Metric Learning of Manifolds

Dominique Perrault-Joncas and Marina Meilă

Department of Statistics University of Washington {mmp,dcpj}@stat.washington.edu

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

Success and failure in manifold learning

Background on Manifolds

Estimating the Riemannian metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples and experiments

Consistency

Outline

Success and failure in manifold learning

Background on Manifolds

Estimating the Riemannian metric

Examples and experiments

Consistency

Manifold learning (ML): Results depend on data

Success Original (Swiss Roll)

Failure

Original (Swiss Roll with hole)

Isomap

Isomap

Results depend on algorithm

Original data (Swiss Roll with hole)

lsomap

Hessian Eigenmaps (HE)

Local Linear Embedding (LLE)

Local Tangent Space Alignment (LTSA)

Distortion occurs even for the simplest examples

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

"Which ML method better?" vs "Can we make them all better?"

- A great number of ML algorithms exist
 - Isomap, Laplacian Eigenmaps (LE), Diffusion Maps (DM), Hessian Eigenmaps (HE), Local Linear Embedding (LLE), Latent Tangent Space Alignment (LTSA)
- ► Each of them "work well" in special cases, "fail" in other cases
- Current paradigm: Design a ML method that "works better" (i.e "succeeds" when current ones "fail")
- Our goal/New paradigm: make existing ML methods (and future ones) "successful"

i.e., given a ML method that "fails" on a data set from a manifold, we will augment it in a way that can make it "succeed"

▶ for rigurous, general definition of "success" / "failure"

Outline

Success and failure in manifold learning

Background on Manifolds

Estimating the Riemannian metric

Examples and experiments

Consistency

Basic notation

• D = original dimension of the data (high in real examples)

- d = intrinsic dimension of the manifold d << D
- m = embedding dimension $m \ge d$ (chosen by user)

m = d = 2

m = 2 > d = 1

Preserving topology vs. preserving (intrinsic) geometry

- ML Algorithm maps data $x \in \mathbb{R}^D \longrightarrow \phi(x) \in \mathbb{R}^m$
- ► Mapping *M* → φ(*M*) is diffeomorphism preserves topology often satisfied by embedding algorithms
- Mapping ϕ preserves
 - distances along curves in \mathcal{M}
 - angles between curves in \mathcal{M}
 - areas, volumes
 - ... i.e. ϕ is **isometry**

For most algorithms, in most cases, ϕ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

Previous known results in geometric recovery

Positive results

- Consistency results for Laplacian and eigenvectors
 - [Hein & al 07,Coifman & Lafon 06, Ting & al 10, Gine & Koltchinskii 06]
 - implies isometric recovery for LE, DM in special situations
- Isomap recovers (only) flat manifolds isometrically

Negative results

- obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg&al 08]
- Sampling density distorts the geometry for LE [Coifman& Lafon 06]

Consistency is not sufficient

Necessary conditions for consistent geometric recovery $\phi(\mathcal{D})$ isometric with \mathcal{M} in the limit

- $n \rightarrow \infty$ sufficient data
- $\epsilon \rightarrow 0$ with suitable rate
 - consistent tangent plane estimation
- cancel effects of (non-uniform) sampling density [Coifman & Lafon 06]

- These conditions are not sufficient
- In particular, consistency of ϕ is not sufficient

Our approach, restated

Given

 mapping \u03c6 that preserves topology true in many cases

Objective

 augment φ with geometric information g so that (φ, g) preserves the geometry

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Our approach, restated

Given

 mapping \u03c6 that preserves topology true in many cases

Objective

augment \u03c6 with geometric information g so that (\u03c6, g) preserves the geometry g is the Riemannian metric.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Riemannian metric g

- $\blacktriangleright \ \mathcal{M} = \mathsf{manifold}$
- ▶ *p* point on *M*
- $T_p\mathcal{M} =$ tangent plane at p
- ► g = Riemannian metric on M g defines inner product on T_pM

$$\langle v, w \rangle = v T_{p}(p) w \text{ for } v, w \in T_{p} \mathcal{M} \text{ and for } p \in \mathcal{M}$$

- g is symmetric and positive definite tensor field
- g also called first differential form
- (\mathcal{M}, g) is a **Riemannian manifold**

All geometric quantities on $\mathcal M$ involve g

Length of curve c

$$I(c) = \int_{a}^{b} \sqrt{\sum_{ij} \frac{g_{ij}}{dt} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

• Volume of $W \subset \mathcal{M}$

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

• Angle
$$\cos(v, w) = \frac{\langle v, w \rangle}{\sqrt{\langle v, v \rangle \langle w, w \rangle}}$$

