
Geometrically faithful non-linear dimension reduction
Is Manifold Learning for toy data only?

Marina Meila
Dominique Perrault-Joncas

James McQueen Jacob VanderPlas Jerry Zhang Grace Telford

University of Washington
mmp@stat.washington.edu

Statistics Symposium 4/22/2016

Outline

Manifold learning – a short introduction

Metric manifold learning
Estimating the Riemannian metric
Using the Riemannian metric

Scalable manifold learning

Outline

Manifold learning – a short introduction

Metric manifold learning
Estimating the Riemannian metric
Using the Riemannian metric

Scalable manifold learning

When to do (non-linear) dimension reduction

I high-dimensional data p 2 RD , D = 64⇥ 64

I can be described by a small number d of continuous parameters

I Usually, large sample size n

When to do (non-linear) dimension reduction

Why?
I To save space and computation

I n ⇥ D data matrix ! n ⇥m, m ⌧ D

I To understand the data better
I preserve large scale features, suppress fine scale features

I To use it afterwards in (prediction) tasks

When to do (non-linear) dimension reduction

Why?
I To save space and computation

I n ⇥ D data matrix ! n ⇥m, m ⌧ D

I To understand the data better
I preserve large scale features, suppress fine scale features

I To use it afterwards in (prediction) tasks

When to do (non-linear) dimension reduction

Richard Powell - The Hertzsprung Russell Diagram, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1736396

Why?
I To save space and computation

I n ⇥ D data matrix ! n ⇥m, m ⌧ D

I To understand the data better
I preserve large scale features, suppress fine scale features

I To use it afterwards in (prediction) tasks

How? Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ✏

p1, . . . pn ⇢ RD

How? Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ✏

I Construct neighborhood graph p, p0 neighbors i↵ ||p � p0||2 ✏

p1, . . . pn ⇢ RD

How? Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ✏

I Construct neighborhood graph p, p0 neighbors i↵ ||p � p0||2 ✏

I Construct a n ⇥ n matrix its leading eigenvectors are the coordinates
�(p1:n)

p1, . . . pn ⇢ RD

How? Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ✏

I Construct neighborhood graph p, p0 neighbors i↵ ||p � p0||2 ✏

I Construct a n ⇥ n matrix its leading eigenvectors are the coordinates
�(p1:n)

Laplacian Eigenmaps [Belkin & Nyogi 02]

I Construct similarity matrix

S = [Spp0]p,p02D withSpp0 = e�
1
✏ ||p�p0||2 i↵ p, p0 neighbors

I Construct Laplacian matrix L = I � T�1S with T = diag(S1)

I Calculate 1...m = eigenvectors of L (smallest eigenvalues)

I coordinates of p 2 D are (1(p), . . . m(p))

A toy example (the “Swiss Roll” with a hole)

points in D � 3 dimensions same points reparametrized in 2D

Input Desired output

A toy example (the “Swiss Roll” with a hole)

points in D � 3 dimensions same points reparametrized in 2D

Input Desired output

Embedding in 2 dimensions by di↵erent manifold learning algorithms
Input

Figure by Todd Wittman

How to evaluate the results objectively?

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps
(HE), Laplacian Eigenmaps (LE), Di↵usion Maps (DM)

How to evaluate the results objectively?

Spectrum of a galaxy. Source SDSS, Jake VanderPlas

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

I what if I have real data?

Outline

Manifold learning – a short introduction

Metric manifold learning
Estimating the Riemannian metric
Using the Riemannian metric

Scalable manifold learning

Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p 2 RD �! �(p) = x 2 Rm

I Mapping M �! �(M) is di↵eomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping � preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. � is isometry
For most algorithms, in most cases, � is not isometry

Preserves topology

Preserves topology + intrinsic geometry

Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p 2 RD �! �(p) = x 2 Rm

I Mapping M �! �(M) is di↵eomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping � preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. � is isometry
For most algorithms, in most cases, � is not isometry

Preserves topology

Preserves topology + intrinsic geometry

Previous known results in geometric recovery

Positive results

I Nash’s Theorem: Isometric
embedding is possible.

