Is Manifold Learning for Toy Data only?

Marina Meilă

University of Washington mmp@stat.washington.edu

MMDS Workshop 2016

Outline

What is non-linear dimension reduction?

Metric Manifold Learning

Estimating the Riemannian metric
Riemannian Relaxation

Scalable manifold learning
megaman
An application to scientific data

When to do (non-linear) dimension reduction

- high-dimensional data $p \in \mathbb{R}^{D}, D=64 \times 64$
- can be described by a small number d of continuous parameters
- Usually, large sample size n

When to do (non-linear) dimension reduction

Why?

- To save space and computation
- $n \times D$ data matrix $\rightarrow n \times s, s \ll D$
- To understand the data better
- preserve large scale features, suppress fine scale features
- To use it afterwards in (prediction) tasks

When to do (non-linear) dimension reduction

Why?

- To save space and computation
- $n \times D$ data matrix $\rightarrow n \times s, s \ll D$
- To understand the data better
- preserve large scale features, suppress fine scale features
- To use it afterwards in (prediction) tasks

When to do (non-linear) dimension reduction

Richard Powell - The Hertzsprung Russell Diagram, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1736396

Why?

- To save space and computation
- $n \times D$ data matrix $\rightarrow n \times s, s \ll D$
- To understand the data better
- preserve large scale features, suppress fine scale features
- To use it afterwards in (prediction) tasks

How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ

How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$

How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
- Construct a $n \times n$ matrix its leading eigenvectors are the coordinates $\phi\left(p_{1: n}\right)$

How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
- Construct a $n \times n$ matrix its leading eigenvectors are the coordinates $\phi\left(p_{1: n}\right)$

Laplacian Eigenmaps [Belkin \& Niyogi 02]

- Construct similarity matrix

$$
S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}} \quad \text { with } S_{p p^{\prime}}=e^{-\frac{1}{\epsilon}\left\|p-p^{\prime}\right\|^{2}} \quad \text { iff } p, p^{\prime} \text { neighbors }
$$

- Construct Laplacian matrix $L=I-T^{-1} S$ with $T=\operatorname{diag}(S 1)$
- Calculate $\psi^{1 \ldots m}=$ eigenvectors of L (smallest eigenvalues)
- coordinates of $p \in \mathcal{D}$ are $\left(\psi^{1}(p), \ldots \psi^{m}(p)\right)$

How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
- Construct a $n \times n$ matrix its leading eigenvectors are the coordinates $\phi\left(p_{1: n}\right)$

IsOMAP [[Tennenbaum, deSilva \& Langford 00]]

- Find all shortest paths in neighborhood graph, construct matrix of distances

$$
M=\left[\operatorname{distance}_{p p^{\prime}}^{2}\right]
$$

- use M and Multi-Dimensional Scaling (MDS) to obtain m dimensional coordinates for $p \in \mathcal{D}$

A toy example (the "Swiss Roll" with a hole)
points in $D \geq 3$ dimensions
same points reparametrized in 2D

A toy example (the "Swiss Roll" with a hole)
points in $D \geq 3$ dimensions

Input
same points reparametrized in 2D

Desired output

Embedding in 2 dimensions by different manifold learning algorithms Input

How to evaluate the results objectively?

How to evaluate the results objectively?

- which of these embedding are "correct"?
- if several "correct", how do we reconcile them?
- if not "correct", what failed?
- what if I have real data?

Outline

What is non-linear dimension reduction?

Metric Manifold Learning

Estimating the Riemannian metric Riemannian Relaxation

```
Scalable manifold learning
    megaman
    An application to scientific data
```


Outline

What is non-linear dimension reduction?

Metric Manifold Learning

Estimating the Riemannian metric
Riemannian Relaxation

Scalable manifold learning
megaman
An application to scientific data

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^{D} \longrightarrow \phi(p)=x \in \mathbb{R}^{m}$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism
preserves topology
often satisfied by embedding algorithms
- Mapping ϕ preserves
- distances along curves in \mathcal{M}
- angles between curves in \mathcal{M}
- areas, volumes

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^{D} \longrightarrow \phi(p)=x \in \mathbb{R}^{m}$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism
preserves topology
often satisfied by embedding algorithms
- Mapping ϕ preserves
- distances along curves in \mathcal{M}
- angles between curves in \mathcal{M}
- areas, volumes
...i.e. ϕ is isometry
For most algorithms, in most cases, ϕ is not isometry

