Geometrically faithful non-linear dimension reduction Is Manifold Learning for toy data only?

Marina Meila Dominique Perrault-Joncas

James McQueen

Jacob VanderPlas Jerry Zhang

Grace Telford

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

University of Washington mmp@stat.washington.edu

Outline

Manifold learning - a short introduction

Metric manifold learning Estimating the Riemannian metric Using the Riemannian metric

(ロ)、(型)、(E)、(E)、 E) の(の)

Scalable manifold learning

Outline

Manifold learning - a short introduction

Metric manifold learning Estimating the Riemannian metric Using the Riemannian metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Scalable manifold learning

- ▶ high-dimensional data $p \in \mathbb{R}^D$, $D = 64 \times 64$
- \blacktriangleright can be described by a small number d of continuous parameters

・ロット 全部 マイロット

≣ જીવભ

Usually, large sample size n

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why?

- To save space and computation
 - $n \times D$ data matrix $\rightarrow n \times m, m \ll D$
- To understand the data better
 - preserve large scale features, suppress fine scale features
- To use it afterwards in (prediction) tasks

Why?

- To save space and computation
 - $n \times D$ data matrix $\rightarrow n \times m, m \ll D$
- To understand the data better
 - preserve large scale features, suppress fine scale features
- To use it afterwards in (prediction) tasks

Richard Powell - The Hertzsprung Russell Diagram, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1736396

Why?

- To save space and computation
 - ▶ $n \times D$ data matrix $\rightarrow n \times m$, $m \ll D$
- To understand the data better
 - preserve large scale features, suppress fine scale features

To use it afterwards in (prediction) tasks

Input Data p₁,... p_n, embedding dimension m, neighborhood scale parameter ε

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- ▶ Input Data $p_1, ..., p_n$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Input Data $p_1, ..., p_n$, embedding dimension m, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix its leading eigenvectors are the coordinates φ(*p*_{1:n})

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Input Data p₁,... p_n, embedding dimension m, neighborhood scale parameter e
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix its leading eigenvectors are the coordinates φ(*p*_{1:n})

LAPLACIAN EIGENMAPS [Belkin & Nyogi 02]

Construct similarity matrix

$$S = [S_{
hop'}]_{
ho,
ho'\in\mathcal{D}}$$
 with $S_{
hop'} = e^{-rac{1}{\epsilon}||
ho-
ho'||^2}$ iff $ho,
ho'$ neighbors

- Construct Laplacian matrix $L = I T^{-1}S$ with T = diag(S1)
- Calculate $\psi^{1...m}$ = eigenvectors of *L* (smallest eigenvalues)
- coordinates of $p \in D$ are $(\psi^1(p), \ldots \psi^m(p))$

A toy example (the "Swiss Roll" with a hole)

points in $D \ge 3$ dimensions

same points reparametrized in 2D

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A toy example (the "Swiss Roll" with a hole)

points in $D \ge 3$ dimensions

same points reparametrized in 2D

Input

Desired output

くりょう 山田 (山田) (山田) (日)

Embedding in 2 dimensions by different manifold learning algorithms Input

- nac

How to evaluate the results objectively?

- which of these embedding are "correct"?
- if several "correct", how do we reconcile them?

- 日本 - 1 日本 - 日本 - 日本

if not "correct", what failed?

Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps (HE), Laplacian Eigenmaps (LE), Diffusion Maps (DM)

How to evaluate the results objectively?

Spectrum of a galaxy. Source SDSS, Jake VanderPlas

- which of these embedding are "correct"?
- if several "correct", how do we reconcile them?

- if not "correct", what failed?
- what if I have real data?

