Geometrically faithful non-linear dimension reduction Is Manifold Learning for toy data only?

Marina Meila<br>Dominique Perrault-Joncas<br>James McQueen Jacob VanderPlas Jerry Zhang Grace Telford

University of Washington
mmp@stat.washington.edu

Statistics Symposium 4/22/2016
UCDAVIS
UNIVERSITY OF CALIFORNIA

## Outline

Manifold learning - a short introduction

Metric manifold learning
Estimating the Riemannian metric Using the Riemannian metric

Scalable manifold learning

## Outline

Manifold learning - a short introduction

## Metric manifold learning <br> Estimating the Riemannian metric Using the Riemannian metric

## Scalable manifold learning

When to do (non-linear) dimension reduction


- high-dimensional data $p \in \mathbb{R}^{D}, D=64 \times 64$
- can be described by a small number $d$ of continuous parameters
- Usually, large sample size n

When to do (non-linear) dimension reduction


Why?

- To save space and computation
- $n \times D$ data matrix $\rightarrow n \times m, m \ll D$
- To understand the data better
- preserve large scale features, suppress fine scale features
- To use it afterwards in (prediction) tasks

When to do (non-linear) dimension reduction


Why?

- To save space and computation
- $n \times D$ data matrix $\rightarrow n \times m, m \ll D$
- To understand the data better
- preserve large scale features, suppress fine scale features
- To use it afterwards in (prediction) tasks


## When to do (non-linear) dimension reduction

Richard Powell - The Hertzsprung Russell Diagram, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1736396


Why?

- To save space and computation
- $n \times D$ data matrix $\rightarrow n \times m, m \ll D$
- To understand the data better
- preserve large scale features, suppress fine scale features
- To use it afterwards in (prediction) tasks

How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension $m$, neighborhood scale parameter $\epsilon$


How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension $m$, neighborhood scale parameter $\epsilon$
- Construct neighborhood graph $p, p^{\prime}$ neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$


How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension $m$, neighborhood scale parameter $\epsilon$
- Construct neighborhood graph $p, p^{\prime}$ neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
- Construct a $n \times n$ matrix its leading eigenvectors are the coordinates $\phi\left(p_{1: n}\right)$


How? Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension $m$, neighborhood scale parameter $\epsilon$
- Construct neighborhood graph $p, p^{\prime}$ neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
- Construct a $n \times n$ matrix its leading eigenvectors are the coordinates $\phi\left(p_{1: n}\right)$

Laplacian Eigenmaps [Belkin \& Nyogi 02]

- Construct similarity matrix

$$
S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}} \quad \text { with } S_{p p^{\prime}}=e^{-\frac{1}{\epsilon}\left\|p-p^{\prime}\right\|^{2}} \quad \text { iff } p, p^{\prime} \text { neighbors }
$$

- Construct Laplacian matrix $L=I-T^{-1} S$ with $T=\operatorname{diag}(S 1)$
- Calculate $\psi^{1 \ldots m}=$ eigenvectors of $L$ (smallest eigenvalues)
- coordinates of $p \in \mathcal{D}$ are $\left(\psi^{1}(p), \ldots \psi^{m}(p)\right)$

A toy example (the "Swiss Roll" with a hole)
points in $D \geq 3$ dimensions
same points reparametrized in 2D


A toy example (the "Swiss Roll" with a hole)
points in $D \geq 3$ dimensions


Input
same points reparametrized in 2D


Desired output

Embedding in 2 dimensions by different manifold learning algorithms Input


## How to evaluate the results objectively?



How to evaluate the results objectively?


- which of these embedding are "correct"?
- if several "correct", how do we reconcile them?
- if not "correct", what failed?
- what if I have real data?