Preserves topology
Preserves topology + intrinsic geometry

Previous known results in geometric recovery

Positive results

- Nash's Theorem: Isometric embedding is possible.
- algorithm based on Nash's theorem (isometric embedding for very low d) [Verma 11]
- Isomap recovers (only) flat manifolds isometrically
- Consistency results for Laplacian and eigenvectors
- [[Hein \& al 07,Coifman \& Lafon 06, Ting \& al 10, Gine \& Koltchinskii 06]]
- imply isometric recovery for LE, DM in special situations

Negative results

- obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg\&al 08]
- Sampling density distorts the geometry for LE [Coifman\& Lafon 06]

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]
Given

- mapping ϕ that preserves topology true in many cases

Objective

- augment ϕ with geometric information g so that (ϕ, g) preserves the geometry

Dominique
Perrault-Joncas

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]
Given

- mapping ϕ that preserves topology
true in many cases

Objective

- augment ϕ with geometric information g so that (ϕ, g) preserves the geometry

Dominique
Perrault-Joncas
g is the Riemannian metric.

Mathematically

- $\mathcal{M}=$ (smooth) manifold
- p point on \mathcal{M}
- $T_{p} \mathcal{M}=$ tangent subspace at p
- $g=$ Riemannian metric on \mathcal{M} g defines inner product on $T_{p} \mathcal{M}$

$$
<v, w>=v^{\top} g_{p} w \quad \text { for } v, w \in T_{p} \mathcal{M} \text { and for } p \in \mathcal{M}
$$

- g is symmetric and positive definite tensor field
- g also called first differential form
- (\mathcal{M}, g) is a Riemannian manifold

Computationally at each point $p \in \mathcal{M}, g_{p}$ is a positive definite matrix of rank d

All geometric quantities on \mathcal{M} involve g

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

All geometric quantities on \mathcal{M} involve g

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve c

$$
I(c)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

All geometric quantities on \mathcal{M} involve g

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve c

$$
I(c)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant

All geometric quantities on \mathcal{M} involve g

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve c

$$
I(c)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant
- Current algorithms: estimate \mathcal{M}
- This talk: estimate g along with \mathcal{M} (and in the same coordinates)

Problem formulation

- Given:
- data set $\mathcal{D}=\left\{p_{1}, \ldots p_{n}\right\}$ sampled from manifold $\mathcal{M} \subset \mathbb{R}^{D}$
- embedding $\left\{x_{i}=\phi\left(p_{i}\right), p_{i} \in \mathcal{D}\right\}$ by e.g LLE, Isomap, LE, ...
- Estimate $G_{i} \in \mathbb{R}^{m \times m}$ the (pushforward) Riemannian metric for $p_{i} \in \mathcal{D}$ in the embedding coordinates ϕ
- The embedding $\left\{x_{1: n}, G_{1: n}\right\}$ will preserve the geometry of the original data

g for Sculpture Faces

- $n=698$ gray images of faces in $D=64 \times 64$ dimensions
- head moves up/down and right/left

LTSA Algoritm

Calculating distances in the manifold \mathcal{M}

- Geodesic distance $=$ shortest path on \mathcal{M}
- should be invariant to coordinate changes

Calculating distances in the manifold \mathcal{M}

true distance $d=1.57$						
Embedding	$\left\\|f(p)-f\left(p^{\prime}\right)\right\\|$	Shortest Path $d_{\mathcal{G}}$	Metric \hat{d}	Rel. error		
Original data	1.41	1.57	1.62	3.0%		
Isomap $s=2$	1.66	1.75	1.63	3.7%		
LTSA $s=2$	0.07	0.08	1.65	4.8%		
LE $s=3$	0.08	0.08	1.62	3.1%		

Relation between g and Δ

- $\Delta=$ Laplace-Beltrami operator on \mathcal{M}

Proposition 1 (Differential geometric fact)

$$
\begin{aligned}
& \Delta f=\sqrt{\operatorname{det}(h)} \sum_{l} \frac{\partial}{\partial x^{\prime}}\left(\frac{1}{\sqrt{\operatorname{det}(h)}} \sum_{k} h_{l k} \frac{\partial}{\partial x^{k}} f\right), \\
& \text { where } h=g^{-1} \quad \text { (matrix inverse) }
\end{aligned}
$$

Relation between g and Δ

- $\Delta=$ Laplace-Beltrami operator on \mathcal{M}
- $\Delta=\operatorname{div} \cdot \operatorname{grad}$
- on $C^{2}\left(\mathbb{R}^{d}\right), \Delta f=\sum_{j} \frac{\partial^{2} f}{\partial x_{j}^{2}}$
- on weighted graph with similarity matrix S, and $t_{p}=\sum_{p p^{\prime}} S_{p p^{\prime}}$, $\Delta=\operatorname{diag}\left\{t_{p}\right\}-S$