Outline

Manifold learning – a short introduction

Metric manifold learning

Estimating the Riemannian metric Using the Riemannian metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Scalable manifold learning

Preserving topology vs. preserving (intrinsic) geometry

▶ Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism preserves topology often satisfied by embedding algorithms
- Mapping ϕ preserves
 - distances along curves in \mathcal{M}
 - angles between curves in \mathcal{M}
 - areas, volumes

Preserving topology vs. preserving (intrinsic) geometry

- ▶ Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism
 - preserves topology often satisfied by embedding algorithms
- Mapping ϕ preserves
 - \blacktriangleright distances along curves in ${\cal M}$
 - angles between curves in M
 - areas, volumes ...i.e. \u03c6 is isometry

For most algorithms, in most cases, ϕ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

Previous known results in geometric recovery

Positive results

- Nash's Theorem: Isometric embedding is possible.
- Consistency results for Laplacian and eigenvectors
 - [Hein & al 07,Coifman & Lafon 06, Ting & al 10, Gine & Koltchinskii 06]
 - imply isometric recovery for LE, DM in special situations
- Isomap recovers (only) flat manifolds isometrically
- algorithm based on Nash's theorem (isometric embedding for very low d) [Verma 2011]

Negative results

- obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg&al 08]
- Sampling density distorts the geometry for LE [Coifman& Lafon 06]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Our approach [Perrault-Joncas,M 10]

Given

 mapping \u03c6 that preserves topology true in many cases

Objective

 augment φ with geometric information g so that (φ, g) preserves the geometry

Dominique Perrault-Joncas

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Our approach [Perrault-Joncas,M 10]

Given

 mapping \u03c6 that preserves topology true in many cases

Objective

- augment φ with geometric information g so that (φ, g) preserves the geometry
- g is the Riemannian metric.

Dominique Perrault-Joncas

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Riemannian metric g

- $\mathcal{M} = (\text{smooth}) \text{ manifold}$
- ▶ p point on M
- $T_p\mathcal{M} =$ tangent subspace at p
- g =**Riemannian metric** on \mathcal{M}
 - g defines inner product on $T_p\mathcal{M}$

$$< v, w > = v^{T_{g}}(p)w$$
 for $v, w \in T_{p}\mathcal{M}$ and for $p \in \mathcal{M}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- g is symmetric and positive definite tensor field
- g also called first differential form
- (\mathcal{M}, g) is a Riemannian manifold

All geometric quantities on $\mathcal M$ involve g

Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

<□ > < @ > < E > < E > E のQ @

All geometric quantities on ${\mathcal M}$ involve g

Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

Length of curve c

$$I(c) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

All geometric quantities on $\mathcal M$ involve g

Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

Length of curve c

$$I(c) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Under a change of parametrization, g changes in a way that leaves geometric quantities invariant

All geometric quantities on $\mathcal M$ involve g

Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

$$I(c) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant
- Current algorithms: estimate M
- This talk: estimate g along with M (and in the same coordinates)

Problem formulation

► Given:

- data set $\mathcal{D} = \{p_1, \dots, p_n\}$ sampled from manifold $\mathcal{M} \subset \mathbb{R}^D$
- ► embedding { φ(p), p ∈ D } by e.g LLE, Isomap, LE, ...

• Estimate $g_p \in \mathbb{R}^{m \times m}$ the Riemannian metric for $p \in \mathcal{D}$ in the embedding coordinates ϕ

 \blacktriangleright The embedding (ϕ,g) will preserve the geometry of the original data manifold

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Relation between g and Δ

• $\Delta = Laplace$ -Beltrami operator on \mathcal{M}

$$\bullet \ \Delta = \operatorname{div} \cdot \operatorname{grad}$$

• on
$$C^2$$
, $\Delta f = \sum_j \frac{\partial^2 f}{\partial x_i^2}$

• on weighted graph with similarity matrix S, and $t_p = \sum_{pp'} S_{pp'}$, $\Delta = \text{diag} \{ t_p \} - S$