## Outline

## Manifold learning - a short introduction

## Metric manifold learning

Estimating the Riemannian metric Using the Riemannian metric

## Scalable manifold learning

## Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^{D} \longrightarrow \phi(p)=x \in \mathbb{R}^{m}$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism


## preserves topology

often satisfied by embedding algorithms

- Mapping $\phi$ preserves
- distances along curves in $\mathcal{M}$
- angles between curves in $\mathcal{M}$
- areas, volumes


## Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^{D} \longrightarrow \phi(p)=x \in \mathbb{R}^{m}$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism
preserves topology
often satisfied by embedding algorithms
- Mapping $\phi$ preserves
- distances along curves in $\mathcal{M}$
- angles between curves in $\mathcal{M}$
- areas, volumes
...i.e. $\phi$ is isometry
For most algorithms, in most cases, $\phi$ is not isometry
Preserves topology

Preserves topology + intrinsic geometry


## Previous known results in geometric recovery

Positive results

- Nash's Theorem: Isometric embedding is possible.
- Consistency results for Laplacian and eigenvectors
- [Hein \& al 07,Coifman \& Lafon 06 , Ting \& al 10, Gine \& Koltchinskii 06]
- imply isometric recovery for LE, DM in special situations
- Isomap recovers (only) flat manifolds isometrically
- algorithm based on Nash's theorem (isometric embedding for very low $d$ ) [Verma 2011]

Negative results

- obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg\&al 08]
- Sampling density distorts the geometry for LE [Coifman\& Lafon 06]


## Our approach [Perrault-Joncas,M 10]

Given

- mapping $\phi$ that preserves topology true in many cases

Objective

- augment $\phi$ with geometric information g so that $(\phi, g)$ preserves the geometry


Dominique
Perrault-Joncas

## Our approach [Perrault-Joncas,M 10]

Given

- mapping $\phi$ that preserves topology true in many cases

Objective

- augment $\phi$ with geometric information $g$ so that $(\phi, g)$ preserves the geometry


Dominique
Perrault-Joncas
$g$ is the Riemannian metric.

- $\mathcal{M}=$ (smooth) manifold
- p point on $\mathcal{M}$
- $T_{p} \mathcal{M}=$ tangent subspace at $p$
- $g=$ Riemannian metric on $\mathcal{M}$ $g$ defines inner product on $T_{p} \mathcal{M}$

$$
<v, w>=v^{\top} g(p) w \text { for } v, w \in T_{p} \mathcal{M} \text { and for } p \in \mathcal{M}
$$

- $g$ is symmetric and positive definite tensor field
- $g$ also called first differential form
- $(\mathcal{M}, g)$ is a Riemannian manifold

All geometric quantities on $\mathcal{M}$ involve $g$

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

All geometric quantities on $\mathcal{M}$ involve $g$

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve $c$

$$
I(c)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

## All geometric quantities on $\mathcal{M}$ involve $g$

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve c

$$
I(c)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

- Under a change of parametrization, $g$ changes in a way that leaves geometric quantities invariant


## All geometric quantities on $\mathcal{M}$ involve $g$

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve c

$$
I(c)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

- Under a change of parametrization, $g$ changes in a way that leaves geometric quantities invariant
- Current algorithms: estimate $\mathcal{M}$
- This talk: estimate $g$ along with $\mathcal{M}$ (and in the same coordinates)


## Problem formulation

- Given:
- data set $\mathcal{D}=\left\{p_{1}, \ldots p_{n}\right\}$ sampled from manifold $\mathcal{M} \subset \mathbb{R}^{D}$
- embedding $\{\phi(p), p \in \mathcal{D}\}$
by e.g LLE, Isomap, LE, . .
- Estimate $g_{p} \in \mathbb{R}^{m \times m}$ the Riemannian metric for $p \in \mathcal{D}$ in the embedding coordinates $\phi$
- The embedding $(\phi, g)$ will preserve the geometry of the original data manifold


## Relation between $g$ and $\Delta$

- $\Delta=$ Laplace-Beltrami operator on $\mathcal{M}$
- $\Delta=$ div $\cdot \operatorname{grad}$
- on $C^{2}, \Delta f=\sum_{j} \frac{\partial^{2} f}{\partial x_{j}^{2}}$
- on weighted graph with similarity matrix $S$, and $t_{p}=\sum_{p p^{\prime}} S_{p p^{\prime}}$, $\Delta=\operatorname{diag}\left\{t_{p}\right\}-S$

