Manifold Learning 2.0: Explanations and Eigenflows

The Fields Institute Workshop on Manifold and Graph-based learning

Marina Meilă
Yu-chia Chen, Samson Koelle, Hanyu Zhang and Ioannis Kevrekidis

University of Washington mmp@stat.washington.edu

May 20, 2022

Mathematics

Mathematical models Laws of nature

Sciences

Mathematics

Mathematical models
Laws of nature

Sciences

II

Machine learning Data science

Mathematics

Mathematical models
Laws of nature

Sciences

Mathematical concepts:
Parameters,
Scalar functions, Manifolds, Vector fields, Topology, k-Laplacians

Machine learning Data science

Scientific concepts

Outline

(1) Manifold coordinates with Scientific meaning

- Functional Lasso
- Pulling back the coordinate gradients
(2) Machine Learning 1-Laplacians, topology, vector fields
- 1-Laplacian $\Delta_{1}(\mathcal{M})$ estimation from samples
- Analysis of vector fields - Helmholtz-Hodge decomposition
- Harmonic Embedding Spectral Decomposition Algorithm
- Spectral Shortest Homologous Loop Detection

Outline

(1) Manifold coordinates with Scientific meaning

- Functional Lasso
- Pulling back the coordinate gradients
(2) Machine Learning 1-Laplacians, topology, vector fields
- 1-Laplacian $\Delta_{1}(\mathcal{M})$ estimation from samples
- Analysis of vector fields - Helmholtz-Hodge decomposition
- Harmonic Embedding Spectral Decomposition Algorithm
- Spectral Shortest Homologous Loop Detection

Motivation - understanding data from a Molecular Dynamics simulation

Motivation - understanding data from a Molecular Dynamics simulation

Motivation - understanding data from a Molecular Dynamics simulation

- 2 rotation angles (torsions) describe this manifold
- Can we discover these features automatically? Can we select these angles from a
scientific
language
(torsions)

> data driven
> coordinates
> (from DiffMaps, Isomap)


```
Idea Replace data driven coordinates with selected torsions
    - Scientist: proposes a dictionary \(\mathcal{G}\) with all variables of interest
    - ML algorithm: outputs embedding \(\phi\),
    - Manifolidasso: finds new coordinates in \(\mathcal{G}\) "equivalent" with \(\phi \quad \leftarrow\) our algorithm
    - Explanation
    - = find manifold coordinates from among scientific variables of interest
    - should be in the language of the domain
```

scientific language (torsions)

data driven coordinates
(from DiffMaps, Isomap)

coordinates with scientific
interpretation
(selected torsions)

Idea Replace data driven coordinates with selected torsions

- Scientist: proposes a dictionary \mathcal{G} with all variables of interest
- ML algorithm: outputs embedding ϕ, - MANIFOLDLASSO: finds new coordinates in G "equivalent" with $\&$ our algorithm
- Explanation
- = find manifold coordinates from among scientific variables of interest
- should be in the language of the domain
$\begin{array}{cc}\text { scientific } & \text { data driven } \\ \text { language } & \text { coordinates } \\ \text { (torsions) } & \text { (from DiffMaps, Isomap) }\end{array}$
coordinates
with scientific
interpretation
(selected torsions)

Idea Replace data driven coordinates with selected torsions

- Scientist: proposes a dictionary \mathcal{G} with all variables of interest
- ML algorithm: outputs embedding ϕ,
- ManifoldLasso: finds new coordinates in \mathcal{G} "equivalent" with $\phi \quad \leftarrow$ our algorithm
- = find manifold coordinates from among scientific variables of interest
- should be in the language of the domain
$\begin{array}{cc}\text { scientific } & \text { data driven } \\ \text { language } & \text { coordinates } \\ \text { (torsions) } & \text { (from DiffMaps, Isomap) }\end{array}$
coordinates
with scientific
interpretation
(selected torsions)

\mathcal{G}

ϕ
$g_{S} \subset \mathcal{G}$

Idea Replace data driven coordinates with selected torsions

- Scientist: proposes a dictionary \mathcal{G} with all variables of interest
- ML algorithm: outputs embedding ϕ,
- ManifoldLasso: finds new coordinates in \mathcal{G} "equivalent" with $\phi \quad \leftarrow$ our algorithm
- Explanation
- = find manifold coordinates from among scientific variables of interest
- should be in the language of the domain