I Consistency results for Laplacian and
eigenvectors

I [Hein & al 07,Coifman & Lafon
06, Ting & al 10, Gine &
Koltchinskii 06]

I imply isometric recovery for LE,
DM in special situations

I Isomap recovers (only) flat manifolds
isometrically

I algorithm based on Nash’s theorem
(isometric embedding for very low d)
[Verma 2011]

Negative results

I obvious negative examples

I No a�ne recovery for normalized
Laplacian algorithms [Goldberg&al
08]

I Sampling density distorts the
geometry for LE [Coifman& Lafon 06]

Our approach [Perrault-Joncas,M 10]

Given

I mapping � that preserves topology

true in many cases

Objective

I augment � with geometric information g
so that (�, g) preserves the geometry Dominique

Perrault-Joncas

g is the Riemannian metric.

Our approach [Perrault-Joncas,M 10]

Given

I mapping � that preserves topology

true in many cases

Objective

I augment � with geometric information g
so that (�, g) preserves the geometry Dominique

Perrault-Joncas

g is the Riemannian metric.

The Riemannian metric g

I M = (smooth) manifold

I p point on M
I TpM = tangent subspace at p

I g = Riemannian metric on M
g defines inner product on TpM

< v ,w >= vTg(p)w for v ,w 2 TpM and for p 2 M

I g is symmetric and positive definite tensor field
I g also called first di↵erential form
I (M, g) is a Riemannian manifold

All geometric quantities on M involve g

I Volume element on manifold

Vol(W) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)

All geometric quantities on M involve g

I Volume element on manifold

Vol(W) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)

All geometric quantities on M involve g

I Volume element on manifold

Vol(W) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)

All geometric quantities on M involve g

I Volume element on manifold

Vol(W) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)

Problem formulation

I Given:
I data set D = {p1, . . . pn}

sampled from manifold M ⇢ RD

I embedding {�(p), p 2 D }
by e.g LLE, Isomap, LE, . . .

I Estimate gp 2 Rm⇥m the Riemannian metric for p 2 D
in the embedding coordinates �

I The embedding (�, g) will preserve the geometry of the original data
manifold

Relation between g and �

I � = Laplace-Beltrami operator on M
I � = div · grad
I on C2, �f =

P
j
@2f
@x2j

I on weighted graph with similarity matrix S , and tp =
P

pp0 Spp0 ,
� = diag { tp}� S

Proposition 1 (Di↵erential geometric fact)

�f =
1p

det(g)

X

l

@
@x l

p

det(g)
X

k

g lk @
@xk

f

!
,

where [g lk] = g�1

Estimation of g

Proposition 2 (Main Result 1)

Let � be the Laplace-Beltrami operator on M. Then

hij(p) =
1
2
�(�i � �i (p)) (�j � �j(p))|�i (p),�j (p)

where h = g�1 (matrix inverse)

Intuition:

I at each point p 2 M, g(p) is a d ⇥ d matrix

I apply � to embedding coordinate functions �1, . . . �m

I this produces g�1(p) in the given coordinates

I our algorithm implements matrix version of this operator result

I consistent estimation of � is solved [Coifman&Lafon 06,Hein&al 07]

Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding � of D into Rm

3. Estimate discretized Laplace-Beltrami operator L 2 Rn⇥n

4. Estimate Hp = G�1
p and Gp = H†

p for all p 2 D
Output (�p,Gp) for all p

Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding � of D into Rm

3. Estimate discretized Laplace-Beltrami operator L

4. Estimate Hp = G�1
p and Gp = H†

p for all p
4.1 For i , j = 1 : m,

Hij = 1
2

⇥
L(�i ⇤ �j)� �i ⇤ (L�j)� �j ⇤ (L�i)

⇤

where X ⇤ Y denotes elementwise product of two vectors X, Y 2 RN

4.2 For p 2 D, Hp = [Hij
p]ij and Gp = H†

p

Output (�p,Gp) for all p

Consistency of the Riemannian metric estimator

Proposition

I If the embedding � : M ! �(M) is
A di↵eomorphic

B consistent �(Dn)
n!1�! �(M)

