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Can you recognize this shape?

Embedding with LLE

Embeddings by Shuzhen Zhang https://github.com/mmp2/manifold-learning-examples
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Can you recognize this shape?

Embedding with Laplacian Eigenmaps

Embeddings by Shuzhen Zhang https://github.com/mmp2/manifold-learning-examples
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Can you recognize this shape?

Embedding with UMAP

Embeddings by Shuzhen Zhang https://github.com/mmp2/manifold-learning-examples
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Can you recognize this shape?

Embedding with t-SNE

Embeddings by Shuzhen Zhang https://github.com/mmp2/manifold-learning-examples
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Can you recognize this shape?

Embedding with Isomap

Embeddings by Shuzhen Zhang https://github.com/mmp2/manifold-learning-examples
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Can you recognize this shape?

Embedding with LTSA

Embeddings by Shuzhen Zhang https://github.com/mmp2/manifold-learning-examples
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Unsupervised learning for the sciences – how do we know machine learning
is right?

Supervised, Reinforcement Learning
clear error measure
Cross-validation, bootstrap ✓

Unsupervised learning:
=finding structure of data: clustering, dimension reduction, causal, . . .
formulating “error measure” is part of the problem
Cross-validation, bootstrap X

Big scientific data
Allows us to ask more detailed questions (e.g “personalized medicine”)
Big data contains more complex patterns
Machine Learning discovers patterns fast

Often Hypotheses are cheap, experiments are expensive

⇒ need to ensure unsupervised learning is correctMarina Meilă (UW) Manifold learning 6/2/25 10 / 132
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When to do (non-linear) dimension reduction

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

www.sdss.org

Preprocessed by Jacob VanderPlas and Grace Telford

n = 675, 000 spectra ×D = 3750 dimensions

embedding by James McQueen
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When to do (non-linear) dimension reduction

Molecular configurations

aspirin molecule
Data from Molecular Dynamics (MD) simulations
of small molecules by [Chmiela et al. 2016]

n ≈ 200, 000 configurations ×D ∼ 20− 60
dimensions
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When to do (non-linear) dimension reduction

Manifold Learning (ML) for the physical sciences

big, high-dimensional data

data, physics supports manifold models

understanding & prediction equally important

Challenges for ML algorithms

scalable megaman ML package [McQueen et al JMLR 2015]

find “something new, trustworthy, reproducible, interpretable”

remove algorithmic artefacts

data-driven parameter selection (replace grad student)

validation on mathematical/statistical grounds as much as possible (replace
experimental validation)

use domain knowledge not domain expert
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When to do (non-linear) dimension reduction

When to do (non-linear) dimension reduction

HR diagram aspirin MD simulation SDSS galaxy spectra

high-dimensional

can be described by a small number d of continuous parameters

Usually, large sample size n

Why?

To save space and computation
n × D data matrix → n × s, s ≪ D

To use it afterwards in (prediction) tasks

To understand the data better
preserve large scale features, suppress fine scale features
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The meat: Manifold learning algorithms
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The meat: Manifold learning algorithms

A toy example (the “Swiss Roll” with a hole)

Input
points in D ≥ 3 dimensions

Desired output
same points reparametrized in 2D

Linear dimension reduction fails
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The meat: Manifold learning algorithms

Neighborhood graphs

All ML algorithms start with a neighborhood graph over the data points
neighi denotes the neighbors of pi

data ξ1, . . . ξn ⊂ R
D neighborhood graph A (sparse) matrix of

distances between neighbors
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The meat: Manifold learning algorithms E-vector based embedding algorithms

The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva & Langford 00]

Input A, dimension d

1 Find all shortest path distances in neighborhood graph

if Aij =∞, then Aij ← graph distance between i , j

2 Construct matrix of squared distances

M = [(Aij)
2]

3 use Multi-Dimensional Scaling MDS(M, d) to obtain d dimensional coordinates Y
for D

Works also for m > d
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The meat: Manifold learning algorithms E-vector based embedding algorithms

The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix A ∈ R
n×n , bandwidth ϵ, embedding dimension m