Outline

(1) Manifold coordinates with Scientific meaning

- Functional Lasso
- Pulling back the coordinate gradients
(2) Machine Learning 1-Laplacians, topology, vector fields
- 1-Laplacian $\Delta_{1}(\mathcal{M})$ estimation from samples
- Analysis of vector fields - Helmholtz-Hodge decomposition
- Harmonic Embedding Spectral Decomposition Algorithm
- Spectral Shortest Homologous Loop Detection

Problem formulation

$$
g_{S} \subset \mathcal{G}
$$

$$
\phi
$$

Given

- Domain knowledge
- dictionary of domain-related smooth functions $\mathcal{G}=\left\{g_{1}, \ldots g_{p}\right.$, with $\left.g_{j}: \mathbb{R}^{D} \rightarrow \mathbb{R}\right\}$.
- e.g. all torsions in ethanol
- Data driven coordinates
- data $\xi_{i} \in \mathbb{R}^{D}, i \in 1 \ldots n$
- embedding of data $\phi\left(\xi_{1: n}\right)$ in \mathbb{R}^{m}
- Assume

$$
\phi(\xi)=h\left(g_{j_{1}}(\xi), \ldots g_{j_{s}}(\xi)\right) \quad \text { with } g_{j_{1}, \ldots j_{s}} \in \mathcal{G}
$$

- Wanted $S=\left\{j_{1}, \ldots j_{s}\right\}$ interpretable coordinates

Idea: Sparse regression in function space

$$
\begin{aligned}
& \phi=h \circ g_{S} \\
& \text { manifold } \text { functions from } \mathcal{G} \\
& \text { coordinates }
\end{aligned}
$$

Leibnitz Rule

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot assume a parametric form
- we cannot choose a basis for h
- sparse linear regression problem
- For every data i
- $Y_{i}=\operatorname{grad} \phi\left(\xi_{i}\right)$,
- $\mathbf{X}_{i}=\operatorname{grad} g_{1: p}(\xi)$
- $\beta_{i j}=\frac{\partial h}{\partial}\left(\xi_{i}\right)$
- Sparse linear system
- Constraint: subset S is same for all i
- ϕ_{k} may depend on multiple g_{j}
- will not assume ϕ isometric
- optimize

Idea: Sparse regression in function space

$$
\begin{aligned}
\phi & =h \circ g_{S} \\
\begin{array}{r}
\text { manifold } \\
\text { coordinates }
\end{array} & \quad \text { functions from } \mathcal{G}
\end{aligned}
$$

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot assume a parametric form
- we cannot choose a basis for h
- ϕ_{k} may depend on multiple g_{j}
- will not assume ϕ isometric
- optimize

Idea: Sparse regression in function space

$$
\begin{array}{rrl}
\phi & =h \circ g_{S} & D \phi=D h D g_{S} \\
\text { manifold } & \text { functions from } \mathcal{G} & \text { Leibnitz Rule }
\end{array}
$$

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot assume a parametric form
- we cannot choose a basis for h
- ϕ_{k} may depend on multiple g_{j}
- will not assume ϕ isometric
- sparse linear regression problem
- For every data i

- Sparse linear system
- Constraint: subset S is same for all i
- optimize

Idea: Sparse regression in function space

$$
\begin{aligned}
\phi & =h \circ g_{S} \\
\begin{array}{r}
\text { manifold } \\
\text { coordinates }
\end{array} & \text { functions from } \mathcal{G}
\end{aligned}
$$

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot assume a parametric form
- we cannot choose a basis for h
- ϕ_{k} may depend on multiple g_{j}
- will not assume ϕ isometric

$$
D \phi=D h D g_{s}
$$

Leibnitz Rule

- sparse linear regression problem
- For every data i
- $Y_{i}=\operatorname{grad} \phi\left(\xi_{i}\right)$,
- $\mathbf{X}_{i}=\operatorname{grad} g_{1: p}(\xi)$
- $\beta_{i j}=\frac{\partial h}{\partial g_{j}}\left(\xi_{i}\right)$
- Sparse linear system $Y_{i}=\mathbf{X}_{i} \beta_{i}$
- Constraint: subset S is same for all i
- optimize

Idea: Sparse regression in function space

ϕ	$=h \circ g_{S}$
manifold	
manctions from \mathcal{G}	
fordinates	
Leibnitz Rule	