Proposition 1 (Differential geometric fact)

$$\Delta f = \frac{1}{\sqrt{\det(g)}} \sum_{l} \frac{\partial}{\partial x^{l}} \left(\sqrt{\det(g)} \sum_{k} g^{lk} \frac{\partial}{\partial x^{k}} f \right) ,$$

where $[g^{lk}] = g^{-1}$

Estimation of g

Proposition 2 (Main Result 1)

Let Δ be the Laplace-Beltrami operator on \mathcal{M} . Then

$$h^{ij}(p) = \frac{1}{2}\Delta(\phi_i - \phi_i(p))(\phi_j - \phi_j(p))|_{\phi_i(p),\phi_j(p)}$$

where $h = g^{-1}$ (matrix inverse)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algorithm to Estimate Riemann metric g (Main Result 2)

Given dataset ${\mathcal D}$

- 1. Preprocessing (construct neighborhood graph, ...)
- 2. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- 3. Estimate discretized Laplace-Beltrami operator $L \in \mathbb{R}^{n \times n}$

4. Estimate $H_p = G_p^{-1}$ and $G_p = H_p^{\dagger}$ for all $p \in \mathcal{D}$

Output (ϕ_p, G_p) for all p

Algorithm to Estimate Riemann metric *g* (Main Result 2)

Given dataset ${\mathcal D}$

- 1. Preprocessing (construct neighborhood graph, ...)
- 2. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- 3. Estimate discretized Laplace-Beltrami operator L
- 4. Estimate $H_p = G_p^{-1}$ and $G_p = H_p^{\dagger}$ for all p

4.1 For i, j = 1 : m, $H^{ij} = \frac{1}{2} \left[L(\phi_i * \phi_j) - \phi_i * (L\phi_j) - \phi_j * (L\phi_i) \right]$ where X * Y denotes elementwise product of two vectors X, Y $\in \mathbb{R}^N$ 4.2 For $p \in \mathcal{D}$, $H_p = [H^{ij}_p]_{ij}$ and $G_p = H^{\dagger}_p$ Output (ϕ_p, G_p) for all p

 (φ_p, Θ_p) for all p

Consistency of the Riemannian metric estimator

Proposition

- If the embedding $\phi: \mathcal{M} \to \phi(\mathcal{M})$ is
 - A diffeomorphic
 - **B** consistent $\phi(\mathcal{D}_n) \xrightarrow{n \to \infty} \phi(\mathcal{M})$
 - **C** Laplacian consistent $L_n\phi(\mathcal{D}_n) \stackrel{n \to \infty}{\longrightarrow} \Delta\phi(\mathcal{M})$

then the dual Riemannian metric estimator h is consistent

$$(\phi(\mathcal{D}_n), h_n) \stackrel{n \to \infty}{\longrightarrow} (\phi(\mathcal{M}), h)$$

 \blacktriangleright Laplacian Eigenmaps and Diffusion Map satisfy A, B if ${\cal M}$ compact

g for Sculpture Faces

- n = 698 with 64×64 gray images of faces
 - head moves up/down and right/left

LTSA Algoritm

Laplacian Eigenmaps

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

- Geodesic distance = shortest path on \mathcal{M}
- should be invariant to coordinate changes

Laplacian Eigenmaps

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

true distance d = 1.57

		Shortest	Metric	Rel.
Embedding	f(p) - f(p')	Path <i>d</i> _G	â	error
Original data	1.41	1.57	1.62	3.0%
Isomap $m = 2$	1.66	1.75	1.63	3.7%
LTSA $m = 2$	0.07	0.08	1.65	4.8%
LE <i>m</i> = 3	0.08	0.08	1.62	3.1%

Calculating Areas/Volumes in the manifold

(Results for Hourglass data)

	true area $= 0.84$				
			Rel.		
Embedding	Naive	Metric	err.		
Original data	0.85 (0.03)	0.93 (0.03)	11.0%		
Isomap	2.7	0.93 (0.03)	11.0%		
LTSA	1e-03 (5e-5)	0.93 (0.03)	11.0%		
LE	1e-05 (4e-4)	0.82 (0.03)	2.6%		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Semisupervised learning with Gaussian Processes on Manifolds