 Under a change of parametrization, g changes in a way that leaves geometric quantities invariant

- Current algorithms: estimate M
- This talk: estimate g along with M (and in the same coordinates)

Outline

Success and failure in manifold learning

Background on Manifolds

Estimating the Riemannian metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples and experiments

Consistency

Problem formulation

- ► Given:
 - data set D = {p₁,... p_n} sampled from manifold M ⊂ ℝ^D
 - ► embedding { \(\phi(\mathcal{p}\), \(p \in \mathcal{D}\) \)} \) by e.g LLE, Isomap, LE, ...
- ► Estimate $g_p \in \mathbb{R}^{m \times m}$ the Riemannian metric for $p \in \mathcal{D}$ in the embedding coordinates ϕ

► The embedding (φ, g) will preserve the geometry of the original data manifold

Relation between g and Δ

•
$$\Delta = Laplace$$
-Beltrami operator on \mathcal{M}

Proposition 1 (Differential geometric fact)

$$\Delta f = \frac{1}{\sqrt{\det(g)}} \sum_{l} \frac{\partial}{\partial x^{l}} \left(\sqrt{\det(g)} \sum_{k} g^{lk} \frac{\partial}{\partial x^{k}} f \right),$$

where $[g^{lk}] = g^{-1}$

Estimation of g

Proposition 2 (Main Result 1)

$$g^{ij} = \frac{1}{2} \Delta(\phi_i - \phi_i(p)) (\phi_j - \phi_j(p))|_{\phi_i(p),\phi_j(p)}$$

where $[g^{lk}] = g^{-1}$ (matrix inverse)

Intuition:

- ▶ at each point $p \in M$, g(p) is a $d \times d$ matrix
- ▶ apply Δ to embedding coordinate functions ϕ_1, \ldots, ϕ_m
- this produces $g^{-1}(p)$ in the given coordinates
- our algorithm implements matrix version of this operator result

► consistent estimation of ∆ is solved [Coifman&Lafon 06,Hein&al 07]

The case m > d

• Technical point: if m > d then " g^{-1} " not full rank

Denote

•
$$\phi : \mathcal{M} \longrightarrow \phi(\mathcal{M})$$
 embedding
• $d\phi$ Jacobian of ϕ

$$\langle v, w \rangle_{g_p}$$
 in $T_p\mathcal{M} \longrightarrow \langle d\phi_p v, d\phi_p w \rangle_{h_p}$ in $T_{\phi(p)}\phi(\mathcal{M})$
Proposition 3
 $h_p = \tilde{h}_p^{\dagger}$, where

$$\tilde{\mathbf{h}}_{\mathbf{p}} = \frac{1}{2} \Delta(\phi_i - \phi_i(\mathbf{p})) \left(\phi_j - \phi_j(\mathbf{p})\right)|_{\phi_i(\mathbf{p})\phi_j(\mathbf{p})}$$

h is the **push-forward** of *g* on φ(M) *h_p* = dφ_pg_pdφ^T_p or in matrix notation *H* = *JGJ^T*rank of *h_p* is *d* = dim M < m

Algorithm to Estimate Riemann metric g (Main Result 2)

- 1. Preprocessing (construct neighborhood graph, ...)
- 2. Estimate discretized Laplace-Beltrami operator Δ

- 3. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- 4. Estimate h_p^{\dagger} and h_p for all p

Output (ϕ_p, h_p) for all p

Algorithm to Estimate Riemann metric g (Main Result 2)

- 1. Preprocessing (construct neighborhood graph, ...)
- 2. Estimate discretized Laplace-Beltrami operator Δ

- **3**. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- 4. Estimate h_p^{\dagger} and h_p for all p

Output (ϕ_p, h_p) for all p

Algorithm RIEMANNIANEMBEDDING

Input data \mathcal{D} , *m* embedding dimension, ϵ resolution

- 1. Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- 2. Construct similary matrix

 $S_{
hop'}=e^{-rac{1}{\epsilon}||
hoho'||^2}$ iff ho,
ho' neighbors, $S=[S_{
hop'}]_{
ho,
ho'\in\mathcal{D}}$

3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

3.1
$$t_p = \sum_{p' \in \mathcal{D}} S_{pp'}, T = \text{diag } t_p, p \in \mathcal{D}$$

3.2 $\tilde{S} = I - T^{-1}ST^{-1}$
3.3 $\tilde{t}_p = \sum_{p' \in \mathcal{D}} \tilde{S}_{pp'}, \tilde{T} = \text{diag } \tilde{t}_p, p \in \mathcal{D}$
3.4 $P = \tilde{T}^{-1}\tilde{S}.$