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot assume a parametric form
- we cannot choose a basis for h
- ϕ_{k} may depend on multiple g_{j}
- will not assume ϕ isometric Functional (Group) Lasso
- optimize

$$
\min _{\beta} J_{\lambda}(\beta)=\frac{1}{2} \sum_{i=1}^{n}\left\|Y_{i}-\mathbf{X}_{i} \boldsymbol{\beta}_{i}\right\|_{2}^{2}+\lambda \sum_{j}\left\|\beta_{j}\right\|, \quad \text { (MANIFOLDLASSO) }
$$

- support S of β selects $g_{j_{1}, \ldots j_{s}}$ from \mathcal{G}

Outline

(1) Manifold coordinates with Scientific meaning

- Functional Lasso
- Pulling back the coordinate gradients
(2) Machine Learning 1-Laplacians, topology, vector fields
- 1-Laplacian $\Delta_{1}(\mathcal{M})$ estimation from samples
- Analysis of vector fields - Helmholtz-Hodge decomposition
- Harmonic Embedding Spectral Decomposition Algorithm
- Spectral Shortest Homologous Loop Detection

ManifoldLasso Algorithm

Given Data $\xi_{1: n}, \operatorname{dim} \mathcal{M}=d$, embedding $\phi\left(\xi_{1: n}\right)$, dictionary $\mathcal{G}=\left\{g_{1: p}\right\}$
(1) Estimate tangent subspace at ξ_{i} by (weighted) PCA
(2) Project dictionary functions gradients ∇g_{j} on tangent subspace, obtain $\mathrm{X}_{1: n} \in \mathbb{R}^{d \times p}$ (3) Estimate gradients of $\phi_{1: k}$, obtain $Y_{1: n} \in \mathbb{R}^{d \times m}$ By pull-back from embedding space ϕ
© Solve GroupLasso $\left(Y_{1: n}, X_{1: n}, d\right)$, obtain support S Output S

ManifoldLasso Algorithm

Given Data $\xi_{1: n}, \operatorname{dim} \mathcal{M}=d$, embedding $\phi\left(\xi_{1: n}\right)$, dictionary $\mathcal{G}=\left\{g_{1: p}\right\}$
(1) Estimate tangent subspace at ξ_{i} by (weighted) PCA
(2) Project dictionary functions gradients ∇g_{j} on tangent subspace, obtain $\mathbf{X}_{1: n} \in \mathbb{R}^{d \times p}$

By pull-back from embedding space ϕ
(- Solve GroupLasso $\left(Y_{1: n}, \mathrm{X}_{1: n}, d\right)$, obtain support S
Output S

ManifoldLasso Algorithm

Given Data $\xi_{1: n}, \operatorname{dim} \mathcal{M}=d$, embedding $\phi\left(\xi_{1: n}\right)$, dictionary $\mathcal{G}=\left\{g_{1: p}\right\}$
(1) Estimate tangent subspace at ξ_{i} by (weighted) PCA
(2) Project dictionary functions gradients ∇g_{j} on tangent subspace, obtain $\mathbf{X}_{1: n} \in \mathbb{R}^{d \times p}$
(3) Estimate gradients of $\phi_{1: k}$, obtain $Y_{1: n} \in \mathbb{R}^{d \times m}$

By pull-back from embedding space ϕ
© Solve GroupLasso $\left(Y_{1: n}, X_{1: n}, d\right)$, obtain support S Output S

ManifoldLasso Algorithm

Given Data $\xi_{1: n}, \operatorname{dim} \mathcal{M}=d$, embedding $\phi\left(\xi_{1: n}\right)$, dictionary $\mathcal{G}=\left\{g_{1: p}\right\}$
(1) Estimate tangent subspace at ξ_{i} by (weighted) PCA
(2) Project dictionary functions gradients ∇g_{j} on tangent subspace, obtain $\mathbf{X}_{1: n} \in \mathbb{R}^{d \times p}$
(3) Estimate gradients of $\phi_{1: k}$, obtain $Y_{1: n} \in \mathbb{R}^{d \times m}$

By pull-back from embedding space ϕ
(1) Solve GroupLasso $\left(Y_{1: n}, \mathbf{X}_{1: n}, d\right)$, obtain support S Output S