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 国 ● のへ(で)

Self-consistent method of chosing ϵ

Every manifold learning algorithm starts with a neighborhood graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- \blacktriangleright Parameter $\sqrt{\epsilon}$
 - is neighborhood radius
 - and/or kernel banwidth

Self-consistent method of chosing ϵ

> Every manifold learning algorithm starts with a neighborhood graph

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- \blacktriangleright Parameter $\sqrt{\epsilon}$
 - is neighborhood radius
 - and/or kernel banwidth
- For example, we use the kernel

 $\mathcal{K}(p,p') = e^{-rac{||p-p'||^2}{\epsilon}}$ if $||p-p'||^2 \leq \epsilon$ and 0 otherwise

Self-consistent method of chosing ϵ

- > Every manifold learning algorithm starts with a neighborhood graph
- Parameter $\sqrt{\epsilon}$
 - is neighborhood radius
 - and/or kernel banwidth
- ▶ For example, we use the kernel $K(p, p') = e^{-\frac{||p-p'||^2}{\epsilon}}$ if $||p - p'||^2 \le \epsilon$ and 0 otherwise
- Problem: how to choose ϵ ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Existing work

- Theoretical (asymptotic) result $\sqrt{\epsilon} \propto n^{-\frac{1}{d+6}}$ [Singer06]
- Cross-validation
 - assumes a supervised task given
- heuristic for K-nearest neighbor graph [Chen&Buja09]
 - depends on embedding method used
 - \blacktriangleright K-nearest neighbor graph has different convergence properties than ϵ neighborhood

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Visual inspection

Our idea

• L_{ϵ} estimate of Laplace-Beltrami operator

- contains the intrinsic geometry
- \blacktriangleright ... and depends on ϵ by construction

▶ Idea: choose ϵ so that geometry encoded by L_{ϵ} is closest to data geometry

Our idea

▶ L_e estimate of Laplace-Beltrami operator

- contains the intrinsic geometry
- ... and depends on ϵ by construction
- ▶ Idea: choose ϵ so that geometry encoded by L_{ϵ} is closest to data geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

- Idea, formalized
 - ▶ make $g_{\epsilon}(p)$ close to I_D the identity matrix, for each $p \in D$
- This is a completely unsupervised method
 - L_{ϵ} is estimated independently of any embedding or task

Semisupervised learning benchmarks [Chapelle&al 08]

Multiclass classification problems

Classification error (%)					
	Method				
Dataset	CV	[Chen&Buja]	Ours		
Digit1	3.32	2.16	2.11		
USPS	5.18	4.83	3.89		
COIL	7.02	8.03	8.81		
g241c	13.31	23.93	12.77		
g241d	8.67	18.39	8.76		
	superv. fully unsupervised				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results: Intrinsic Dimension Estimation

Method of [Chen&al 11]

- do local SVD for a range of neighborhood radii
- choose a an appropriate radius ϵ
- dimension = largest eigengap at radius ϵ
- \blacktriangleright used our self-concordant method to find ϵ
- Experiments: artificial 2D manifolds with noise

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consistency of the Riemannian metric estimator

Proposition

- If the embedding $\phi: \mathcal{M} \to \phi(\mathcal{M})$ is
 - A diffeomorphic
 - **B** consistent $\phi(\mathcal{D}_n) \xrightarrow{n \to \infty} \phi(\mathcal{M})$
 - **C** Laplacian consistent $L_n\phi(\mathcal{D}_n) \stackrel{n \to \infty}{\longrightarrow} \Delta\phi(\mathcal{M})$

then the dual Riemannian metric estimator h is consistent

$$(\phi(\mathcal{D}_n), h_n) \stackrel{n \to \infty}{\longrightarrow} (\phi(\mathcal{M}), h)$$

 \blacktriangleright Laplacian Eigenmaps and Diffusion Map satisfy A, B if ${\cal M}$ compact

Outline

Manifold learning - a short introduction

Metric manifold learning Estimating the Riemannian metric Using the Riemannian metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Scalable manifold learning

Is Manifold Learning (ML) scalable?

