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When to do (non-linear) dimension reduction

I high-dimensional data p 2 RD , D = 64⇥ 64

I can be described by a small number d of continuous parameters

I Usually, large sample size n



When to do (non-linear) dimension reduction

Why?
I To save space and computation

I n ⇥ D data matrix ! n ⇥ s, s ⌧ D

I To understand the data better
I preserve large scale features, suppress fine scale features

I To use it afterwards in (prediction) tasks
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When to do (non-linear) dimension reduction

Richard Powell - The Hertzsprung Russell Diagram, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1736396
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How? Brief intro to manifold learning algorithms

I
Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ✏

I Construct neighborhood graph p, p0 neighbors i↵ ||p � p0||2  ✏

I Construct a n ⇥ n matrix its leading eigenvectors are the coordinates
�(p1:n)

Isomap [[Tennenbaum, deSilva & Langford 00]]

I Find all shortest paths in neighborhood graph, construct matrix of
distances

M = [distance2pp0 ]

I use M and Multi-Dimensional Scaling (MDS) to obtain m dimensional
coordinates for p 2 D



A toy example (the “Swiss Roll” with a hole)

points in D � 3 dimensions same points reparametrized in 2D

Input Desired output
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Embedding in 2 dimensions by di↵erent manifold learning algorithms
Input

Figure by Todd Wittman



How to evaluate the results objectively?

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps
(HE), Laplacian Eigenmaps (LE), Di↵usion Maps (DM)



How to evaluate the results objectively?

Spectrum of a galaxy. Source SDSS, Jake VanderPlas

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

I what if I have real data?
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Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p 2 RD �! �(p) = x 2 Rm

I Mapping M �! �(M) is di↵eomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping � preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. � is isometry
For most algorithms, in most cases, � is not isometry

Preserves topology Preserves topology + intrinsic geometry
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Previous known results in geometric recovery

Positive results

I Nash’s Theorem: Isometric
embedding is possible.

I algorithm based on Nash’s theorem
(isometric embedding for very low d)
[Verma 11]

I Isomap recovers (only) flat manifolds
isometrically

I Consistency results for Laplacian and
eigenvectors

I [[Hein & al 07,Coifman & Lafon
06, Ting & al 10, Gine &
Koltchinskii 06]]

I imply isometric recovery for LE,
DM in special situations

Negative results

I obvious negative examples

I No a�ne recovery for normalized
Laplacian algorithms [Goldberg&al
08]

I Sampling density distorts the
geometry for LE [Coifman& Lafon 06]



Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

I mapping � that preserves topology

true in many cases

Objective

I augment � with geometric information g
so that (�, g) preserves the geometry Dominique

Perrault-Joncas

g is the Riemannian metric.
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The Riemannian metric g

Mathematically

I M = (smooth) manifold

I p point on M
I TpM = tangent subspace at p

I g = Riemannian metric on M
g defines inner product on TpM

< v ,w >= vTgpw for v ,w 2 TpM and for p 2 M

I g is symmetric and positive definite tensor field
I g also called first di↵erential form
I (M, g) is a Riemannian manifold

Computationally at each point p 2 M, gp is a positive definite matrix of rank d



All geometric quantities on M involve g

I Volume element on manifold

Vol(W ) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)
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Problem formulation

I Given:
I data set D = {p1, . . . pn} sampled from manifold M ⇢ RD

I embedding { xi = �(pi ), pi 2 D }
by e.g LLE, Isomap, LE, . . .