1 Compute Laplacian L ∈ R
n×n

2 Compute eigenvectors of L for smallest m + 1 eigenvalues [ϕ0 ϕ1 . . . ϕm] ∈ R
n×m

ϕ0 is constant and not informative

The embedding coordinates of pi are (ϕi1, . . . ϕim)
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The meat: Manifold learning algorithms E-vector based embedding algorithms

The (renormalized) Laplacian

Laplacian

Input distance matris A ∈ R
n×n, bandwidth ϵ

1 Compute similarity matrix Sij = exp

(

−A2
ij

ϵ2

)

= κ(Aij/ϵ)

2 Normalize columns dj =
∑n

i=1 Sij , L̃ij = Sij/dj

3 Normalize rows d ′
i =

∑n

j=1 L̃ij , Pij = L̃ij/d
′
i

4 L = 1
ϵ2
(I − P)

5 Output L, d ′
i /di

Laplacian L central to understanding the manifold geometry
limn→∞ L = ∆M [Coifman,Lafon 2006]

Renormalization trick cancels effects of (non-uniform) sampling density
[Coifman,Lafon 2006]

Other Laplacians
Lun = diag{d1:n} − A unnormalized Laplacian
Lrw = I − diag{d1:n}−1A random walk Laplacian
Ln = I − diag{d1:n}−1/2A diag{d1:n}−1/2 normalized Laplacian
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The meat: Manifold learning algorithms Repulsion-based algorithms

Repulsion-based (heuristic) algorithms

t-Stochastic Neighbor Embedding (t-SNE)

Input similarity matrix S , embedding dimension s

Init choose embedding points y1:n ∈ R
s at random

1 Sii ← 0, normalize rows di =
∑

j Sij , Pij = Sij/di

2 symmetrize P = 1
2n
(P + PT ) P is distribution over pairs of neighbors (i , j)

3 S̃ij = κ̃(∥yi − yj∥)compute similarity in output space

where κ̃(z) = 1
1+z2

the Cauchy (Student t with 1 degree of freedom)

4 Define distribution Q with Qij ∝ Sij

5 Change yi :n to decrease the Kullbach-Leibler divergence KL(P||Q) =
∑

i,j Pij ln
Pij

Qij

(by gradient descent) and repeat from step 1

empirically useful for visualizing clusters (repulsion encourages cluster formation)

non-deterministic, more parameters

Marina Meilă (UW) Manifold learning 6/2/25 38 / 132



The meat: Manifold learning algorithms Repulsion-based algorithms

UMAP: Uniform Manifold Approximation and Projection [McInnes, Healy,

Melville,2018]

UMAP Algorithm

Input k number nearest neighbors, d ,

1 Find k-nearest neighbors

2 Construct (asymmetric) similarities wij , so that
∑

j wij = log2 k. W = [wij ].

3 Similarity matrix S = W +W T −W . ∗W T

4 Initialize embedding ϕ by LaplacianEigenmaps.

5 Optimize embedding.

Iteratively for niter steps
1 Sample an edge ij with probability ∝ exp−dij
2 Move ϕi towards ϕj

3 Sample a random j ′ uniformly
4 Move ϕi away from ϕj′

Output ϕ

t-SNE with appropriate choice of parameters can emulate UMAP [Böhm et al., 2022]
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The meat: Manifold learning algorithms Repulsion-based algorithms

Embedding algorithms summary

E-vector based

DiffusionMaps

Isomap

LTSA [Zhang, Zha, 2004]

. . .

+ well studied, params better
understood

− collapsed embeddings,
“horseshoes” possible

require embedding dimension s ≥ d

Repulsion based

t-SNE

UMAP

. . .

