedding dimension

1. Neighborhood graph +

2. Similarity matrix O(n2D) (or less)

3. Laplacian O(n2)

4. GenericEmbedding e.g. O(mN) (eigenvector
calculations)

5. Embedding metric
I O(nm2) obtain g−1 or h†

I O(nm3) obtain g or h

I Steps 1–3 are part of many embedding algorithms

I Steps 2–3 independent of ambient dimension D

I Matrix inversion/pseudoinverse can be performed only when
needed



Outline

Success and failure in manifold learning

Background on Manifolds

Estimating the Riemannian metric

Examples and experiments

Consistency



g shows embedding distortion



g for Sculpture Faces
I n = 698 with 64× 64 gray images of faces

I head moves up/down and right/left

LTSA



Isomap LTSA

Laplacian Eigenmaps



Visualization

I Visualization = isometric embedding in 2D or 3D
I Not possible globally for all manifolds

Example: the sphere cannot be mapped onto a plane

I But possible locally



Locally Normalized Visualization
Given: (φ, g) Riemannian Embedding of D

1. Select a point p on the manifold

2. Transform coordinates φ̃p′ ← gp
−1/2φp′ for p′ ∈ D

This assures that g̃p = Im the unit matrix
⇒ φ̃ are normal coordinates around p

g (before) g̃ (after)



I Now we have a Locally Normalized view of M around p

Swiss Roll with hole (LTSA)
local neighborhood, unnormailzed local neighborhood, Locally Normailzed

I Distortion w.r.t original data (projected on the tangent plane)
local neighborhood, unnormailzed local neighborhood, Locally Normailzed,

• original data
• embedded data



Swiss Roll with hole (Isomap)

local neighborhood, unnormailzed local neighborhood, Locally Normailzed



Calculating distances in the manifold M
I Geodesic distance = shortest path on M
I should be invariant to coordinate changes

Original Isomap

Laplacian Eigenmaps



Calculating distances in the manifold M

Shortest

Embedding ||f (p)− f (p′)|| Path dG Metric d̂ d̂ R. Err.

Original data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%

LE s = 3 0.08 0.08 1.62 3.1%

Table: The errors in the last column are with respect to the true
distance d = π/2 '1.5708 .



Convergence of the distance estimates

% error in geodesic distance vs sample size n, noise level

I insensitive to small noise levels, then degrades gradually

I slow convergence with n



Computing Area/Volume

By performing a Voronoi tessellation of a coordinate chart (U, x),
we can obtain the estimator 4x1 . . .4xd around p and multiply it
by
√

det (h) to obtain 4Vol ' dVol. Summing over all points in a
set W ⊂M gives the estimator:

V̂ol(W ) =
∑
p∈W

√
det (hp)4x1(p) . . .4xd(p) .



Hourglass Area

Original Laplacian Eigenmaps

Voronoi Tessellation



Hourglass Area Results

Embedding Naive Area of W V̂ol(W ) V̂ol(W ) R. Err.

Original data 0.85 (0.03)† 0.93 (0.03) 11 %
Isomap 2.7† 0.93 (0.03) 11%
LTSA 1e-03 (5e-5) 0.93 (0.03) 11%

LE 1e-05 (4e-4)† 0.82 (0.03) 2.6%

Table: † The naive area estimator is obtained by projecting the manifold
or embedding on TpM and Tf (p)f (M), respectively. This requires
manually specifying the correct tangent planes, except for LTSA, which
already estimates Tf (p)f (M). The true area is ' 0.8409.



An Application: Gaussian Processes on Manifolds

I Gaussian Processes (GP) can be extended to manifolds via
SPDE’s (Lindberg, Rue, and Lindstrom, 2011)

I Let
(
κ2 −∆Rd

)α/2
u(x) = ξ with ξ Gaussian with noise, then

u(x) is a Matérn GP

I Subsituting ∆M allows us to define a Matérn GP on M
I Semi-supervised learning: unlabelled points can be learned by

Kriging using the Covariance matrix Σ of u(x)



Solution by Finite Element Method

I Σ−1, the precision matrix, can be derived by finite element
method for α integer

I E.g. given finite element basis (ψi , i = 1, . . . ,m), Σ−1 for
α = 1 is given by

Σ−1
i ,j (κ2) = κ2Ci ,j + Wi ,j

Ci ,j = < ψi , ψj >

Wi ,j = < ∇ψi ,∇ψj >

where < ψi , ψj >=
∫
M ψi , ψj

√
det (g)dµ

I This means we can compute Σ using an embedding of the
data provided we know the pushforward metric of g



Semisupervised learning
Sculpture Faces: Predicting Head Rotation

Absolute Error (AE) as percentage of range

Isomap (Total AE = 3078) LTSA (Total AE = 3020)

Metric (Total AE = 660) Laplacian Eigenmaps (Total AE = 3078)
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Consistency. Necessary condition

I The embedding φ must be diffeomorphic, consistent,
Laplacian-consistent

Yes No No

I Algorithms based on Laplacian eigenvectors (e.g LE, DM):
YES, with modification regarding choice of eigenvectors

I LTSA NO unless m = d

I Isomap ?
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Consistency theorems

Proposition 4 (Main Result 3)

A If φ :M → φ(M) diffeomorphic and consistent ( i.e.
φ(Dn)

n→∞−→ φ(M))

then (φ(Dn), hn)
n→∞−→ (φ(M), h)

B Laplacian Eigenmaps and Diffusion Map satisfy conditions of
A if M compact



Technical contributions

I We offer a natural solution to the geometry preserving
embedding problem

I We introduce a method for estimating the Riemannian metric
I theoretical solution (Propositions 2, 3)
I practical solution ( Algorithm RiemannEmbed)
I Statistical analysis: consistency result (Proposition 4)



Significance

I Augmentation of manifold learning algorithms
I For a given algorithm, all geometrical quantities are preserved

simultaneously, by recovering g = geometry preserving
embedding

I We can obtain geometry preserving embeddings with any
reasonable algorithm

I Unification of algorithms
I Now, all “reasonable” algorithms/embeddings are

asymptotically equivalent from the geometry point of view
I We can focus on comparing algorithms based on other criteria

speed, rate of convergence, numerical stability
I g offers a way to compare the algorithms’ outputs

I Each algorithm has own φ
I Hence outputs of different algorithms are incomparable
I But (φA, gA), (φB , gB) should be comparable because they

aim to represent intrinsic/geometric quantities
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