- Fact ML is data intensive
 - large amounts of data needed to reach accurate estimation of a manifold (e.g at least 10³⁻⁴) []

- Rumor "it is widely believed that ML is also computationally intensive"
 - ▶ in particular, it scales poorly with the sample size n

Is Manifold Learning (ML) scalable?

- Fact ML is data intensive
 - large amounts of data needed to reach accurate estimation of a manifold (e.g at least 10³⁻⁴) []
- Rumor "it is widely believed that ML is also computationally intensive"
 - ▶ in particular, it scales poorly with the sample size n
- My premise: ML is no more expensive that PCA
 - i.e. non-linear dimension reduction is just as tractable as linear dimension reduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is Manifold Learning (ML) scalable?

- Fact ML is data intensive
 - large amounts of data needed to reach accurate estimation of a manifold (e.g at least 10³⁻⁴) []
- Rumor "it is widely believed that ML is also computationally intensive"
 - ▶ in particular, it scales poorly with the sample size n
- My premise: ML is no more expensive that PCA
 - i.e. non-linear dimension reduction is just as tractable as linear dimension reduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► So?...

https://www.github.com/megaman

megaman: Manifold Learning for Millions of Points

seare is a scalable manifold barring package implemented in python. It has a forct-and AP designed to be familiar to schick-starb that harmsess the 0+F-att Library for Approximate Neerest Neighbork (LOBPCG) method to scale manifold learning algorithms to large data sets. On a personal complex meganism can embed in "library of the scale manifold learning algorithms to large data sets. On a personal complex meganism can embed in "library data point with hundreds of dimensions in 10 minutes. meganan is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.

Package documentation can be found at http://mmp2.github.io/megaman/

You can also find our arXiv paper at http://arxiv.org/abs/1603.02763

Examples

Tutorial Notebook

Installation with Conda

The easiest way to install meganan and its dependencies is with conda, the cross-platform package manager for the scientific Python ecosystem.

James McQueen

Jake VanderPlas

Jerry Zhang

Grace Telford

SAG

э

Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from Google news (3,000,000 phrases originally represented in 300 dimensions by the Deep Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

・ロト ・ 一下・ ・ ヨト・

preprocessed by Jake VanderPlas, figure by Grace Telford

Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from Google news (3,000,000 phrases originally represented in 300 dimensions by the Deep Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

preprocessed by Jake VanderPlas, figure by Grace Telford

(日)、

2.10

1 95

1.80

1.65

+ 0.004

0.003 0.002

0.001

0.000

-0.001

Significance

Augmentation of manifold learning algorithms

- For a given algorithm, all geometrical quantities are preserved simultaneously, by recovering g = geometry preserving embedding
- We can obtain geometry preserving embeddings with any reasonable algorithm

Unification of algorithms

- Now, all "reasonable" algorithms/embeddings are asymptotically equivalent from the geometry point of view
- We can focus on comparing algorithms based on other criteria speed, rate of convergence, numerical stability
- g offers a way to compare the algorithms' outputs
 - Each algorithm has own ϕ

 - Hence outputs of different algorithms are incomparable
 But (\$\phi^A, g^A\$), (\$\phi^B, g^B\$) should be comparable because they aim to represent intrinsic/geometric quantities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Manifold learning for sciences and engineering

- scientific discovery by quantitative/statistical analysis
- manifold learning as pre-processing for other tasks

(日)、

ъ

Manifold learning for sciences and engineering

- scientific discovery by quantitative/statistical analysis
- manifold learning as pre-processing for other tasks

イロト 不得 トイヨト イヨト

э

Thank you

◆□ → < @ → < Ξ → < Ξ → ○ < ⊙ < ⊙</p>