− heuristic, more parameters

+ no collapsed embeddings

s = d intrinsic dimension

More importantly - embeddings are sensitive to
neighborhoods scale ϵ and type K-nn vs. spherical
data non-uniformity
aspect ratio (E-vector based)

Almost always embedding algorithms distort shape of data
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The sandwich: distortions, artefacts, parameters
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The sandwich: distortions, artefacts, parameters

Manifold Learning as a sandwich
what distance measure?

what graph? [Maier,von Luxburg, Hein 2009]

what kernel width ϵ?
[Perrault-Joncas,M,McQueen NIPS17]

what intrinsic dimension d?
[Chen,Little,Maggioni,Rosasco ]

ML Algorithm: DiffMaps, LTSA, t-SNE

Cluster [M,Shi 00],[M,Shi 01]. . . [M
NeurIPS18]

Estimate & correct distortion: Metric
Learning, Riemannian Relaxation
[McQueen, M, Perrault-Joncas NIPS16]

Validate d , s, [select eigenvectors] [Chen, M
NeurIPS19]

Topological Data Analysis (TDA)

Meaning of coordinates [Koelle,Zhang,

M,Chen 2022] last 30min

. . .
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The sandwich: distortions, artefacts, parameters

Distortions, failures, irreproducibility

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

DiffMaps

Local Linear Embedding
(LLE)

Isomap

Local Tangent Space
Alignment (LTSA)

fail to preserve neighborhoods LLE, DiffMaps, HE – must diagnose

distortion Isomap (non-linear), LTSA (linear) – must recognize equivalence, correct
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The sandwich: distortions, artefacts, parameters

Distortions vs. Failures

ϕ distorts if distances, angles, density not preserved, but ϕ smooth and invertible

ϕ fails if it does not preserve topology (=preserve neighborhoods)
discontinuous deformation
non-invertible ϕ
breaks/collapses neighborhoods
collapse in dimension (local or global)

Most common modes of failure

1 distance matrix A does not capture topology (artificial “holes” or “bridges”)

• usually because neighborhood too small or too large

2 attraction/repulsion “imbalances”

3 for e-vector based algorithms: choice of e-vectors

• or too few e-vectors (s too small)
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The sandwich: distortions, artefacts, parameters

UMAP for ethanol

Initialization
by
[Chen,M

NeurIPS19]

Laplacian

Eigen-

maps

(default)

Random
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The sandwich: distortions, artefacts, parameters

Artefacts

Artefacts=features of the embedding that do not exist in the data (clusters, holes,
“arms”, “horseshoes”)

What to beware of when you compute an embedding
1 algorithms that claim to choose ϵ automatically
2 confirming the embedding is “correct” by visualization
• tends to over-smooth, i.e. ϵ over-estimated
3 K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters
4 large variations in density: stretching the low densities, contracting the high
• subsample data to make it more uniform
5 “horseshoes” (⇒ ϕ almost singular):
• select the e-vectors (coming next)

Popular heuristics: LLE, t-SNE, UMAP, neural networks more prone to artefacts
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The sandwich: distortions, artefacts, parameters

Horseshoes and the Repeated Eigenvector Problem. “Beware of the cosine”

DiffMaps ϕ1, ϕ2 UMAP ϕ1, ϕ2 [Chen, M 2019] + UMAP

SDSS Galaxy Spectra
DiffMaps ϕ1, ϕ2 DiffMaps ϕ1, ϕ3
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Metric Manifold Learning
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Metric Manifold Learning

Metric Manifold Learning

Most embeddings are distorted

Distortion depends on algorithm, parameters, data density, . . .

How to fix?

Isometric embedding eliminates distortion (hard)

Metric learning estimate distortions (easy) and corrects geometric calculations (easy)
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Metric Manifold Learning

Estimating local distortion. The (push-forward) Riemannian metric

Idea at each point p

along with embedding coordinates (ϕ1(p), . . . ϕs(p))

estimate H(p) s × s positive definite matrix

H(p) measures distortion at ϕ(p)
can be estimated from the Laplacian

G(p) = H†(p) is push-forward Riemannian metric

ethanol

aspirin
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Metric Manifold Learning

Metric Manifold Learning summary

= estimate local distortion H at each embedded point ϕ(p)

Why useful

Algorithm independent geometry preserving method

Outputs of different algorithms on the same data are comparable

Correcting distortion

Integrating with the local length ele-
ment:

l(curve) =
∫ b

a

√

∑

ij Gij
dx i

dt
dx j

dt
dt,

Riemannian Relaxation

true distance d = 1.57

Line Shortest Metric Rel.