C Laplacian consistent Ln�(Dn)
n!1�! ��(M)

then the dual Riemannian metric estimator h is consistent

(�(Dn), hn)
n!1�! (�(M), h)

I Laplacian Eigenmaps and Di↵usion Map satisfy A, B if M compact

g for Sculpture Faces

I n = 698 with 64⇥ 64 gray images of faces
I head moves up/down and right/left

LTSA Algoritm

Isomap LTSA

Laplacian Eigenmaps

Calculating distances in the manifold M
I Geodesic distance = shortest path on M
I should be invariant to coordinate changes

Original Isomap

Laplacian Eigenmaps

Calculating distances in the manifold M

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)� f (p0)|| Path dG d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap m = 2 1.66 1.75 1.63 3.7%
LTSA m = 2 0.07 0.08 1.65 4.8%
LE m = 3 0.08 0.08 1.62 3.1%

Calculating Areas/Volumes in the manifold

(Results for Hourglass data)

true area = 0.84
Rel.

Embedding Naive Metric err.
Original data 0.85 (0.03) 0.93 (0.03) 11.0%

Isomap 2.7 0.93 (0.03) 11.0%
LTSA 1e-03 (5e-5) 0.93 (0.03) 11.0%
LE 1e-05 (4e-4) 0.82 (0.03) 2.6%

Semisupervised learning with Gaussian Processes on Manifolds

Sculpture Faces: Predicting Head Rotation

Absolute Error (AE) as percentage of range

Isomap (Total AE = 3078) LTSA (Total AE = 3020)

Metric (Total AE = 660) Laplacian Eigenmaps (Total AE = 3078)

Self-consistent method of chosing ✏

I Every manifold learning algorithm starts with a neighborhood graph
I Parameter

p
✏

I is neighborhood radius
I and/or kernel banwidth

I For example, we use the kernel

K(p, p0) = e�
||p�p0||2

✏ if ||p � p0||2 ✏ and 0 otherwise

I Problem: how to choose ✏?

Self-consistent method of chosing ✏

I Every manifold learning algorithm starts with a neighborhood graph
I Parameter

p
✏

I is neighborhood radius
I and/or kernel banwidth

I For example, we use the kernel

K(p, p0) = e�
||p�p0||2

✏ if ||p � p0||2 ✏ and 0 otherwise

I Problem: how to choose ✏?

Self-consistent method of chosing ✏

I Every manifold learning algorithm starts with a neighborhood graph
I Parameter

p
✏

I is neighborhood radius
I and/or kernel banwidth

I For example, we use the kernel

K(p, p0) = e�
||p�p0||2

✏ if ||p � p0||2 ✏ and 0 otherwise

I Problem: how to choose ✏?

Existing work

I Theoretical (asymptotic) result
p
✏ / n� 1

d+6 [Singer06]

I Cross-validation
I assumes a supervised task given

I heuristic for K-nearest neighbor graph [Chen&Buja09]
I depends on embedding method used
I K-nearest neighbor graph has di↵erent convergence properties than ✏

neighborhood

I Visual inspection

Our idea

I L✏ estimate of Laplace-Beltrami operator
I contains the intrinsic geometry
I . . . and depends on ✏ by construction

I Idea: choose ✏ so that geometry encoded by L✏ is closest to data geometry

I Idea, formalized
I make g✏(p) close to ID the identity matrix, for each p 2 D

I This is a completely unsupervised method
I L✏ is estimated independently of any embedding or task

Our idea

I L✏ estimate of Laplace-Beltrami operator
I contains the intrinsic geometry
I . . . and depends on ✏ by construction

I Idea: choose ✏ so that geometry encoded by L✏ is closest to data geometry
I Idea, formalized

I make g✏(p) close to ID the identity matrix, for each p 2 D

I This is a completely unsupervised method
I L✏ is estimated independently of any embedding or task

Semisupervised learning benchmarks [Chapelle&al 08]

