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Manifold learning — a short introduction



When to do (non-linear) dimension reduction

> high-dimensional data p € R, D = 64 x 64
> can be described by a small number d of continuous parameters

> Usually, large sample size n
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Why?
» To save space and computation
» nx D data matrix - nxm, m<&D
» To understand the data better
> preserve large scale features, suppress fine scale features

» To use it afterwards in (prediction) tasks
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When to do (non-linear) dimension reduction

The Hertzsprung Russell Diagram

Why?
» To save space and computation
» nx D data matrix - nxm, m<&D
» To understand the data better
> preserve large scale features, suppress fine scale features

> To use it afterwards in (prediction) tasks



How? Brief intro to manifold learning algorithms

> Input Data pi, ... p,, embedding dimension m, neighborhood scale
parameter €
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How? Brief intro to manifold learning algorithms

> Input Data pi, ... ps, embedding dimension m, neighborhood scale
parameter ¢

» Construct neighborhood graph p, p’ neighbors iff ||p — p’||2 < €

» Construct a n X n matrix its leading eigenvectors are the coordinates

#(p1:n)

LAPLACIAN EIGENMAPS [Belkin & Nyogi 02]

» Construct similarity matrix

S =[Spplppren withS,, = e elle=pIP g p, p’ neighbors

» Construct Laplacian matrix L = | — T7'S with T = diag(51)
» Calculate 1™ = eigenvectors of L (smallest eigenvalues)

» coordinates of p € D are (¢*(p), ... ¥™(p))



A toy example (the “Swiss Roll” with a hole)

points in D > 3 dimensions same points reparametrized in 2D
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Embedding in 2 dimensions by different manifold learning algorithms
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How to evaluate the results objectively?

MDS: 2.2445m PCA 07345
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Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps
(HE), Laplacian Eigenmaps (LE), Diffusion Maps (DM)



How to evaluate the results objectively?

which of these embedding are “correct”?
if several “correct”, how do we reconcile them?

if not “correct”, what failed?

vV v vY

what if | have real data?

3000 2000 5000 6000 7000 8000

Spectrum of a galaxy. Source SDSS, Jake VanderPlas
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Metric manifold learning



Preserving topology vs. preserving (intrinsic) geometry

» Algorithm maps data p € R® — ¢(p) = x € R™

> Mapping M — ¢(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms
» Mapping ¢ preserves

> distances along curves in M
> angles between curves in M
> areas, volumes



Preserving topology vs. preserving (intrinsic) geometry

» Algorithm maps data p € R® — ¢(p) = x € R”

> Mapping M — ¢(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms
» Mapping ¢ preserves

> distances along curves in M
> angles between curves in M
> areas, volumes
...l.e. ¢ is isometry
For most algorithms, in most cases, ¢ is not isometry

Preserves topology

“ Preserves topology + intrinsic geometry
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Previous known results in geometric

Positive results

» Nash’s Theorem: Isometric
embedding is possible.

> Consistency results for Laplacian and
eigenvectors

> [Hein & al 07,Coifman & Lafon
06, Ting & al 10, Gine &
Koltchinskii 06]

> imply isometric recovery for LE,
DM in special situations

> Isomap recovers (only) flat manifolds
isometrically

> algorithm based on Nash's theorem
(isometric embedding for very low d)
[Verma 2011]

recovery

Negative results
> obvious negative examples

> No affine recovery for normalized
Laplacian algorithms [Goldberg&al
08]

» Sampling density distorts the
geometry for LE [Coifman& Lafon 06]



Our approach [Perrault-Joncas,M 10]

Given
» mapping ¢ that preserves topology

true in many cases

Objective

» augment ¢ with geometric information g
so that (¢, g) preserves the geometry

Dominique
Perrault-Joncas



Our approach [Perrault-Joncas,M 10]

Given
» mapping ¢ that preserves topology

true in many cases

Objective

» augment ¢ with geometric information g
so that (¢, g) preserves the geometry

Dominique
Perrault-Joncas

g is the Riemannian metric.