Embedding segment Path dG d̂ err

Orig. data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%
LE s = 2 0.08 0.08 1.62 3.1%

Applications

Estimation of neighborhood scale [Perrault-Joncas,M,McQueen NIPS17]

Gaussian Processes on manifolds and semi-supervised learning

Vector pull-back/push-forward between tangent spaces [Koelle, Zhang, M, Chen 18]

Fixing the “horseshoe”/collapsed dimension problem [Chen, M, 19]
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Metric Manifold Learning

Riemannian Relaxation for Ethanol molecular configurations

https://sites.stat.washington.edu/mmp/Talks/hour_to_sphere_noise_movie_fixed.mov

Marina Meilă (UW) Manifold learning 6/2/25 58 / 132

https://sites.stat.washington.edu/mmp/Talks/hour_to_sphere_noise_movie_fixed.mov


Metric Manifold Learning

Manifold learning: beyond the embedding algorithm
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Experiments with small molecules
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Experiments with small molecules What distance to use?

Data: from MD simulations

MD Data from [Chmiela et al. 2017], embeddings by Yu-Chia Chen

Ex. n = 104 − 105 configurations of Ethanol, Malonaldehide, Aspirin

Marina Meilă (UW) Manifold learning 6/2/25 61 / 132



Experiments with small molecules What distance to use?

What distance?

Procrus Align all configurations by a rigid transformation

BondLen For each Ri , compute all pairwise distances bi = ||RiA − RiB || for
interacting atoms

Angles For A,B,C atoms, compute 2 angles of triangle ABC

(loses the scale information!)

Follow up with PCA to remove residual linear dependencies

Specialized representations and kernels instead of distances?

+ Coulomb Matrix, SLATM, SOAP, MACE, . . . are natural feature spaces

+ take into account atomic species

– mapping may be discontinous

– symmetry invariant kernels change topology

Unsolved questions: preserving topology (or not?), dependence on distance (or
kernel), symmetries
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Experiments with small molecules What distance to use?

Procrustes
ethanol, PCA

ethanol, DiffMaps

malonaldehyde, PCA

malonaldehyde, DiffMaps

BondLen

ethanol, DiffMaps

malonaldehyde, DiffMaps

Angles
ethanol, PCA

ethanol, DiffMaps

malonaldehyde, PCA

malonaldehyde, DiffMaps
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Experiments with small molecules What graph? Radius-neighbors vs. k nearest-neighbors

What graph? Radius-neighbors vs. k nearest-neighbors

k-nearest neighbors graph: each node has degree k

radius neighbors graph: p, p′ neighbors iff ||p − p′|| ≤ r

Does it matter?

Yes, for estimating the Laplacian and distortion
Why? [Hein 07, Coifman 06, Ting 10, . . . ] k-nearest neighbor Laplacians do not
converge to Laplace-Beltrami operator ∆
but to 1

p2/d
∆+ (1− 2/d)∇(log p) · ∇ (bias due to non-uniform sampling)

(normalized Laplacian converges to ∆ + 2∇(log p) · ∇)

Renormalization of Laplacian – counters the variable density effects
configurations of ethanol d = 2

original K-nearest neighbor no renormalization, renormalized
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Experiments with small molecules Clustering vs. Embedding?

Clustering or/and Embedding

In general, K eigenvalues ≈ 0 indicate K meta-stable states (K not too large)

Simple normalization promotes clusters

Marina Meilă (UW) Manifold learning 6/2/25 72 / 132



Experiments with small molecules Clustering vs. Embedding?

