A tutorial on Manifold Learning for real data The Fields Institute Workshop on Manifold and Graph-based learning

Marina Meilă

Department of Statistics University of Washington

19-20 May, 2022

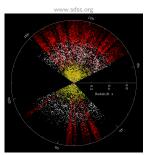
- What is manifold learning good for?
- Manifolds, Coordinate Charts and Smooth Embeddings
- Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- Metric preserving manifold learning Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
- Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

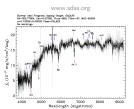
- What is manifold learning good for?
- Manifolds, Coordinate Charts and Smooth Embeddings
- Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- Metric preserving manifold learning Riemannian manifolds basics
- Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
 - Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

What is manifold learning good for?

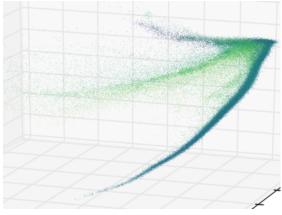
- Principal Component Analysis (PCA). What is it good for? = Linear Jim.
- · High -> low dim (save space, Reduction processing time,)
 - understand -> more "relevant" features

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)





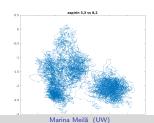
- Preprocessed by Jacob VanderPlas and Grace Telford
- n = 675,000 spectra $\times D = 3750$ dimensions



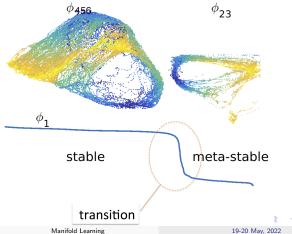
embedding by James McQueen

Molecular configurations

aspirin molecule

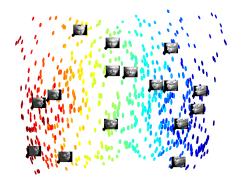


- Data from Molecular Dynamics (MD) simulations of small molecules by [Chmiela et al. 2016]
- $n \approx 200,000$ configurations $\times D \sim 20 60$ dimensions



When to do (non-linear) dimension reduction

- n = 698 gray images of faces in
 D = 64 × 64 dimensions
- head moves up/down and right/left
- With only two degrees of freedom, the faces define a 2D manifold in the space of all 64 × 64 gray images



- What is manifold learning good for?
- Manifolds, Coordinate Charts and Smooth Embeddings
- Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- Metric preserving manifold learning Riemannian manifolds basics
- Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
- Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

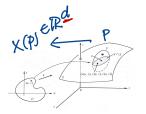
Manifold. Basic definitions

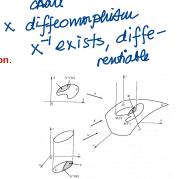
manifold

ch = set that can like \mathbb{R}^d \mathbb{R}^d Neighborhood \mathbb{R}^d \mathbb{R}^d Chart chart atlas

 $\frac{1}{2}$ collection of $\frac{1}{2}$ is called intrinsic dimension of M

• If the original data $p \in \mathbb{R}^D$, call D the ambient dimension.



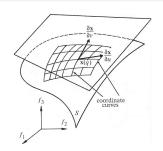


Intrinsic dimension. Tangent subspace

$$P \in \mathcal{M}$$
 $J_{p} \in \mathbb{R}^{d}$ vector space.

 $J_{c} = \{J_{p} \in \mathbb{R}^{d}, p \in \mathbb{M}^{2}\}$ tangent bundle.

 $J_{p} \in \mathbb{M} = \{tangent\}$ to curves in \mathbb{M}^{2}



$$\frac{\partial X}{\partial u}(p), \frac{\partial X}{\partial v}(p) = \frac{\partial X$$

Embeddings

- One can circumvent using multiple charts by mapping the data into m > d dimensions.
- Let $\phi: \mathcal{M} \to \mathbb{R}^m$ be a smooth function, and let $\mathcal{N} = \phi(\mathcal{M})$.
- ϕ is an embedding if the inverse $\phi^{-1}: \mathcal{N} \to \mathcal{M}$ exists and is differentiable (a diffeormorphism).

data $\mathbb{R}^{\mathbb{N}} \xrightarrow{\varphi} \mathbb{R}^{\mathbb{M}}$

- Whitney's Embedding Theorem (?) states that any d-dimensional smooth manifold can be embedded into \mathbb{R}^{2d} .
- Hence, if $d \ll \bar{D}$, very significant dimension reductions can be achieved with a single map $\phi: \mathcal{M} \to \mathbb{R}^m$.
- Manifold learning algorithms aim to construct maps ϕ like the above from finite data sampled from \mathcal{M} .