- 4. Embedding $[\phi_p]_{p \in \mathcal{D}} = \text{GENERICEMBEDDING}(\mathcal{D}, m)$
- 5. Estimate embedding metric H_p at each point denote Z = X * Y, $X, Y \in \mathbb{R}^N$ iff $Z_i = X_i Y_i$ for all i5.1 For i, j = 1 : m, $H^{ij} = \frac{1}{2} [P(\phi_i * \phi_j) - \phi_i * (P\phi_j) - \phi_j * (P\phi_i)]$ (column vector) 5.2 For $p \in D$, $\tilde{H}_p = [H^{ij}_p]_{ij}$ and $H_p = \tilde{H}^{\dagger}_p$ **Ouput** $(\phi_p, H_p)_{p \in D}$

Computational cost

 $n = |\mathcal{D}|$, D = data dimension, m = embedding dimension

- 1. Neighborhood graph +
- 2. Similarity matrix $\mathcal{O}(n^2 D)$ (or less)
- 3. Laplacian $\mathcal{O}(n^2)$
- 4. GENERICEMBEDDING e.g. $\mathcal{O}(mN)$ (eigenvector calculations)
- 5. Embedding metric
 - $\mathcal{O}(nm^2)$ obtain g^{-1} or h^{\dagger}
 - $\mathcal{O}(nm^3)$ obtain g or h
- Steps 1–3 are part of many embedding algorithms
- Steps 2–3 independent of ambient dimension D
- Matrix inversion/pseudoinverse can be performed only when needed

Outline

Success and failure in manifold learning

Background on Manifolds

Estimating the Riemannian metric

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples and experiments

Consistency

\boldsymbol{g} shows embedding distortion

(ロト 4 間 ト 4 臣 ト 4 臣 ト 三 三 の Q ()

\boldsymbol{g} for Sculpture Faces

- n = 698 with 64×64 gray images of faces
 - head moves up/down and right/left

Visualization

- Visualization = isometric embedding in 2D or 3D
- Not possible globally for all manifolds
 Example: the sphere cannot be mapped onto a plane

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

But possible *locally*

Locally Normalized Visualization

Given: (ϕ, g) Riemannian Embedding of \mathcal{D}

1. Select a point p on the manifold

▲□ → ▲ 注 → ▲ 注 → のへで

2. Transform coordinates $\tilde{\phi}_{p'} \leftarrow g_p^{-1/2} \phi_{p'}$ for $p' \in \mathcal{D}$ This assures that $\tilde{g}_p = I_m$ the unit matrix $\Rightarrow \tilde{\phi}$ are **normal coordinates** around p

\blacktriangleright Now we have a Locally Normalized view of ${\cal M}$ around p Swiss Roll with hole (LTSA)

local neighborhood, unnormailzed

local neighborhood, Locally Normailzed

Swiss Roll with hole (Isomap)

local neighborhood, unnormailzed

local neighborhood, Locally Normailzed

C

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

- Geodesic distance = shortest path on \mathcal{M}
- should be invariant to coordinate changes

Laplacian Eigenmaps

(日)、

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

		Shortest		
Embedding	f(p) - f(p')	Path $d_{\mathcal{G}}$	Metric \hat{d}	<i>â</i> R. Err.
Original data	1.41	1.57	1.62	3.0%
Isomap $s = 2$	1.66	1.75	1.63	3.7%
LTSA <i>s</i> = 2	0.07	0.08	1.65	4.8%
LE <i>s</i> = 3	0.08	0.08	1.62	3.1%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Table: The errors in the last column are with respect to the true distance $d=\pi/2\simeq\!\!1.5708$.

Convergence of the distance estimates

% error in geodesic distance vs sample size n, noise level

▶ insensitive to small noise levels, then degrades gradually

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

slow convergence with n

Computing Area/Volume

By performing a Voronoi tessellation of a coordinate chart (U, x), we can obtain the estimator $\triangle x^1 \dots \triangle x^d$ around p and multiply it by $\sqrt{\det(h)}$ to obtain $\triangle \text{Vol} \simeq d \text{Vol}$. Summing over all points in a set $W \subset \mathcal{M}$ gives the estimator:

$$\hat{\mathsf{Vol}}(W) = \sum_{p \in W} \sqrt{\mathsf{det}\,(h_p)} riangle x^1(p) \dots riangle x^d(p)$$
 .