Clustering with guarantees

Molecular dynamics simulation of CH3Cl + Cl− ↔ CH3Cl + Cl−

Data by Jim Pfaendtner and Chris Fu

[M NeurIPS18] “How to tell when a clustering is (approximately) correct using convex relaxations”
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Experiments with small molecules Manifold coordinates with physical meaning

Manifold Learning with millions of points

https://www.github.com/mmp2/megaman
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Experiments with small molecules Manifold coordinates with physical meaning

Learning with flows and vector fields
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The scientific meaning of the coordinates
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The scientific meaning of the coordinates

Coordinates with scientific meaning

[Cavalli-Sforza, Menozzi, Piazza, “The

history and geography of human genes”,

1996]
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The scientific meaning of the coordinates

Motivation – understanding data from a Molecular Dynamics simulation

original after ML
ethanol data torsion 1

preprocessed torsion 2

2 rotation angles (torsions) describe this manifold

Can we discover these features automatically? Can we select these angles from a
larger set of features with physical meaning?
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The scientific meaning of the coordinates

Explaining a manifold with domain specific coordinates

data driven scientific interpretable
coordinates language coordinates

(e.g. DiffMaps) (torsions)

+ =
ϕξ1 , ϕξ2 , . . . ϕξn F = {f1, f2 . . . fp} subset fj1 , . . . fjd ⊂ F

with ManifoldLasso

Marina Meilă (UW) Manifold learning 6/2/25 84 / 132



The scientific meaning of the coordinates

Solution by sparse regression in function space

Wanted: Change of variable

↓
ϕ = h ◦ fS

data driven selected functions from G
coordinates (collective coordinates)

Challenges

sparse, non-linear regression
problem

coordinates ϕ depend on data,
algorithm parameters

hence, h cannot take parametric
form

we cannot choose a basis for h

cannot assume ϕk depends on
single fj

cannot assume ϕ isometric

Idea: Chain Rule

Dϕ = DhDfS

sparse linear regression
problem

Yi = Xiβi for every data
i

Y i = gradϕ(ξi ),
Xi = grad f1:p(ξ)

βij =
∂h
∂fj

(ξi )

Constraint: subset S is
same for all i

Solution by Group Lasso

optimize

min
β

Jλ(β) = 1
2

n
∑

i=1

||Yi − Xiβ i ||22 + λ
∑

j

||βj ||, (ManifoldLasso)
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The scientific meaning of the coordinates

Gradients in manifold setting

gradients ∇ → manifold gradients grad in tangents subspace toM
grad fj is in TξiM (ambient space R

D)
∇fj known analytically

gradϕk is in Tϕ(ξi )ϕ(M) (embedding space R
m)

1 must estimate tangent subspace Tϕ(ξi )
ϕ(M)

2 must estimate gradϕk (ϕ(ξi )) in tangent subspace Tϕ(ξi )
M

3 must pull-back gradϕk (ϕ(ξi )) to TξiM
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The scientific meaning of the coordinates

ManifoldLasso Algorithm

Given Data ξ1:n, intrinsic dimension d , embedding ϕ(ξ1:n)

dictionary F = {f1:p}
1 Estimate tangent subspace at ξi by (weighted) PCA

2 Project dictionary functions gradients ∇fj on tangent subspace, obtain X1:n ∈ R
d×p

3 Estimate gradients of ϕ1:k , obtain Y1:n ∈ R
d×m

by pull-back from embedding space ϕ
4 Solve GroupLasso(Y1:n,X1:n, d), obtain support S

min
β

Jλ(β) = 1
2

n
∑

i=1

||Yi − Xiβ i ||
2
2 + λ

∑

j

||βj ||, (ManifoldLasso)

Output S

Marina Meilă (UW) Manifold learning 6/2/25 92 / 132



The scientific meaning of the coordinates

Ethanol MD simulation

regularization paths β1:p vs λ
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The scientific meaning of the coordinates

Toluene MD simulation
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The scientific meaning of the coordinates

Para-xilene MD simulation
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The scientific meaning of the coordinates

Theory

[Koelle et al., arXiv:1811.11891, JMLR 2022, AISTATS 2024]

When is S unique? / When canM be uniquely parametrized by F?
Functional independence conditions on dictionary F and subset fj1,...js

Basic result

fS = h ◦ fS′ on U iff

rank

(

DfS
DfS′

)