I Estimate Gi 2 Rm⇥m the (pushforward) Riemannian metric for pi 2 D
in the embedding coordinates �

I The embedding {x1:n,G1:n} will preserve the geometry of the original data



g for Sculpture Faces

I n = 698 gray images of faces in D = 64⇥ 64 dimensions
I head moves up/down and right/left

LTSA Algoritm



Isomap LTSA

Laplacian Eigenmaps



Calculating distances in the manifold M
I Geodesic distance = shortest path on M
I should be invariant to coordinate changes

Original Isomap

Laplacian Eigenmaps



Calculating distances in the manifold M

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)� f (p0)|| Path dG d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%
LE s = 3 0.08 0.08 1.62 3.1%



Relation between g and �

I � = Laplace-Beltrami operator on M

Proposition 1 (Di↵erential geometric fact)
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p
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where h = g�1 (matrix inverse)



Relation between g and �

I � = Laplace-Beltrami operator on M
I � = div · grad
I on C2(Rd ), �f =

P
j
@2f
@x2j

I on weighted graph with similarity matrix S , and tp =
P

pp0 Spp0 ,
� = diag { tp}� S
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Estimation of g

Proposition 2 (Main Result 1)

Let � be the Laplace-Beltrami operator on M. Then

hij(p) =
1

2
�(�i � �i (p)) (�j � �j(p))|�i (p),�j (p)

where h = g�1 (matrix inverse) and i , j = 1, 2, . . .m are embedding dimensions

Intuition:

I at each point p 2 M, g(p) is a d ⇥ d matrix

I apply � to embedding coordinate functions �1, . . . �m

I this produces g�1(p) in the given coordinates

I our algorithm implements matrix version of this operator result

I consistent estimation of � is solved [Coifman&Lafon 06,Hein&al 07]



Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding � of D into Rm

3. Estimate discretized Laplace-Beltrami operator L 2 Rn⇥n

4. Estimate Hp = G�1
p and Gp = H†

p for all p 2 D
Output (�p,Gp) for all p



Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding � of D into Rm

3. Estimate discretized Laplace-Beltrami operator L

4. Estimate Hp = G�1
p and Gp = H†

p for all p
4.1 For i , j = 1 : m,

Hij = 1
2

⇥
L(�i ⇤ �j )� �i ⇤ (L�j )� �j ⇤ (L�i )

⇤

where X ⇤ Y denotes elementwise product of two vectors X, Y 2 RN

4.2 For p 2 D, Hp = [Hij
p ]ij and Gp = H†

p

Output (�p,Gp) for all p



Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric Gi

along with embedding coordinates xi Why useful

I Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi

I Corrects distortion
I Integrating with the local volume/length units based on Gi
I Riemannian Relaxation (coming next)

I Algorithm independent geometry preserving method

I Outputs of di↵erent algorithms on the same data are comparable
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Riemannian Relaxation

Sometimes we can dispense with g

Idea

I If embedding is isometric, then push-forward metric is identity matrix Id

Idea, formalized
I Measure distortion by loss =

Pn
i=1 ||Gi � Id ||2

I where Gi is R. metric estimate at point i
I Id is identity matrix

I Iteratively change embedding x1:n to minimize loss

More details
I loss is non-convex
I || || is derived from operator norm
I Extends to s > d embeddings loss =

Pn
i=1 ||Gi � UiU

T
i ||2�

I Extensions to principal curves and surfaces [Ozertem, Erdogmus 11],
subsampling, non-uniform sampling densities

Implementation
I Initialization with e.g Laplacian Eigenmaps
I Projected gradient descent to (local) optimum
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Riemannian Relaxation of a deformed sphere

target initialization algorithm
output

Mean-squared error and loss vs. noise amplitude
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Scaling: Statistical viewpoint

Rates of convergence as n �! 1
I Assume data sampled from manifold M with intrinsic dimension d ,

I M, sampling distribution are “well behaved”
I ✏ kernel bandwidth decreases slowly with n

I rate of Laplacian n� 1
d+6 [Singer 06], and of its eigenvectors n

� 2
(5d+6)(d+6)

[Wang 15]

I minimax rate of manifold learning n� 2
d+2 [Genovese et al. 12]

I Estimating M and � accurately requires big data
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Scaling: Computational viewpoint