Hourglass Area

Voronoi Tessellation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Hourglass Area Results

Embedding	Naive Area of W	$\hat{Vol}(W)$	√ol(<i>W</i>) R. Err.
Original data	0.85 (0.03) [†]	0.93 (0.03)	11 %
lsomap	2.7 [†]	0.93 (0.03)	11%
LTSA	1e-03 (5e-5)	0.93 (0.03)	11%
LE	1e-05 (4e-4) [†]	0.82 (0.03)	2.6%

Table: [†] The naive area estimator is obtained by projecting the manifold or embedding on $T_p\mathcal{M}$ and $T_{f(p)}f(\mathcal{M})$, respectively. This requires manually specifying the correct tangent planes, except for LTSA, which already estimates $T_{f(p)}f(\mathcal{M})$. The true area is $\simeq 0.8409$.

An Application: Gaussian Processes on Manifolds

- Gaussian Processes (GP) can be extended to manifolds via SPDE's (Lindberg, Rue, and Lindstrom, 2011)
- Let $(\kappa^2 \Delta_{\mathbb{R}^d})^{\alpha/2} u(x) = \xi$ with ξ Gaussian with noise, then u(x) is a Matérn GP
- \blacktriangleright Subsituting $\Delta_{\mathcal{M}}$ allows us to define a Matérn GP on $\mathcal M$
- Semi-supervised learning: unlabelled points can be learned by Kriging using the Covariance matrix Σ of u(x)

Solution by Finite Element Method

- Σ⁻¹, the precision matrix, can be derived by finite element method for α integer
- ► E.g. given finite element basis (ψ_i, i = 1,..., m), Σ⁻¹ for α = 1 is given by

$$\begin{array}{rcl} \Sigma_{i,j}^{-1}(\kappa^2) &=& \kappa^2 C_{i,j} + W_{i,j} \\ C_{i,j} &=& <\psi_i, \psi_j > \\ W_{i,j} &=& <\nabla \psi_i, \nabla \psi_j > \end{array}$$

where $\langle \psi_i, \psi_j \rangle = \int_{\mathcal{M}} \psi_i, \psi_j \sqrt{\det(g)} d\mu$

This means we can compute Σ using an embedding of the data provided we know the pushforward metric of g

Semisupervised learning

Sculpture Faces: Predicting Head Rotation

Absolute Error (AE) as percentage of range

Isomap (Total AE = 3078)

Metric (Total AE = 660)

LTSA (Total AE = 3020)

Laplacian Eigenmaps (Total AE = 3078)

Outline

Success and failure in manifold learning

Background on Manifolds

Estimating the Riemannian metric

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples and experiments

Consistency

Consistency. Necessary condition

► The embedding φ must be diffeomorphic, consistent, Laplacian-consistent

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Consistency. Necessary condition

The embedding \u03c6 must be diffeomorphic, consistent, Laplacian-consistent

- Algorithms based on Laplacian eigenvectors (e.g LE, DM): YES, with modification regarding choice of eigenvectors
- LTSA **NO** unless m = d
- Isomap ?

Consistency theorems

Proposition 4 (Main Result 3)

A If
$$\phi : \mathcal{M} \to \phi(\mathcal{M})$$
 diffeomorphic and consistent (i.e.
 $\phi(\mathcal{D}_n) \xrightarrow{n \to \infty} \phi(\mathcal{M})$)
then $(\phi(\mathcal{D}_n), h_n) \xrightarrow{n \to \infty} (\phi(\mathcal{M}), h)$

 ${\bf B}$ Laplacian Eigenmaps and Diffusion Map satisfy conditions of ${\bf A}$ if ${\cal M}$ compact

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Technical contributions

- We offer a natural solution to the geometry preserving embedding problem
- ▶ We introduce a method for estimating the Riemannian metric
 - theoretical solution (Propositions 2, 3)
 - practical solution (Algorithm RIEMANNEMBED)
 - Statistical analysis: consistency result (Proposition 4)

Significance

Augmentation of manifold learning algorithms

- ▶ For a given algorithm, all geometrical quantities are preserved simultaneously, by recovering g = geometry preserving embedding
- We can obtain geometry preserving embeddings with any reasonable algorithm
- Unification of algorithms
 - Now, all "reasonable" algorithms/embeddings are asymptotically equivalent from the geometry point of view
 - We can focus on comparing algorithms based on other criteria speed, rate of convergence, numerical stability
 - g offers a way to compare the algorithms' outputs
 - Each algorithm has own ϕ
 - Hence outputs of different algorithms are incomparable
 - ▶ But (φ^A, g^A), (φ^B, g^B) should be comparable because they aim to represent intrinsic/geometric quantities