The Riemannian metric g

» M = (smooth) manifold
» p point on M

v

TpM = tangent subspace at p
» g = Riemannian metric on M

g defines inner product on T, M

<v,w>= vg(p)w forv,we TpM andfor p e M

> g is symmetric and positive definite tensor field
> g also called first differential form
> (M, g) is a Riemannian manifold



All geometric quantities on M involve g

» Volume element on manifold

Vol(W) = / Vdet(g)dx" ... dx?.
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» Volume element on manifold

Vol(W) = / V/det(g)dx" ... dx?
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> Length of curve ¢
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» Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant



All geometric quantities on M involve g

v

Volume element on manifold

Vol(W) = / V/det(g)dx" ... dx?

v

Length of curve ¢

t,

v

Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

v

Current algorithms: estimate M

v

This talk: estimate g along with M

(and in the same coordinates)



Problem formulation

> Given:
> data set D ={p1,... pn}
sampled from manifold M C RP
> embedding { ¢(p), p€ D}
by e.g LLE, Isomap, LE, ...
» Estimate g, € R™*" the Riemannian metric for p € D
in the embedding coordinates ¢

» The embedding (¢, g) will preserve the geometry of the original data
manifold



Relation between g and A

» A = Laplace-Beltrami operator on M
> A = div-grad

> on C?, Af—zjax

> on weighted graph W|th similarity matrix S, and t, = pr/ Sppt s
A = diag{t,} — S

Proposition 1 (Differential geometric fact)
Af =

(e ).

where [g

1 0
Vdet(g) Z ox!

Ik] —

g71



Estimation of g

Proposition 2 (Main Result 1)
Let A be the Laplace-Beltrami operator on M. Then

Wi(p) = 3806~ 6i(p) (6 — 0P lotorsytr

where h = g™ (matrix inverse)



Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)
2. Find an embedding ¢ of D into R"
3. Estimate discretized Laplace-Beltrami operator L € R"*"
4. Estimate H, = G, ' and G, = H} for all p € D
Output (¢p, Gp) for all p



Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D

—_

Preprocessing (construct neighborhood graph, ...)
2. Find an embedding ¢ of D into R™

3. Estimate discretized Laplace-Beltrami operator L
4. Estimate H, = G, ' and G, = HJ for all p

4.1 Fori,j=1:m,
HI = 3 [L(¢i * &) — i * (Ley) — b *N(L¢i)]

where X * Y denotes elementwise product of two vectors X, Y € R

4.2 For p € D, Hp = [H}]; and G, = H}
Output (¢p, Gp) for all p



Consistency of the Riemannian metric estimator

Proposition
> If the embedding ¢ : M — ¢(M) is

A diffeomorphic
B consistent ¢(Dp) n2se H(M)

n—oo

C Laplacian consistent Lo¢(Dp) — A¢p(M)

then the dual Riemannian metric estimator h is consistent

(6(Dn), ha) =5 (¢(M), h)

> Laplacian Eigenmaps and Diffusion Map satisfy A, B if M compact



g for Sculpture Faces

> n =698 with 64 x 64 gray images of faces
> head moves up/down and right/left

LTSA Algoritm



LTSA

Laplacian Eigenmaps



Calculating distances in the manifold M

» Geodesic distance = shortest path on M

» should be invariant to coordinate changes

ity
WY Y
U P Y,

Ol

° s,

Isomap

Original

Laplacian Eigenmaps



Calculating distances in the manifold M

true distance d = 1.57

Shortest | Metric | Rel.

Embedding [If(p) — F(p')|| | Path dg d error
Original data 1.41 1.57 1.62 3.0%
Isomap m =2 1.66 1.75 163 | 3.7%
LTSAm=2 0.07 0.08 1.65 4.8%
LEm=3 0.08 0.08 1.62 3.1%




Calculating Areas/Volumes in the manifold

(Results for Hourglass data)

true area = 0.84

Rel.

Embedding Naive Metric err.
Original data | 0.85 (0.03) | 0.93 (0.03) | 11.0%
Isomap 2.7 0.93 (0.03) | 11.0%
LTSA 1e-03 (5e-5) | 0.93 (0.03) | 11.0%

LE le-05 (4e-4) | 0.82 (0.03) | 2.6%




Semisupervised learning with Gaussian Processes on Manifolds

Sculpture Faces: Predicting Head Rotation
1] 2 4 ] i 10 12
T T T T

Absolute Error (AE) as percentage of range

Metric (Total AE = 660) Laplacian Eigenmaps (Total AE = 3078)



Self-consistent method of chosing

» Every manifold learning algorithm starts with a neighborhood graph
» Parameter /¢

> is neighborhood radius
> and/or kernel banwidth
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» Parameter /¢

> is neighborhood radius
> and/or kernel banwidth

» For example, we use the kernel
_le=p11?

K(p,p')=¢ < if ||p — p'||*> < € and 0 otherwise




Self-consistent method of chosing ¢

» Every manifold learning algorithm starts with a neighborhood graph
» Parameter /¢

> is neighborhood radius
> and/or kernel banwidth

» For example, we use the kernel
lp=p'11?

K(p,p')=e"" <« —if |[p— p'||* < ¢ and 0 otherwise

» Problem: how to choose €?