Multiclass classification problems

Classification error (%)
Method

Dataset CV [Chen&Buja] Ours
Digit1 3.32 2.16 2.11
USPS 5.18 4.83 3.89
COIL 7.02 8.03 8.81
g241c 13.31 23.93 12.77
g241d 8.67 18.39 8.76

superv. fully unsupervised

Results: Intrinsic Dimension Estimation

I Method of [Chen&al 11]
I do local SVD for a range of neighborhood radii
I choose a an appropriate radius ✏
I dimension = largest eigengap at radius ✏

I used our self-concordant method to find ✏

I Experiments: artificial 2D manifolds with noise

Consistency of the Riemannian metric estimator

Proposition

I If the embedding � : M ! �(M) is
A di↵eomorphic

B consistent �(Dn)
n!1�! �(M)

C Laplacian consistent Ln�(Dn)
n!1�! ��(M)

then the dual Riemannian metric estimator h is consistent

(�(Dn), hn)
n!1�! (�(M), h)

I Laplacian Eigenmaps and Di↵usion Map satisfy A, B if M compact

Outline

Manifold learning – a short introduction

Metric manifold learning
Estimating the Riemannian metric
Using the Riemannian metric

Scalable manifold learning

Is Manifold Learning (ML) scalable?

I Fact ML is data intensive
I large amounts of data needed to reach accurate estimation of a manifold

(e.g at least 103�4) []

I Rumor “it is widely believed that ML is also computationally intensive”
I in particular, it scales poorly with the sample size n

I My premise: ML is no more expensive that PCA
I i.e. non-linear dimension reduction is just as tractable as linear dimension

reduction

I So?. . .

Is Manifold Learning (ML) scalable?

I Fact ML is data intensive
I large amounts of data needed to reach accurate estimation of a manifold

(e.g at least 103�4) []

I Rumor “it is widely believed that ML is also computationally intensive”
I in particular, it scales poorly with the sample size n

I My premise: ML is no more expensive that PCA
I i.e. non-linear dimension reduction is just as tractable as linear dimension

reduction

I So?. . .

Is Manifold Learning (ML) scalable?

I Fact ML is data intensive
I large amounts of data needed to reach accurate estimation of a manifold

(e.g at least 103�4) []

I Rumor “it is widely believed that ML is also computationally intensive”
I in particular, it scales poorly with the sample size n

I My premise: ML is no more expensive that PCA
I i.e. non-linear dimension reduction is just as tractable as linear dimension

reduction

I So?. . .

https://www.github.com/megaman

James McQueen Jake VanderPlas Jerry Zhang Grace Telford

Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from

Google news (3,000,000 phrases originally

represented in 300 dimensions by the Deep

Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the

Sloan Digital Sky Survey (675,000 spectra

originally in 3750 dimensions).

preprocessed by Jake VanderPlas, figure by Grace Telford

Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from

Google news (3,000,000 phrases originally

represented in 300 dimensions by the Deep

Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the

Sloan Digital Sky Survey (675,000 spectra

originally in 3750 dimensions).

preprocessed by Jake VanderPlas, figure by Grace Telford

Significance

I Augmentation of manifold learning algorithms
I For a given algorithm, all geometrical quantities are preserved

simultaneously, by recovering g = geometry preserving embedding
I We can obtain geometry preserving embeddings with any reasonable

algorithm

I Unification of algorithms
I Now, all “reasonable” algorithms/embeddings are asymptotically equivalent

from the geometry point of view
I We can focus on comparing algorithms based on other criteria

speed, rate of convergence, numerical stability
I g o↵ers a way to compare the algorithms’ outputs

I Each algorithm has own �
I Hence outputs of di↵erent algorithms are incomparable
I But (�A, gA), (�B , gB) should be comparable because they aim to represent

intrinsic/geometric quantities

Manifold learning for sciences and engineering

I scientific discovery by
quantitative/statistical analysis

I manifold learning as pre-processing for
other tasks

Manifold learning for sciences and engineering

I scientific discovery by
quantitative/statistical analysis

I manifold learning as pre-processing for
other tasks

Thank you

	Manifold learning – a brief introduction
	Metric manifold learning
	Estimating the Riemannian metric
	Using the Riemannian metric

	Scalable manifold learning