Proposition 1 (Differential geometric fact)

$$
\begin{array}{r}
\Delta f=\sqrt{\operatorname{det}(h)} \sum_{l} \frac{\partial}{\partial x^{\prime}}\left(\frac{1}{\sqrt{\operatorname{det}(h)}} \sum_{k} h_{l k} \frac{\partial}{\partial x^{k}} f\right) \\
\text { where } h=g^{-1} \quad \text { (matrix inverse) }
\end{array}
$$

Estimation of g

Proposition 2 (Main Result 1)

Let Δ be the Laplace-Beltrami operator on \mathcal{M}. Then

$$
h_{i j}(p)=\left.\frac{1}{2} \Delta\left(\phi_{i}-\phi_{i}(p)\right)\left(\phi_{j}-\phi_{j}(p)\right)\right|_{\phi_{i}(p), \phi_{j}(p)}
$$

where $h=g^{-1}$ (matrix inverse) and $i, j=1,2, \ldots m$ are embedding dimensions

Algorithm to Estimate Riemann metric g

 (Main Result 2)Given dataset \mathcal{D}

1. Preprocessing (construct neighborhood graph, ...)
2. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^{m}
3. Estimate discretized Laplace-Beltrami operator $L \in \mathbb{R}^{n \times n}$
4. Estimate $H_{p}=G_{p}^{-1}$ and $G_{p}=H_{p}^{\dagger}$ for all $p \in \mathcal{D}$

Output $\left(\phi_{p}, G_{p}\right)$ for all p

Algorithm to Estimate Riemann metric g (Main Result 2)

Given dataset \mathcal{D}

1. Preprocessing (construct neighborhood graph, ...)
2. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^{m}
3. Estimate discretized Laplace-Beltrami operator L
4. Estimate $H_{p}=G_{p}^{-1}$ and $G_{p}=H_{p}^{\dagger}$ for all p
4.1 For $i, j=1: m$,

$$
H^{i j}=\frac{1}{2}\left[L\left(\phi_{i} * \phi_{j}\right)-\phi_{i} *\left(L \phi_{j}\right)-\phi_{j} *\left(L \phi_{i}\right)\right]
$$

where $X * Y$ denotes elementwise product of two vectors $X, Y \in \mathbb{R}^{N}$
4.2 For $p \in \mathcal{D}, H_{p}=\left[H_{p}^{i j}\right]_{i j}$ and $G_{p}=H_{p}^{\dagger}$

Output $\left(\phi_{p}, G_{p}\right)$ for all p

Metric Manifold Learning summary

Metric Manifold Learning $=$ estimating (pushforward) Riemannian metric G_{i} along with embedding coordinates x_{i} Why useful

- Measures local distortion induced by any embedding algorithm $G_{i}=I_{d}$ when no distortion at p_{i}
- Corrects distortion
- Integrating with the local volume/length units based on G_{i}
- Riemannian Relaxation (coming next)
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable

Outline

What is non-linear dimension reduction?

Metric Manifold Learning

Estimating the Riemannian metric
Riemannian Relaxation

Scalable manifold learning
megaman
An application to scientific data

Riemannian Relaxation

Sometimes we can dispense with g
Idea

- If embedding is isometric, then push-forward metric is identity matrix I_{d}

Riemannian Relaxation

Sometimes we can dispense with g
Idea

- If embedding is isometric, then push-forward metric is identity matrix I_{d}

Idea, formalized

- Measure distortion by loss $=\sum_{i=1}^{n}\left\|G_{i}-I_{d}\right\|^{2}$
- where G_{i} is R . metric estimate at point i
- I_{d} is identity matrix
- Iteratively change embedding $x_{1: n}$ to minimize loss

Riemannian Relaxation

Sometimes we can dispense with g
Idea

- If embedding is isometric, then push-forward metric is identity matrix I_{d}

Idea, formalized

- Measure distortion by loss $=\sum_{i=1}^{n}\left\|G_{i}-I_{d}\right\|^{2}$
- where G_{i} is R . metric estimate at point i
- I_{d} is identity matrix
- Iteratively change embedding $x_{1: n}$ to minimize loss

More details

- loss is non-convex
- || || is derived from operator norm
- Extends to $s>d$ embeddings loss $=\sum_{i=1}^{n}\left\|G_{i}-U_{i} U_{i}^{T}\right\|_{\sigma}^{2}$
- Extensions to principal curves and surfaces [Ozertem, Erdogmus 11], subsampling, non-uniform sampling densities