Existing work

v

Theoretical (asymptotic) result y/e n~ais [Singer06]

Cross-validation

v

> assumes a supervised task given
> heuristic for K-nearest neighbor graph [Chen&Buja09]

> depends on embedding method used
> K-nearest neighbor graph has different convergence properties than e
neighborhood

» Visual inspection



Our idea

> L. estimate of Laplace-Beltrami operator

> contains the intrinsic geometry
> ...and depends on € by construction

> |dea: choose € so that geometry encoded by L. is closest to data geometry



Our idea

> L. estimate of Laplace-Beltrami operator

> contains the intrinsic geometry
> ...and depends on € by construction

v

Idea: choose € so that geometry encoded by L. is closest to data geometry

v

Idea, formalized
> make ge(p) close to Ip the identity matrix, for each p € D

> This is a completely unsupervised method
> L is estimated independently of any embedding or task



Semisupervised learning benchmarks [Chapelle&al 08]

Multiclass classification problems

Classification error (%)

Method
Dataset CV  [Chen&Buja] Ours
Digitl 3.32 2.16 2.11
USPS 5.18 483 389
COIL 7.02 8.03 881
g241c 13.31 23.93 1277
g241d 8.67 18.39  8.76

superv. fully unsupervised



Results: Intrinsic Dimension Estimation

» Method of [Chen&al 11]

> do local SVD for a range of neighborhood radii
> choose a an appropriate radius €
> dimension = largest eigengap at radius €

» used our self-concordant method to find €

> Experiments: artificial 2D manifolds with noise



Consistency of the Riemannian metric estimator

Proposition
> If the embedding ¢ : M — ¢(M) is

A diffeomorphic
B consistent ¢(Dp) n2se H(M)

n—oo

C Laplacian consistent Lo¢(Dp) — A¢p(M)

then the dual Riemannian metric estimator h is consistent

(6(Dn), ha) =5 (¢(M), h)

> Laplacian Eigenmaps and Diffusion Map satisfy A, B if M compact
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Scalable manifold learning



Is Manifold Learning (ML) scalable?

» Fact ML is data intensive

> large amounts of data needed to reach accurate estimation of a manifold
(e.g at least 1037%) ||
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> i.e. non-linear dimension reduction is just as tractable as linear dimension
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https://www.github.com/megaman

megaman: Manifold Learning for Millions of Points

I o e

reganan is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to
scikit-leam but harnesses the G-++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric
Positive Definite (SSPD) soiver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learing
algorithms to large data sets. On a personal computer megaman can embed 1 million data points with hundreds of
dimensions in 10 minutes. megaman is designed for hers and h caches intermediary steps and indices to allow
for fast ra-computation with new parameters.

Package documentation can be found at httpu//mmp2 github.io/megaman/

You can also find our arXiv paper at http:/arxiv.org/abs/1603.02763
Examples
+ Tutorial Notebook

Installation with Conda

The casiest way to install neganan and it is with conda, ol package manager for the scientfic
Python ecosystem,

Grace Telford

James McQueen  Jake VanderPlas Jerry Zhang




Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

-0005 004 0004
0000002 5001 0000 e 0001 0002 0003
0001 goqp _gogy -0002 001

English words and phrases taken from
Google news (3,000,000 phrases originally
represented in 300 dimensions by the Deep
Neural Network word2vec [Mikolov et al])

0.00870-004

Main sample of galaxy spectra from the
Sloan Digital Sky Survey (675,000 spectra
originally in 3750 dimensions).

preprocessed by Jake VanderPlas, figure by Grace Telford



Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from

Google news (3,000,000 phrases originally
represented in 300 dimensions by the Deep
Neural Network word2vec [Mikolov et al])
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Main sample of galaxy spectra from the
Sloan Digital Sky Survey (675,000 spectra
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preprocessed by Jake VanderPlas, figure by Grace Telford



Significance

» Augmentation of manifold learning algorithms

> For a given algorithm, all geometrical quantities are preserved
simultaneously, by recovering g = geometry preserving embedding

> We can obtain geometry preserving embeddings with any reasonable
algorithm

» Unification of algorithms

> Now, all “reasonable” algorithms/embeddings are asymptotically equivalent
from the geometry point of view

> We can focus on comparing algorithms based on other criteria
speed, rate of convergence, numerical stability

> g offers a way to compare the algorithms’ outputs

» Each algorithm has own ¢

> Hence outputs of different algorithms are incomparable

> But (¢, g%), (¢°, ) should be comparable because they aim to represent
intrinsic/geometric quantities



Manifold learning for sciences and engineering

» scientific discovery by
quantitative/statistical analysis

» manifold learning as pre-processing for
other tasks
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» scientific discovery by
quantitative/statistical analysis

D4000

» manifold learning as pre-processing for
other tasks




Thank you
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