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When to do (non-linear) dimension reduction

I high-dimensional data p 2 RD , D = 64⇥ 64

I can be described by a small number d of continuous parameters

I Usually, large sample size n



When to do (non-linear) dimension reduction

Why?
I To save space and computation

I n ⇥ D data matrix ! n ⇥m, m ⌧ D

I To understand the data better
I preserve large scale features, suppress fine scale features

I To use it afterwards in (prediction) tasks
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Richard Powell - The Hertzsprung Russell Diagram, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1736396
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How? Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ✏

I Construct neighborhood graph p, p0 neighbors i↵ ||p � p0||2  ✏

I Construct a n ⇥ n matrix its leading eigenvectors are the coordinates
�(p1:n)

Laplacian Eigenmaps [Belkin & Nyogi 02]

I Construct similarity matrix

S = [Spp0 ]p,p02D withSpp0 = e�
1
✏ ||p�p0||2 i↵ p, p0 neighbors

I Construct Laplacian matrix L = I � T�1S with T = diag(S1)

I Calculate  1...m = eigenvectors of L (smallest eigenvalues)

I coordinates of p 2 D are ( 1(p), . . .  m(p))



A toy example (the “Swiss Roll” with a hole)

points in D � 3 dimensions same points reparametrized in 2D

Input Desired output
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Embedding in 2 dimensions by di↵erent manifold learning algorithms
Input

Figure by Todd Wittman



How to evaluate the results objectively?

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps
(HE), Laplacian Eigenmaps (LE), Di↵usion Maps (DM)



How to evaluate the results objectively?

Spectrum of a galaxy. Source SDSS, Jake VanderPlas

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

I what if I have real data?
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Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p 2 RD �! �(p) = x 2 Rm

I Mapping M �! �(M) is di↵eomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping � preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. � is isometry
For most algorithms, in most cases, � is not isometry

Preserves topology

Preserves topology + intrinsic geometry
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Previous known results in geometric recovery

Positive results

I Nash’s Theorem: Isometric
embedding is possible.

I Consistency results for Laplacian and
eigenvectors

I [Hein & al 07,Coifman & Lafon
06, Ting & al 10, Gine &
Koltchinskii 06]

I imply isometric recovery for LE,
DM in special situations

I Isomap recovers (only) flat manifolds
isometrically

I algorithm based on Nash’s theorem
(isometric embedding for very low d)
[Verma 2011]

Negative results

I obvious negative examples

I No a�ne recovery for normalized
Laplacian algorithms [Goldberg&al
08]

I Sampling density distorts the
geometry for LE [Coifman& Lafon 06]



Our approach [Perrault-Joncas,M 10]

Given

I mapping � that preserves topology

true in many cases

Objective

I augment � with geometric information g
so that (�, g) preserves the geometry Dominique

Perrault-Joncas

g is the Riemannian metric.
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The Riemannian metric g

I M = (smooth) manifold

I p point on M
I TpM = tangent subspace at p

I g = Riemannian metric on M
g defines inner product on TpM

< v ,w >= vTg(p)w for v ,w 2 TpM and for p 2 M

I g is symmetric and positive definite tensor field
I g also called first di↵erential form
I (M, g) is a Riemannian manifold



All geometric quantities on M involve g

I Volume element on manifold

Vol(W ) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)



All geometric quantities on M involve g

I Volume element on manifold

Vol(W ) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)



All geometric quantities on M involve g

I Volume element on manifold

Vol(W ) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)



All geometric quantities on M involve g

I Volume element on manifold

Vol(W ) =

Z

W

p
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

Z b

a

vuut
X

ij

gij
dxi

dt

dxj

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)



Problem formulation

I Given:
I data set D = {p1, . . . pn}

sampled from manifold M ⇢ RD

I embedding {�(p), p 2 D }
by e.g LLE, Isomap, LE, . . .

