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@ What is manifold learning good for?
Manifolds, Coordinate Charts and Smooth Embeddings
o g

© Non-linear dimension reduction algorithms
@ Local PCA
e PCA, Kernel PCA, MDS recap
@ Principal Curves and Surfaces (PCS)
@ Embedding algorithms
@ Heuristic algorithms

@ Metric preserving manifold learning — Riemannian manifolds basics
o Embedding algorithms introduce distortions
o Metric Manifold Learning — Intuition
@ Estimating the Riemannian metric

© Neighborhood radius and other choices
o What graph? Radius-neighbors vs. k nearest-neighbors
@ What neighborhood radius/kernel bandwidth?
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What is manifold learning good for?

@ Principal Component Analysis (PCA). What is it good for? = [er ﬂim
. High —> low dim ( sane Spay  Raduction
L —hme,)
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Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)
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@ Preprocessed by Jacob VanderPlas and Grace Telford
@ n = 675,000 spectra x D = 3750 dimensions
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Molecular configurations

aspirin molecule

e Data from Molecular Dynamics (MD) simulations of small
molecules by [Chmiela et al. 2016]
@ n = 200,000 configurations x D ~ 20 — 60 dimensions

s aspirin3,3 vs 8.2

stable meta-stable

transition
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When to do (non-linear) dimension reduction

@ n = 698 gray images of faces in
D = 64 x 64 dimensions

o head moves up/down and
right/left

o With only two degrees of
freedom, the faces define a 2D
manifold in the space of all
64 X 64 gray images
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Manifolds, Coordinate Charts and Smooth Embeddings
o g
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Manifold. Basic definitions 7
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e manifold Uﬁ = M fhaf can &t

o chart {{\) ._)_C_—y \/ Qwad

° atlas

e dis aIIed mtrmSIC dffl’wnsuon of M
° If the original data p € RP, call D the ambient dimension.
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Intrinsic dimension. Tangent subspace
p& oM
JJ;VM’ g/pd vecder Spacz.
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. Manifolds, Coordinate Charts and Smooth Embedcings |
Embeddings

One can circumvent using multiple charts by mapping the data into m > d dimensions.
Let ¢ : M —/R™ be a smooth function, and let N = ¢(M).

¢ is an embedding if the inverse ¢~! : N’ — M exists and is differentiable (a
diffeormorphism).

datn B> L5

Whitney's Embedding Theorem (?) states that any d-dimensional smooth manifold can be
embedded into R?9.

Hence, if d < D, very significant dimension reductions can be achieved with a single map
¢: M —R™M.

Manifold learning algorithms aim to construct maps ¢ like the above from finite data

sampled from M. (eﬁmbedding a(gmﬁhm
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Examples of manifolds and coordinate charts

ser®  gi- {15.4-1 7%
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Examples of manifolds and coordinate charts
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Not manifolds

@ dimension not constant

unions of manifolds that intersect
sharp corners (non-smooth)
many/most neural network embeddings
manifolds can have border

Marina Meild (UW) Manifold Learning

19-20 May, 2022

13

72



_ = Nonlinear dimension reduction algorithms |
Outline

© Non-linear dimension reduction algorithms

Local PCA

PCA, Kernel PCA, MDS recap
Principal Curves and Surfaces (PCS)
Embedding algorithms

Heuristic algorithms
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Non-linear dimension reduction: Three principles

000

(%]

Algorithm given D = {£1,...£,} from M C RP, map them by Algorithm f, to
A, Yay CR™

Assumption if points from M, n — oo, f is embedding of M

(f "recovers” M of arbitrary shape).

Local (weighted) PCA (IPCA)

Principal Curves and Surfaces (PCS)

Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian
Eigenmaps,. . .)

[Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

Intrinsic dimension d
e must be estimated (we assume we know it (Lecture 3)
o sample complexity is exponential in d = NONPARAMETRIC (upcoming)

non-uniform sampling

volume of M (we assume volume finite; larger volume requires more samples)

injectivity radius/reach of M (next page)
curvature

ESSENTIAL smoothness parameter: the neighborhood radius (Lecture 3)
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Non-linear dimension reduction: Three principles
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Algorithm given D = {£1,...£,} from M C RP, map them by Algorithm f to
{y11 .. -yn} C R™

Assumption if points from M, n — oo, f is embedding of M :O
(f "recovers” M of arbitrary shape). / f

Local (weighted) PCA (IPCA)
Principal Curves and Surfaces (PCS)
Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian
Eigenmaps,...)

)

[Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

Intrinsic dimension d
e must be estimated (we assume we know it) (Lecture 3)
o sample complexity is exponential in d = NONPARAMETRIC (upcoming)

non-uniform.sampling

volume of M (we assume volume finite; larger volume requires more samples)

injectivity radius/reach of M (next page)
curvature

ESSENTIAL smoothness parameter: the neighborhood radius (Lecture 3)
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Parametric vs. non-parametric

An example of density estimation with data xj., € R.
@ Gaussian N(u,o?) parametric.
o =150 % 0% = 7Ay Xh(x — )

o Error u — fi has mean 0 and standard deviation oy = x n~1/2

Bl

o To increase accuracy X 10, n must increase %102 = 100

@ Kernel density estimation (KDE), non-parametric
n

Pi(x) = %Z :15 (XI;X>

i=1

o = N(0, 1) the kernel, h > 0 is the kernel width
o Accuracy for KDE o n=2/%
o To increase accuracy X 10, n must increase x10%/2 ~ 316

distribution to decrease err. by 10
Model e.g. shape error rate we need samples x
Parametric N(p, 0?)) fixed n—1/2 n x 102 100
Non-parametric KDE in R any n=2/5 n x 105/2 316
KDE in RY any n=2/(d+4)  px10(d+4)/2 1000 (d = 2)
3163 (d = 3)
10,000 (d = 4)
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. Nomlinear dimension reduction algorihms |
Neighborhood graphs

@ All ML algorithms start with a neighborhood graph over the data points
o neigh; denotes the neighbors of &;, and k; = | neigh; |.
° = = [gi’]f’Eneigh; € RP*ki contains the coordinates of &i's neighbors
@ In the radius-neighbor graph, the neighbors of &; are the points within distance r from &;,
i.e. in the ball B,(&;).
o In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of &;.

@ k-nn graph has many computational advantages

o constant degree k (or k — 1)
e connected for any k > 1
e more software available

e but much more difficult to use for consistent estimation of manifolds (see later, and )

data &,...&, C RP neighborhood graph A (sparse) matrix of
distances between neighbors
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