Examples of manifolds and coordinate charts

John Lee - Smooth Manifolds Riem. Manifold

 $\dim \mathbb{R}^d = d$

torus

generated 2 circles

circles

- subset of \mathbb{R}^d inapped in \mathbb{R}^d

sphere of dim = d

· embedded in Rd+1 m≥d+1

dim Ta = d

Examples of manifolds and coordinate charts

Examples of manifolds and coordinate charts

Not manifolds

- dimension not constant
- unions of manifolds that intersect
 - sharp corners (non-smooth)
 - many/most neural network embeddings
 - manifolds can have border

- What is manifold learning good for?
- Manifolds, Coordinate Charts and Smooth Embeddings
- Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- 💿 Metric preserving manifold learning Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
- Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

14 / 72

Non-linear dimension reduction: Three principles

```
Algorithm given \mathcal{D} = \{\xi_1, \dots \xi_n\} from \mathcal{M} \subset \mathbb{R}^D, map them by Algorithm f to \{y_1, \dots y_n\} \subset \mathbb{R}^m
Assumption if points from \mathcal{M}, n \to \infty, f is embedding of \mathcal{M} (f "recovers" \mathcal{M} of arbitrary shape).
```

- Local (weighted) PCA (IPCA)
- Principal Curves and Surfaces (PCS)
- Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)
- Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

- Intrinsic dimension d
 - must be estimated (we assume we know it)
 - sample complexity is exponential in d NONPARAMETRIC
 - non-uniform sampling
 - ullet volume of ${\mathcal M}$ (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of \mathcal{M}
 - $\operatorname{\mathsf{ch}}$ of $\mathcal M$ (next page)

4 D > 4 A > 4 B > 4 B >

- curvature
- ESSENTIAL smoothness parameter: the neighborhood radius

(Lecture 3)

(Lecture 3)

(upcoming)

Non-linear dimension reduction: Three principles ~ sampling distribution P()

Algorithm given $\mathcal{D}=\{\xi_1,\ldots\xi_n\}$ from $\mathcal{M}\subset\mathbb{R}^D$, map them by Algorithm f to $\{y_1,\ldots y_n\}\subset \mathbb{R}^m$

Assumption if points from \mathcal{M} , $n \to \infty$, f is embedding of \mathcal{M} (f "recovers" \mathcal{M} of arbitrary shape).

- Local (weighted) PCA (IPCA)
- Principal Curves and Surfaces (PCS)
- Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)
- Other, heuristic t-SNE, UMAP, LLE

What makes the problem hard?

- Intrinsic dimension d
 - must be estimated (we assume we know it)
 - sample complexity is exponential in d NONPARAMETRIC
- non-uniform sampling
- volume of \mathcal{M} (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of $\mathcal{M} = \mathbb{Z}$

curvature

• ESSENTIAL smoothness parameter: the neighborhood radius

4日 > 4周 > 4 至 > 4 至)

(Lecture 3)

(upcoming)

(next page)

(Lecture 3)

Parametric vs. non-parametric

An example of density estimation with data $x_{1:n} \in \mathbb{R}$.

- **1** Gaussian $N(\mu, \sigma^2)$ parametric.
 - $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\hat{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \hat{\mu})^2$
 - Error $\mu \hat{\mu}$ has mean 0 and standard deviation $\sigma_{\hat{\mu}} = \frac{\sigma}{\sqrt{n}} \propto n^{-1/2}$
 - To increase accuracy $\times 10$, *n* must increase $\times 10^2 = 100$
- Wernel density estimation (KDE), non-parametric

$$p_h(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} \kappa \left(\frac{x_i - x}{h} \right)$$

- $\kappa = N(0,1)$ the kernel, h > 0 is the kernel width
- Accuracy for KDE $\propto n^{-2/5}$
- \bullet To increase accuracy imes 10, n must increase $imes 10^{5/2} pprox 316$

	distribution			to decrease err. by 10	
Model	e.g.	shape	error rate	we need samples $ imes$	
Parametric	$N(\mu, \sigma^2)$	fixed	$n^{-1/2}$	$n \times 10^2$	100
Non-parametric	KDE in $\mathbb R$	any	$n^{-2/5}$	$n \times 10^{5/2}$	316
	KDE in \mathbb{R}^d	any	$n^{-2/(d+4)}$	$n \times 10^{(d+4)/2}$	$1000 \ (d=2)$
					$3163 \ (d=3)$

Marina Meilă (UW) Manifold Learning 19-20 May, 2022

Neighborhood graphs

- All ML algorithms start with a neighborhood graph over the data points
 - neigh_i denotes the neighbors of ξ_i , and $k_i = |\text{neigh}_i|$.
 - $\Xi_i = [\xi_{i'}]_{i' \in \text{neigh}_i} \in \mathbb{R}^{D \times k_i}$ contains the coordinates of ξ_i 's neighbors
- In the radius-neighbor graph, the neighbors of ξ_i are the points within distance r from ξ_i , i.e. in the ball $B_r(\xi_i)$.
 - In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of ξ_i .
 - k-nn graph has many computational advantages
 - constant degree k (or k-1)
 - connected for any k > 1
 - more software available
 - but much more difficult to use for consistent estimation of manifolds (see later, and)

neighborhood graph

A (sparse) matrix of distances between neighbors

Marina Meilă (UW) Manifold Learning 19-20 May, 2022