Proposition 1 (Differential geometric fact)

$$
\Delta f=\frac{1}{\sqrt{\operatorname{det}(g)}} \sum_{l} \frac{\partial}{\partial x^{\prime}}\left(\sqrt{\operatorname{det}(g)} \sum_{k} g^{\prime k} \frac{\partial}{\partial x^{k}} f\right),
$$

$$
\text { where }\left[g^{/ k}\right]=g^{-1}
$$

## Estimation of $g$

Proposition 2 (Main Result 1)
Let $\Delta$ be the Laplace-Beltrami operator on $\mathcal{M}$. Then

$$
h^{i j}(p)=\left.\frac{1}{2} \Delta\left(\phi_{i}-\phi_{i}(p)\right)\left(\phi_{j}-\phi_{j}(p)\right)\right|_{\phi_{i}(p), \phi_{j}(p)}
$$

$$
\text { where } h=g^{-1} \quad \text { (matrix inverse) }
$$

## Algorithm to Estimate Riemann metric g

 (Main Result 2)Given dataset $\mathcal{D}$

1. Preprocessing (construct neighborhood graph, ...)
2. Find an embedding $\phi$ of $\mathcal{D}$ into $\mathbb{R}^{m}$
3. Estimate discretized Laplace-Beltrami operator $L \in \mathbb{R}^{n \times n}$
4. Estimate $H_{p}=G_{p}^{-1}$ and $G_{p}=H_{p}^{\dagger}$ for all $p \in \mathcal{D}$

Output $\left(\phi_{p}, G_{p}\right)$ for all $p$

Algorithm to Estimate Riemann metric $g$ (Main Result 2)

Given dataset $\mathcal{D}$

1. Preprocessing (construct neighborhood graph, ...)
2. Find an embedding $\phi$ of $\mathcal{D}$ into $\mathbb{R}^{m}$
3. Estimate discretized Laplace-Beltrami operator $L$
4. Estimate $H_{p}=G_{p}^{-1}$ and $G_{p}=H_{p}^{\dagger}$ for all $p$
4.1 For $i, j=1: m$,

$$
H^{i j}=\frac{1}{2}\left[L\left(\phi_{i} * \phi_{j}\right)-\phi_{i} *\left(L \phi_{j}\right)-\phi_{j} *\left(L \phi_{i}\right)\right]
$$

where $X * Y$ denotes elementwise product of two vectors $X, Y \in \mathbb{R}^{N}$
4.2 For $p \in \mathcal{D}, H_{p}=\left[H_{p}^{i j}\right]_{i j}$ and $G_{p}=H_{p}^{\dagger}$

Output $\left(\phi_{p}, G_{p}\right)$ for all $p$

Consistency of the Riemannian metric estimator

## Proposition

- If the embedding $\phi: \mathcal{M} \rightarrow \phi(\mathcal{M})$ is

A diffeomorphic
B consistent $\phi\left(\mathcal{D}_{n}\right) \xrightarrow{n \rightarrow \infty} \phi(\mathcal{M})$
C Laplacian consistent $L_{n} \phi\left(\mathcal{D}_{n}\right) \xrightarrow{n \rightarrow \infty} \Delta \phi(\mathcal{M})$
then the dual Riemannian metric estimator $h$ is consistent

$$
\left(\phi\left(\mathcal{D}_{n}\right), h_{n}\right) \xrightarrow{n \rightarrow \infty}(\phi(\mathcal{M}), h)
$$

- Laplacian Eigenmaps and Diffusion Map satisfy A, B if $\mathcal{M}$ compact


## $g$ for Sculpture Faces

- $n=698$ with $64 \times 64$ gray images of faces
- head moves up/down and right/left


LTSA Algoritm


## Calculating distances in the manifold $\mathcal{M}$

- Geodesic distance $=$ shortest path on $\mathcal{M}$
- should be invariant to coordinate changes



## Calculating distances in the manifold $\mathcal{M}$

true distance $d=1.57$

| Embedding | $\left\\|f(p)-f\left(p^{\prime}\right)\right\\|$ | Shortest <br> Path $d_{\mathcal{G}}$ | Metric <br> $\hat{d}$ | Rel. <br> error |
| :---: | :---: | :---: | :---: | :---: |
| Original data | 1.41 | 1.57 | 1.62 | $3.0 \%$ |
| Isomap $m=2$ | 1.66 | 1.75 | 1.63 | $3.7 \%$ |
| LTSA $m=2$ | 0.07 | 0.08 | 1.65 | $4.8 \%$ |
| LE $m=3$ | 0.08 | 0.08 | 1.62 | $3.1 \%$ |