Laplacian Eigenmaps revisited

1. Construct similarity matrix

S = [Spp0 ]p,p02D withSpp0 = e�
1
✏ ||p�p0||2

i↵ p, p0 neighbors

2. Construct Laplacian matrix
L = I � T�1S with T = diag(S1)

3. Calculate  1...m = eigenvectors of L
(smallest eigenvalues)

4. coordinates of p 2 D are
( 1(p), . . .  m(p))
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Laplacian Eigenmaps revisited

1. Construct similarity matrix

S = [Spp0 ]p,p02D with Spp0 = e�
1
✏ ||p�p0||2

i↵ p, p0 neighbors

2. Construct Laplacian matrix
L = I � T�1S with T = diag(S1)

3. Calculate  1...m = eigenvectors of L
(smallest eigenvalues)

4. coordinates of p 2 D are
( 1(p), . . .  m(p))

Nearest neighbor search in high
dimensions

Sparse Matrix Vector
multiplication

Principal eigenvectors

I of sparse, symmetric, (well
conditioned) matrix



Manifold Learning with millions of points

https://www.github.com/megaman

James McQueen Jake VanderPlas Jerry Zhang Grace Telford

I Implemented in python, compatible with scikit-learn

I Statistical/methodological novelty
I implements recent advances in the statistical understanding of manifold

learning, e.g radius based neighborhoods [], consistent graph Laplacians [],
Riemannian metric (stretch) estimation

I Designed for performance
I sparse representation as default
I incorporates state of the art FLANN package1
I uses amp, lobpcg fast sparse eigensolver for SDP matrices
I exposes/caches intermediate states (e.g. data set index, distances,

Laplacian, eigenvectors)

I Designed for extensions

1Fast Approximate Nearest Neighbor search



https://www.github.com/megaman

James McQueen Jake VanderPlas Jerry Zhang Grace Telford



Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from

Google news (3,000,000 phrases originally

represented in 300 dimensions by the Deep

Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the

Sloan Digital Sky Survey (675,000 spectra

originally in 3750 dimensions).

preprocessed by Jake VanderPlas, figure by Grace Telford
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represented in 300 dimensions by the Deep

Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the
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preprocessed by Jake VanderPlas, figure by Grace Telford



I Currently: on single core, embeds all data, all data in memory

I Near future: Nyström extension, lazy evaluations, multiple charts
I Next

I
gigaman?

I scalable geometric/statistical tasks (search for optimal ✏, Riemannian
Relaxation, semi-supervised learning, clustering)
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Manifold learning for SDSS Spectra of Galaxies (more in next talk!)

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000
spectra originally in 3750 dimensions).

I data curated by Grace Telford,

I “noise removal” by Jake VanderPlas



Chosing the embedding dimension



Embedding into 3 dimensions



Same embedding. . .

I only high density regions

I another viewpoint

I how distorted is this embedding?



How distorted is this embedding?

(ellipses represent G�1
i

)



Riemannian Relaxation along principal curves

Find principal curves



Riemannian Relaxation along principal curves

Points near principal curves, colored by log10(Gi ) (0 means no distortion)



Riemannian Relaxation along principal curves

Points near principal curves, colored by log10(Gi ), after Riemannian Relaxation
(0 means no distortion)



Riemannian Relaxation along principal curves

All data after Riemannian Relaxation



Manifold learning for sciences and engineering



Manifold learning is for toy data and toy problems
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Manifold learning should be like PCA

I tractable

I “automatic”

I first step in data processing pipe-line

Metric Manifold learning

I Use any ML algorithm, estimate distortion by g

I and correct it (on demand)

megaman

I tractable for millions of data

I (in progress) implementing quantitative validation procedure (topology
preservation, choice of ✏)

I future: port classification, regression, clustering to the manifold setting
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Manifold Learning for engineering and the sciences

I scientific discovery by
quantitative/statistical data
analysis

I manifold learning as preprocessing
for other tasks
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Thank you
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