= rankDfS′ on U

When can Group Lasso recover S ?
(Simple) Incoherence Conditions

µ = max
i=1:n,j∈S,j′ ̸∈S

|XT
ji Xj′ i |

∥Xji∥∥Xj′ i∥
ν =

1

mini=1:n ||XT
iSXiS ||2

ndσ2 =
∑

i,k

ϵ2ik

Theorem If, ∥X1:p∥ = 1, µν
√
d + σ

√
nd

λ
< 1 then βj = 0 for j ̸∈ S .
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The scientific meaning of the coordinates

Recovery for ManifoldLasso
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The scientific meaning of the coordinates

Experiments

Dataset n Na D d ϵN m n′ p

SwissRoll 10K NA 51 2 .18 2 100 51
RigidEth 10K 9 50 2 3.5 3 100 12

Ethanol 50K 9 50 2 3.5 3 100 12
Malonald 50K 9 50 2 3.5 3 100 12
Toluene 50K 16 50 1 1.9 2 100 30

Ethanol 50K 9 50 2 3.5 3 100 756
Malonald 50K 9 50 2 3.5 3 100 756

ϕ MLasso |G|

p = dictionary size, m = embedding dimension, n = sample size for manifold

estimation, n′ = sample size for ManifoldLasso
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The scientific meaning of the coordinates

Understanding latent space representation of cryoEM images

Simulator
θθ

Prior

ϴ

φ

Approximate Posterior

 ϴ

Latent
mapping Flow

Estimating conformation of Hemagluttinin molecules from cryoEM images

Neural network trained on simulated images [Dingeldein et. al. biorXiv:2024]

Unsupervised study of hidden layer representation: low dimensional!

conformation θ SNR

with Luke Evans, Vlad Murad, Lars Dingeldein, Pilar Cossio, Roberto Covino [NeurIPS

2024 MLSB Workshop, arXiv:2504.11249]
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The scientific meaning of the coordinates

Summary of ManifoldLasso

non-linear sparse regression in function spaces ⇒ linear sparse regression (Group
Lasso)
ManifoldLasso= coordinate change from data driven coordinates ϕ1:m to
collective coordinates F = {f1:p}

scientific data driven interpretable
language coordinates coordinates

+ =
explains large scale structure with domain-relevant functions
transmissible knowledge, compare embeddings from different experiments
non-linear, non-parametric, basis-free, not symbolic regression [Brunton et al. 2016,

Rudy et al. 2019] [Udrescu, Tegmark 2020]

No manifold necessary immediate extensions to Principal Components, autoencoders
(low dimensional!), sparse functional regression

Applications
set of f’s that covary (e.g. small protein folding), level sets (in progress)
simultaneous explanation of multiple systems
dynamical systems (future)
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The scientific meaning of the coordinates

Manifold learning for MD simulations

Manifold learning should be like PCA

tractable/scalable

“automatic” – minimal burden on human

first step in data processing pipe-line

should not introduce artefacts

More than PCA

estimates richer geometric/topological
information

adapts to data shape and dimension

borders, stratification

clusters

Morse complex

meaning of coordinates/continuous
parametrization

Embedding = Algorithm + user choices

Similarity function (for MD)

neighborhood scale (or k nearest neighbors)

embedding dimension sMarina Meilă (UW) Manifold learning 6/2/25 110 / 132



The scientific meaning of the coordinates

Manifold Learning for MD simulations

Off-line
to understand the large scale shape of data
estimate slow manifold, interpret it

On-line
Collective coordinates to enhance sampling
Estimate entire manifold or a patch

Open
What is “best” distance / kernel ?
How to know when two kernels are equivalent?
Symmetry and topology + Laplacian eigenfunctions
Use E , forces, other physical information to constrain manifold
End-to-end segmentation (meta-stable basins, transitions)
Collapsed “embedding” for visualization? (à la t-SNE)
Combine data-driven and a-priori collective coordinates
. . . . . . . . .
your problem here
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The scientific meaning of the coordinates

Hanyu Zhang, Samson Koelle, Vlad Murad, Yu-Chia Chen, Weicheng Wu
Ioannis Kevrekidis (JHU)

Alexandre Tkatchenko (Luxembourg), Stefan Chmiela (TU Berlin)
Pilar Cossio (Flatiron), Luke Evans (Flatiron)

Lars Dingeldein (Frankfurt), Roberto Covino (Frankfurt)