## Calculating Areas/Volumes in the manifold

(Results for Hourglass data)

| true area $=0.84$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Embedding | Naive | Metric | Rel. <br> err. |
| Original data | $0.85(0.03)$ | $0.93(0.03)$ | $11.0 \%$ |
| Isomap | 2.7 | $0.93(0.03)$ | $11.0 \%$ |
| LTSA | $1 \mathrm{e}-03(5 \mathrm{e}-5)$ | $0.93(0.03)$ | $11.0 \%$ |
| LE | $1 \mathrm{e}-05(4 \mathrm{e}-4)$ | $0.82(0.03)$ | $2.6 \%$ |

## Semisupervised learning with Gaussian Processes on Manifolds

Sculpture Faces: Predicting Head Rotation


Absolute Error (AE) as percentage of range


Isomap (Total AE $=3078$ )


Metric (Total AE $=660$ )


LTSA (Total AE $=3020$ )


Laplacian Eigenmaps $($ Total $A E=3078)$

## Self-consistent method of chosing $\epsilon$

- Every manifold learning algorithm starts with a neighborhood graph
- Parameter $\sqrt{\epsilon}$
- is neighborhood radius
- and/or kernel banwidth


## Self-consistent method of chosing $\epsilon$

- Every manifold learning algorithm starts with a neighborhood graph
- Parameter $\sqrt{\epsilon}$
- is neighborhood radius
- and/or kernel banwidth
- For example, we use the kernel
$K\left(p, p^{\prime}\right)=e^{-\frac{\left\|p-p^{\prime}\right\|^{2}}{\epsilon}}$ if $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$ and 0 otherwise


## Self-consistent method of chosing $\epsilon$

- Every manifold learning algorithm starts with a neighborhood graph
- Parameter $\sqrt{\epsilon}$
- is neighborhood radius
- and/or kernel banwidth
- For example, we use the kernel
$K\left(p, p^{\prime}\right)=e^{-\frac{\left\|p-p^{\prime}\right\|^{2}}{\epsilon}}$ if $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$ and 0 otherwise
- Problem: how to choose $\epsilon$ ?



## Existing work

- Theoretical (asymptotic) result $\sqrt{\epsilon} \propto n^{-\frac{1}{d+6}}$ [Singer06]
- Cross-validation
- assumes a supervised task given
- heuristic for K-nearest neighbor graph [Chen\&Buja09]
- depends on embedding method used
- K-nearest neighbor graph has different convergence properties than $\epsilon$ neighborhood
- Visual inspection


## Our idea

- $L_{\epsilon}$ estimate of Laplace-Beltrami operator
- contains the intrinsic geometry
- .... and depends on $\epsilon$ by construction
- Idea: choose $\epsilon$ so that geometry encoded by $L_{\epsilon}$ is closest to data geometry


## Our idea

- $L_{\epsilon}$ estimate of Laplace-Beltrami operator
- contains the intrinsic geometry
- .... and depends on $\epsilon$ by construction
- Idea: choose $\epsilon$ so that geometry encoded by $L_{\epsilon}$ is closest to data geometry
- Idea, formalized
- make $g_{\epsilon}(p)$ close to $I_{D}$ the identity matrix, for each $p \in \mathcal{D}$
- This is a completely unsupervised method
- $L_{\epsilon}$ is estimated independently of any embedding or task


## Semisupervised learning benchmarks [Chapelle\&al 08]

Multiclass classification problems

| Classification error (\%) |  |  |  |
| :--- | ---: | ---: | ---: |
| Dataset | CV | Method <br> [Chen\&Buja] | Ours |
| Digit1 | 3.32 | 2.16 | 2.11 |
| USPS | 5.18 | 4.83 | 3.89 |
| COIL | 7.02 | 8.03 | 8.81 |
| g241c | 13.31 | 23.93 | 12.77 |
| g241d | 8.67 | 18.39 | 8.76 |
|  | superv. | fully unsupervised |  |

## Results: Intrinsic Dimension Estimation

- Method of [Chen\&al 11]
- do local SVD for a range of neighborhood radii
- choose a an appropriate radius $\epsilon$
- dimension $=$ largest eigengap at radius $\epsilon$
- used our self-concordant method to find $\epsilon$
- Experiments: artificial 2D manifolds with noise