Ethanol MD simulation

regularization paths $\beta_{1: p}$ vs λ

Theory

- When is S unique? / When can \mathcal{M} be uniquely parametrized by \mathcal{G} ? Functional independence conditions on dictionary \mathcal{G} and subset $g_{j_{1}}, \ldots j_{s}$
- Basic result $f_{S}=h \circ f_{S^{\prime}}$ on U iff

$$
\operatorname{rank}\binom{D f_{S}}{D f_{S^{\prime}}}=\operatorname{rank} D f_{S^{\prime}} \quad \text { on } U
$$

- When can GLasso recover S ? (Simple) Incoherence Conditions

Theorem If, $\left\|\mathbf{X}_{1: p}\right\|=1, \mu \nu \sqrt{d}+\frac{\sigma \sqrt{n d}}{\lambda}<1$ then $\beta_{j}=0$ for $j \notin S$

Theory

- When is S unique? / When can \mathcal{M} be uniquely parametrized by \mathcal{G} ? Functional independence conditions on dictionary \mathcal{G} and subset $g_{j_{1}, \ldots j_{s}}$
- Basic result $f_{S}=h \circ f_{S^{\prime}}$ on U iff

$$
\operatorname{rank}\binom{D f_{S}}{D f_{S^{\prime}}}=\operatorname{rank} D f_{S^{\prime}} \quad \text { on } U
$$

- When can GLasso recover S ?
(Simple) Incoherence Conditions

$$
\mu=\max _{i=1: n, j \in S, j^{\prime} \notin S} \frac{\left|\mathbf{X}_{j i}^{T} \mathbf{X}_{j^{\prime} i}\right|}{\left\|\mathbf{X}_{j i}\right\|\left\|\mathbf{X}_{j^{\prime} i}\right\|} \quad \nu=\frac{1}{\min _{i=1: n}\left\|\mathbf{X}_{i S}^{T} \mathbf{X}_{i S}\right\|_{2}} \quad n d \sigma^{2}=\sum_{i, k} \epsilon_{i k}^{2}
$$

Theorem If, $\left\|\mathbf{X}_{1: p}\right\|=1, \mu \nu \sqrt{d}+\frac{\sigma \sqrt{n d}}{\lambda}<1$ then $\beta_{j}=0$ for $j \notin S$.

Recovery for ManifoldLasso

Theorem 7 (Support recovery) Assume that equation (30) holds, and that $\sum_{i=1}^{n}\left\|x_{i j}\right\|^{2}=\gamma_{j}^{2}$ for all $j=1: p$. Let $\gamma_{\max }=\max _{j \notin S} \gamma_{j}, \kappa_{S}=\max _{i=1: n} \frac{\max _{j \in S}\left\|x_{i j}\right\|}{\min _{j \in S}\left\|x_{i j}\right\|}$. Denote by $\bar{\beta}$ the solution of (31) for some $\lambda>0$. If $1-(s-1) \mu>0$ and

$$
\begin{equation*}
\gamma_{\max }\left(\frac{\mu}{1-(s-1) \mu} \frac{\kappa_{S}}{\min _{i=1}^{n} \min _{j^{\prime} \in S}\left\|x_{i j^{\prime}}\right\|}+\frac{\sigma \sqrt{d}}{\lambda \sqrt{n}}\right) \leq 1 \tag{37}
\end{equation*}
$$

then $\bar{\beta}_{i j}=0$ for $j \notin S$ and all $i=1, \ldots n$.

Corollary 8 Assume that equation (31) and condition (37) hold. Let $\kappa=\frac{\mu}{1-(s-1) \mu} \frac{\kappa s}{\min _{i=1}^{n} \min _{j^{\prime} \in s}\left\|x_{i j^{\prime}}\right\|}$ and $\gamma_{S}=\left\|\bar{X}_{S}\right\|$. Denote by $\hat{\beta}$ the solution to problem (31) for some $\lambda>0$. If (1) $\lambda=c \frac{\gamma_{\max } \sigma \sqrt{d}}{1-\kappa \gamma \max }$, $c>1$, and (2) $\left\|\beta_{j}^{*}\right\|>\sigma \sqrt{d}\left(\gamma_{\max }+\gamma_{S}\right)+\lambda(1+\sqrt{s})$ for all $j \in S$, then the support S is recovered exactly and
$\left\|\hat{\beta}_{j}-\beta_{j}^{*}\right\|<\sigma \sqrt{d}\left(\gamma_{\max }+\gamma_{S}\right)+\lambda(1+\sqrt{s})=\sigma \sqrt{d} \gamma_{\max }\left[1+\gamma_{S} / \gamma_{\max }+c \frac{1+\sqrt{s}}{1-\kappa \gamma_{\max }}\right] \quad$ for all $j \in S$.