Riemannian Relaxation

Sometimes we can dispense with g
Idea

- If embedding is isometric, then push-forward metric is identity matrix I_{d}

Idea, formalized

- Measure distortion by loss $=\sum_{i=1}^{n}\left\|G_{i}-I_{d}\right\|^{2}$
- where G_{i} is R . metric estimate at point i
- I_{d} is identity matrix
- Iteratively change embedding $x_{1: n}$ to minimize loss

More details

- loss is non-convex
- || || is derived from operator norm
- Extends to $s>d$ embeddings loss $=\sum_{i=1}^{n}\left\|G_{i}-U_{i} U_{i}^{T}\right\|_{\sigma}^{2}$
- Extensions to principal curves and surfaces [Ozertem, Erdogmus 11], subsampling, non-uniform sampling densities

Implementation

- Initialization with e.g Laplacian Eigenmaps
- Projected gradient descent to (local) optimum

Riemannian Relaxation of a deformed sphere
sphere + noise

hourglass + noise

final embedding

Riemannian Relaxation of a deformed sphere
sphere + noise

hourglass + noise

final embedding

Mean-squared error and loss vs. noise amplitude

Outline

```
What is non-linear dimension reduction?
Metric Manifold Learning
    Estimating the Riemannian metric
    Riemannian Relaxation
```

Scalable manifold learning
megaman
An application to scientific data

Outline

What is non-linear dimension reduction?
 Metric Manifold Learning
 Estimating the Riemannian metric
 Riemannian Relaxation

Scalable manifold learning
megaman
An application to scientific data

Scaling: Statistical viewpoint

Rates of convergence as $n \longrightarrow \infty$

- Assume data sampled from manifold \mathcal{M} with intrinsic dimension d,
- M, sampling distribution are "well behaved"
- ϵ kernel bandwidth decreases slowly with n
- rate of Laplacian $n^{-\frac{1}{d+6}}$ [Singer 06], and of its eigenvectors $n^{-\frac{2}{(5 d+6)(d+6)}}$ [Wang 15]
- minimax rate of manifold learning $n^{-\frac{2}{d+2}}$ [Genovese et al. 12]

Scaling: Statistical viewpoint

Rates of convergence as $n \longrightarrow \infty$

- Assume data sampled from manifold \mathcal{M} with intrinsic dimension d,
- M, sampling distribution are "well behaved"
- ϵ kernel bandwidth decreases slowly with n
- rate of Laplacian $n^{-\frac{1}{d+6}}$ [Singer 06], and of its eigenvectors $n^{-\frac{2}{(5 d+6)(d+6)}}$ [Wang 15]
- minimax rate of manifold learning $n^{-\frac{2}{d+2}}$ [Genovese et al. 12]
- Estimating \mathcal{M} and Δ accurately requires big data

Scaling: Computational viewpoint

Laplacian Eigenmaps revisited

1. Construct similarity matrix

$$
S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}} \text { with } S_{p p^{\prime}}=e^{-\frac{1}{\epsilon}\left\|p-p^{\prime}\right\|^{2}}
$$

iff p, p^{\prime} neighbors
2. Construct Laplacian matrix
$L=I-T^{-1} S$ with $T=\operatorname{diag}(S 1)$
3. Calculate $\psi^{1 \ldots m}=$ eigenvectors of L (smallest eigenvalues)
4. coordinates of $p \in \mathcal{D}$ are $\left(\psi^{1}(p), \ldots \psi^{m}(p)\right)$

Scaling: Computational viewpoint

Laplacian Eigenmaps revisited

1. Construct similarity matrix
$S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}}$ with $S_{p p^{\prime}}=e^{-\frac{1}{\epsilon}\left\|p-p^{\prime}\right\|^{2}} \quad \begin{aligned} & \text { Nearest neighbor search in high } \\ & \text { dimensions }\end{aligned}$ iff p, p^{\prime} neighbors
2. Construct Laplacian matrix
$L=I-T^{-1} S$ with $T=\operatorname{diag}(S 1)$
3. Calculate $\psi^{1 \ldots m}=$ eigenvectors of L (smallest eigenvalues)
4. coordinates of $p \in \mathcal{D}$ are $\left(\psi^{1}(p), \ldots \psi^{m}(p)\right)$

Scaling: Computational viewpoint

Laplacian Eigenmaps revisited

1. Construct similarity matrix
$S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}}$ with $S_{p p^{\prime}}=e^{-\frac{1}{\epsilon}\left\|p-p^{\prime}\right\|^{2}} \quad \begin{aligned} & \text { Nearest neighbor search in high } \\ & \text { dimensions }\end{aligned}$ iff p, p^{\prime} neighbors
2. Construct Laplacian matrix $L=I-T^{-1} S$ with $T=\operatorname{diag}(S 1)$