I Estimate gp 2 Rm⇥m the Riemannian metric for p 2 D
in the embedding coordinates �

I The embedding (�, g) will preserve the geometry of the original data
manifold



Relation between g and �

I � = Laplace-Beltrami operator on M
I � = div · grad
I on C2, �f =

P
j
@2f
@x2j

I on weighted graph with similarity matrix S , and tp =
P

pp0 Spp0 ,
� = diag { tp}� S

Proposition 1 (Di↵erential geometric fact)

�f =
1p

det(g)

X

l

@
@x l

 
p

det(g)
X

k

g lk @
@xk

f

!
,

where [g lk ] = g�1



Estimation of g

Proposition 2 (Main Result 1)

Let � be the Laplace-Beltrami operator on M. Then

hij(p) =
1
2
�(�i � �i (p)) (�j � �j(p))|�i (p),�j (p)

where h = g�1 (matrix inverse)

Intuition:

I at each point p 2 M, g(p) is a d ⇥ d matrix

I apply � to embedding coordinate functions �1, . . . �m

I this produces g�1(p) in the given coordinates

I our algorithm implements matrix version of this operator result

I consistent estimation of � is solved [Coifman&Lafon 06,Hein&al 07]



Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding � of D into Rm

3. Estimate discretized Laplace-Beltrami operator L 2 Rn⇥n

4. Estimate Hp = G�1
p and Gp = H†

p for all p 2 D
Output (�p,Gp) for all p



Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding � of D into Rm

3. Estimate discretized Laplace-Beltrami operator L

4. Estimate Hp = G�1
p and Gp = H†

p for all p
4.1 For i , j = 1 : m,

Hij = 1
2

⇥
L(�i ⇤ �j )� �i ⇤ (L�j )� �j ⇤ (L�i )

⇤

where X ⇤ Y denotes elementwise product of two vectors X, Y 2 RN

4.2 For p 2 D, Hp = [Hij
p ]ij and Gp = H†

p

Output (�p,Gp) for all p



Consistency of the Riemannian metric estimator

Proposition

I If the embedding � : M ! �(M) is
A di↵eomorphic

B consistent �(Dn)
n!1�! �(M)

C Laplacian consistent Ln�(Dn)
n!1�! ��(M)

then the dual Riemannian metric estimator h is consistent

(�(Dn), hn)
n!1�! (�(M), h)

I Laplacian Eigenmaps and Di↵usion Map satisfy A, B if M compact



g for Sculpture Faces

I n = 698 with 64⇥ 64 gray images of faces
I head moves up/down and right/left

LTSA Algoritm



Isomap LTSA

Laplacian Eigenmaps



Calculating distances in the manifold M
I Geodesic distance = shortest path on M
I should be invariant to coordinate changes

Original Isomap

Laplacian Eigenmaps



Calculating distances in the manifold M

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)� f (p0)|| Path dG d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap m = 2 1.66 1.75 1.63 3.7%
LTSA m = 2 0.07 0.08 1.65 4.8%
LE m = 3 0.08 0.08 1.62 3.1%



Calculating Areas/Volumes in the manifold

(Results for Hourglass data)

true area = 0.84
Rel.

Embedding Naive Metric err.
Original data 0.85 (0.03) 0.93 (0.03) 11.0%

Isomap 2.7 0.93 (0.03) 11.0%
LTSA 1e-03 (5e-5) 0.93 (0.03) 11.0%
LE 1e-05 (4e-4) 0.82 (0.03) 2.6%



Semisupervised learning with Gaussian Processes on Manifolds

Sculpture Faces: Predicting Head Rotation

Absolute Error (AE) as percentage of range

Isomap (Total AE = 3078) LTSA (Total AE = 3020)

Metric (Total AE = 660) Laplacian Eigenmaps (Total AE = 3078)



Self-consistent method of chosing ✏

I Every manifold learning algorithm starts with a neighborhood graph
I Parameter

p
✏

I is neighborhood radius
I and/or kernel banwidth

I For example, we use the kernel

K(p, p0) = e�
||p�p0||2

✏ if ||p � p0||2  ✏ and 0 otherwise

I Problem: how to choose ✏?
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Existing work