Thank you
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Metric learning algorithm

Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps (LE)

Local Linear Embedding
(LLE)

Isomap

Local Tangent Space
Alignment (LTSA)
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Metric learning algorithm

Preserving topology vs. preserving (intrinsic) geometry

Algorithm maps data p ∈ R
D −→ ϕ(p) = x ∈ R

m

MappingM −→ ϕ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

Mapping ϕ is isometry
preserves distances along curves in M, angles, volumes
For most algorithms, in most cases, ϕ is not isometry

Preserves topology Preserves topology + intrinsic geometry

Marina Meilă (UW) Manifold learning 6/2/25 114 / 132



Metric learning algorithm

Previous known results in isometric recovery

Positive results

Nash’s Theorem: Isometric embedding is
possible.

Diffusion Maps embedding is isometric in
the limit [Berard,Besson,Gallot 94]

algorithm based on Nash’s theorem
(isometric embedding for very low d)
[Verma 11]

Isomap [Tennenbaum,]recovers flat
manifolds isometrically

Consistency results for Laplacian and
eigenvectors

[Hein & al 07,Coifman & Lafon 06,
Singer 06, Ting & al 10, Gine &
Koltchinskii 06]
imply isometric recovery for LE, DM
in special situations

Negative results

obvious negative examples

No affine recovery for normalized Laplacian
algorithms [Goldberg&al 08]

Sampling density distorts the geometry for
LE [Coifman& Lafon 06]
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Metric learning algorithm

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

mapping ϕ that preserves topology

true in many cases

Objective

augment ϕ with geometric information g
so that (ϕ, g) preserves the geometry Dominique

Perrault-Joncas

g is the Riemannian metric.
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Metric learning algorithm

Problem formulation

Given:
data set D = {p1, . . . pn} sampled from Riemannian manifold (M, g0), M ⊂ R

D

embedding { xi = ϕ(pi ), pi ∈ D }
by e.g DiffusionMap, Isomap, LTSA, . . .

Estimate Gi ∈ R
m×m the (pushforward) Riemannian metric for pi ∈ D

in the embedding coordinates ϕ

The embedding {x1:n,G1:n} will preserve the geometry of the original data
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Metric learning algorithm

G for Sculpture Faces

n = 698 gray images of faces in D = 64× 64 dimensions
head moves up/down and right/left
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Metric learning algorithm

G for Sculpture Faces

[Tenenbaum et al 2006]

Isomap LTSA
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Metric learning algorithm

Relation between g and ∆

∆ = Laplace-Beltrami operator onM
G Riemannian metric (in coordinates)

H = G−1 matrix inverse

(Differential geometric fact)

∆f =
√

det(H)
∑

l

∂

∂x l

(

1
√

det(H)

∑

k

Hlk
∂

∂xk
f

)

,
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Metric learning algorithm

Estimation of G−1

Let ∆ be the Laplace-Beltrami operator onM, H = G−1, and k, l = 1, 2, . . . d .

1

2
∆(ϕk − ϕk(p)) (ϕl − ϕl(p))|ϕk (p),ϕl (p) = Hkl(p)

Intuition:

∆ applied to test functions f = ϕcentered

k ϕcentered

l

this produces G−1(p) in the given coordinates

our algorithm implements matrix version of this operator result

consistent estimation of ∆ is well studied [Coifman&Lafon 06,Hein&al 07]
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Metric learning algorithm

Metric Manifold Learning algorithm

Given dataset D
1 Preprocessing (construct neighborhood graph, ...)

2 Find an embedding ϕ of D into R
m

3 Estimate discretized Laplace-Beltrami operator L

4 Estimate Hp and Gp = H†
p for all p

1 For i , j = 1 : m,
H ij = 1

2

[

L(ϕi ∗ ϕj )− ϕi ∗ (Lϕj )− ϕj ∗ (Lϕi )
]

where X ∗ Y denotes elementwise product of two vectors X, Y ∈ R
N

2 For p ∈ D, Hp = [H ij
p ]ij and Gp = H

†
p

Output (ϕp,Gp) for all p
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