Consistency of the Riemannian metric estimator

## Proposition

- If the embedding $\phi: \mathcal{M} \rightarrow \phi(\mathcal{M})$ is

A diffeomorphic
B consistent $\phi\left(\mathcal{D}_{n}\right) \xrightarrow{n \rightarrow \infty} \phi(\mathcal{M})$
C Laplacian consistent $L_{n} \phi\left(\mathcal{D}_{n}\right) \xrightarrow{n \rightarrow \infty} \Delta \phi(\mathcal{M})$
then the dual Riemannian metric estimator $h$ is consistent

$$
\left(\phi\left(\mathcal{D}_{n}\right), h_{n}\right) \xrightarrow{n \rightarrow \infty}(\phi(\mathcal{M}), h)
$$

- Laplacian Eigenmaps and Diffusion Map satisfy A, B if $\mathcal{M}$ compact


## Outline

## Manifold learning - a short introduction <br> Metric manifold learning <br> Estimating the Riemannian metric Using the Riemannian metric

Scalable manifold learning

## Is Manifold Learning (ML) scalable?

- Fact ML is data intensive
- large amounts of data needed to reach accurate estimation of a manifold (e.g at least $10^{3-4}$ ) []
- Rumor "it is widely believed that ML is also computationally intensive"
- in particular, it scales poorly with the sample size $n$


## Is Manifold Learning (ML) scalable?

- Fact ML is data intensive
- large amounts of data needed to reach accurate estimation of a manifold (e.g at least $10^{3-4}$ ) []
- Rumor "it is widely believed that ML is also computationally intensive"
- in particular, it scales poorly with the sample size $n$
- My premise: ML is no more expensive that PCA
- i.e. non-linear dimension reduction is just as tractable as linear dimension reduction


## Is Manifold Learning (ML) scalable?

- Fact ML is data intensive
- large amounts of data needed to reach accurate estimation of a manifold (e.g at least $10^{3-4}$ ) []
- Rumor "it is widely believed that ML is also computationally intensive"
- in particular, it scales poorly with the sample size $n$
- My premise: ML is no more expensive that PCA
- i.e. non-linear dimension reduction is just as tractable as linear dimension reduction
- So?...
https://www.github.com/megaman
megaman: Manifold Learning for Millions of Points


meganan is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms to large data sets. On a personal computer megaman can embed 1 million data points with hundreds of dimensions in 10 minutes. megaman is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.

Package documentation can be found at http://mmp2.github.io/megaman/
You can also find our arXiv paper at http://anxiv.org/abs/1603.02763

## Examples

- Tutorial Notebook


## Installation with Conda

The easiest way to install meganan and its dependencies is with conda, the cross-platform package manager for the scientific Python ecosystem.


## Scalable Manifold Learning in python with megaman

https://www.github.com/megaman


English words and phrases taken from
Google news (3,000,000 phrases originally represented in 300 dimensions by the Deep Neural Network word2vec [Mikolov et al])


Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

## Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from Google news (3,000,000 phrases originally represented in 300 dimensions by the Deep Neural Network word2vec [Mikolov et al])


Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

## Significance

- Augmentation of manifold learning algorithms
- For a given algorithm, all geometrical quantities are preserved simultaneously, by recovering $g=$ geometry preserving embedding
- We can obtain geometry preserving embeddings with any reasonable algorithm
- Unification of algorithms
- Now, all "reasonable" algorithms/embeddings are asymptotically equivalent from the geometry point of view
- We can focus on comparing algorithms based on other criteria speed, rate of convergence, numerical stability
- $g$ offers a way to compare the algorithms' outputs
- Each algorithm has own $\phi$
- Hence outputs of different algorithms are incomparable
- But $\left(\phi^{A}, g^{A}\right),\left(\phi^{B}, g^{B}\right)$ should be comparable because they aim to represent intrinsic/geometric quantities

Manifold learning for sciences and engineering


- scientific discovery by quantitative/statistical analysis
- manifold learning as pre-processing for other tasks

Manifold learning for sciences and engineering


- scientific discovery by quantitative/statistical analysis
- manifold learning as pre-processing for other tasks

Thank you