Sparse Matrix Vector multiplication
3. Calculate $\psi^{1 \ldots m}=$ eigenvectors of L (smallest eigenvalues)
4. coordinates of $p \in \mathcal{D}$ are $\left(\psi^{1}(p), \ldots \psi^{m}(p)\right)$

Scaling: Computational viewpoint

Laplacian Eigenmaps revisited

1. Construct similarity matrix
$S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}}$ with $S_{p p^{\prime}}=e^{-\frac{1}{\epsilon}\left\|p-p^{\prime}\right\|^{2}}$ Nearest neighbor search in high dimensions
iff p, p^{\prime} neighbors
2. Construct Laplacian matrix $L=I-T^{-1} S$ with $T=\operatorname{diag}(S 1)$

Sparse Matrix Vector multiplication
3. Calculate $\psi^{1 \ldots m}=$ eigenvectors of L (smallest eigenvalues)
4. coordinates of $p \in \mathcal{D}$ are $\left(\psi^{1}(p), \ldots \psi^{m}(p)\right)$

Principal eigenvectors

- of sparse, symmetric, (well conditioned) matrix

Manifold Learning with millions of points

> https://www.github.com/megaman

- Implemented in python, compatible with scikit-learn
- Designed for performance
- sparse representation as default
- incorporates state of the art FLANN package ${ }^{1}$
- uses amp, lobpcg fast sparse eigensolver for SDP matrices
- exposes/caches intermediate states (e.g. data set index, distances, Laplacian, eigenvectors)

[^0]https://www.github.com/megaman
megaman: Manifold Learning for Millions of Points

meganan is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms to large data sets. On a personal computer megaman can embed 1 million data points with hundreds of dimensions in 10 minutes. megaman is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.

Package documentation can be found at http://mmp2.github.io/megaman/
You can also find our arXiv paper at http://anxiv.org/abs/1603.02763

Examples

- Tutorial Notebook

Installation with Conda

The easiest way to install meganan and its dependencies is with conda, the cross-platform package manager for the scientific Python ecosystem.

Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from
Google news (3,000,000 phrases originally represented in 300 dimensions by the Deep Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from Google news (3,000,000 phrases originally represented in 300 dimensions by the Deep Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

- Currently: on single core, embeds all data, all data in memory
- Near future: Nyström extension, lazy evaluations, multiple charts
- Next
- gigaman?
- scalable geometric/statistical tasks (search for optimal ϵ, Riemannian Relaxation, semi-supervised learning, clustering)

Outline

What is non-linear dimension reduction?
 Metric Manifold Learning
 Estimating the Riemannian metric
 Riemannian Relaxation

Scalable manifold learning
megaman
An application to scientific data

Manifold learning for SDSS Spectra of Galaxies (more in next talk!)

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

- data curated by Grace Telford,
- "noise removal" by Jake VanderPlas

Chosing the embedding dimension

Embedding into 3 dimensions

Same embedding. . .

- only high density regions
- another viewpoint

- how distorted is this embedding?

How distorted is this embedding?

Riemannian Relaxation along principal curves

Find principal curves

Riemannian Relaxation along principal curves

Points near principal curves, colored by $\log _{10}\left(G_{i}\right)$ (0 means no distortion)

Riemannian Relaxation along principal curves

Points near principal curves, colored by $\log _{10}\left(G_{i}\right)$, after Riemannian Relaxation (0 means no distortion)

Riemannian Relaxation along principal curves

All data after Riemannian Relaxation

Manifold learning for sciences and engineering

Manifold learning is for toy data and toy problems

Manifold learning is for toy data and toy problems

Manifold learning should be like PCA

- tractable
- "automatic"
- first step in data processing pipe-line

Manifold learning is for toy data and toy problems

Manifold learning should be like PCA

- tractable
- "automatic"
- first step in data processing pipe-line

Metric Manifold learning

- Use any ML algorithm, estimate distortion by g
- and correct it (on demand)
megaman
- tractable for millions of data
- (in progress) implementing quantitative validation procedure (topology preservation, choice of ϵ)
- future: port classification, regression, clustering to the manifold setting

Manifold Learning for engineering and the sciences

- scientific discovery by quantitative/statistical data analysis
- manifold learning as preprocessing for other tasks

Manifold Learning for engineering and the sciences

- scientific discovery by quantitative/statistical data analysis
- manifold learning as preprocessing for other tasks

Thank you

[^0]: ${ }^{1}$ Fast Approximate Nearest Neighbor search