I Theoretical (asymptotic) result
p
✏ / n� 1

d+6 [Singer06]

I Cross-validation
I assumes a supervised task given

I heuristic for K-nearest neighbor graph [Chen&Buja09]
I depends on embedding method used
I K-nearest neighbor graph has di↵erent convergence properties than ✏

neighborhood

I Visual inspection



Our idea

I L✏ estimate of Laplace-Beltrami operator
I contains the intrinsic geometry
I . . . and depends on ✏ by construction

I Idea: choose ✏ so that geometry encoded by L✏ is closest to data geometry

I Idea, formalized
I make g✏(p) close to ID the identity matrix, for each p 2 D

I This is a completely unsupervised method
I L✏ is estimated independently of any embedding or task
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Semisupervised learning benchmarks [Chapelle&al 08]

Multiclass classification problems

Classification error (%)
Method

Dataset CV [Chen&Buja] Ours
Digit1 3.32 2.16 2.11
USPS 5.18 4.83 3.89
COIL 7.02 8.03 8.81
g241c 13.31 23.93 12.77
g241d 8.67 18.39 8.76

superv. fully unsupervised



Results: Intrinsic Dimension Estimation

I Method of [Chen&al 11]
I do local SVD for a range of neighborhood radii
I choose a an appropriate radius ✏
I dimension = largest eigengap at radius ✏

I used our self-concordant method to find ✏

I Experiments: artificial 2D manifolds with noise



Consistency of the Riemannian metric estimator

Proposition
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Is Manifold Learning (ML) scalable?

I Fact ML is data intensive
I large amounts of data needed to reach accurate estimation of a manifold

(e.g at least 103�4) []

I Rumor “it is widely believed that ML is also computationally intensive”
I in particular, it scales poorly with the sample size n

I My premise: ML is no more expensive that PCA
I i.e. non-linear dimension reduction is just as tractable as linear dimension

reduction

I So?. . .



Is Manifold Learning (ML) scalable?

I Fact ML is data intensive
I large amounts of data needed to reach accurate estimation of a manifold

(e.g at least 103�4) []

I Rumor “it is widely believed that ML is also computationally intensive”
I in particular, it scales poorly with the sample size n

I My premise: ML is no more expensive that PCA
I i.e. non-linear dimension reduction is just as tractable as linear dimension

reduction

I So?. . .



Is Manifold Learning (ML) scalable?

I Fact ML is data intensive
I large amounts of data needed to reach accurate estimation of a manifold

(e.g at least 103�4) []

I Rumor “it is widely believed that ML is also computationally intensive”
I in particular, it scales poorly with the sample size n

I My premise: ML is no more expensive that PCA
I i.e. non-linear dimension reduction is just as tractable as linear dimension

reduction

I So?. . .



https://www.github.com/megaman

James McQueen Jake VanderPlas Jerry Zhang Grace Telford



Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from

Google news (3,000,000 phrases originally

represented in 300 dimensions by the Deep

Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the

Sloan Digital Sky Survey (675,000 spectra

originally in 3750 dimensions).

preprocessed by Jake VanderPlas, figure by Grace Telford
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Significance

I Augmentation of manifold learning algorithms
I For a given algorithm, all geometrical quantities are preserved

simultaneously, by recovering g = geometry preserving embedding
I We can obtain geometry preserving embeddings with any reasonable

algorithm

I Unification of algorithms
I Now, all “reasonable” algorithms/embeddings are asymptotically equivalent

from the geometry point of view
I We can focus on comparing algorithms based on other criteria

speed, rate of convergence, numerical stability
I g o↵ers a way to compare the algorithms’ outputs

I Each algorithm has own �
I Hence outputs of di↵erent algorithms are incomparable
I But (�A, gA), (�B , gB ) should be comparable because they aim to represent

intrinsic/geometric quantities



Manifold learning for sciences and engineering

I scientific discovery by
quantitative/statistical analysis

I manifold learning as pre-processing for
other tasks
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Thank you
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