TangentSpaceLasso: ManifoldLasso without embedding

Simplification regress basis of $\mathcal{T}_{\xi} \mathcal{M}$ on gradients of g_{j}

Proposition 2 (after (?)). Let \mathcal{F}, f_{j} be dictionary and dictionary functions on the d-dimensional smooth manifold \mathcal{M}. Assume $f_{j} \in C^{\ell}$ with $\ell \geq d+1$. Suppose $S \subset[p]$, and denote by $\operatorname{grad} f_{S}$ the $\mathbb{R}^{d \times s}$ matrix of concatenated grad $f_{j}: f \in S$. Then, if there is a subset $S^{\prime} \subsetneq S$ such that the following rank condition holds globally:

$$
\begin{equation*}
\operatorname{rank}\binom{\operatorname{grad} f_{S}}{\operatorname{grad} f_{S^{\prime}}}=\operatorname{rank} \operatorname{grad} f_{S^{\prime}} \tag{4}
\end{equation*}
$$

Then there exists a function h which is C^{ℓ} almost everywhere in the image of $f_{S^{\prime}}(\mathcal{M})$ such that $f_{S}=h \circ f_{S^{\prime}}$

$$
\begin{aligned}
& \mu_{S}=\sup _{\xi \in \mathcal{M}^{\circ}, j \in S, j^{\prime} \notin S}\left|\mathbf{X}_{\{j\}, \xi}^{T} \mathbf{X}_{\left.\left\{j^{\prime}\right\}, \xi\right\}}\right| \\
& \nu_{S}=\sup _{\xi \in \mathcal{M}^{\circ} \alpha \in \mathbb{R}^{:}:| | \alpha \|_{2}=1} \alpha^{T}\left(\mathbf{X}_{S, \xi}^{T} \mathbf{X}_{S, \xi}\right)^{-1} \alpha .
\end{aligned}
$$

Proposition 3. Assume that

1. \mathcal{M} is d-dimensional C^{k} compact manifold with strictly positive reach.
2. Data ξ are sampled from some density p on \mathcal{M} with $p>0$ all over \mathcal{M}.
3. $\xi \in \mathcal{M}^{\circ}$ with probability 1 under p.

Let S be the 'true' support, $S(\widehat{\mathbf{B}})$ be the support selected by TSLASSO, μ_{S} and ν_{S} be defined by (5) and (6), and further assume
4. $|S|=d$.
5. $D f_{S}$ has rank d on \mathcal{M}°,
6. $\mu_{S} \nu_{S} d<1$.

Then if we adapt the tangent space estimation algorithm in (?) with bandwidth choice $h=O(\log n /(n-1))^{d}$, with $n \geq\left(\left(1-\mu_{S} \nu_{S} d\right) / 2 \nu_{S} d\right)^{d /(k-1)}$ we have

$$
\operatorname{Pr}(S(\widehat{\mathbf{B}}) \subset S) \geq 1-O\left(\left(\frac{1}{n}\right)^{\frac{k}{d}}\right)
$$

Experiments

Dataset	n	N_{a}	D	d	ϵN	m	n^{\prime}	p	
SwissRoll	10000	NA	51	2	.18	2	100	51	synthetic
RigidEthanol	10000	9	50	2	3.5	3	100	12	
Ethanol	50000	9	50	2	3.5	3	100	12	skeleton \mathcal{G}
Malonaldehyde	50000	9	50	2	3.5	3	100	12	
Toluene	50000	16	50	1	1.9	2	100	30	
Ethanol	50000	9	50	2	3.5	3	100	756	exhaustive \mathcal{G}
Malonaldehyde	50000	9	50	2	3.5	3	100	756	
	ϕ						LASSO	$\|\mathcal{G}\|$	

$p=$ dictionary size, $m=$ embedding dimension, $n=$ sample size for manifold estimation, $n^{\prime}=$ sample size for ManifoldLasso

Two-stage sparse recovery for exhaustive $\mathcal{G}, p=756$

Ethanol

Malonaldehyde

Tangent Space Lasso experiments

\qquad

Summary of ManifoldLasso/FunctionalLasso

Technical contribution

- FunctionalLasso: non-linear sparse functional regression
- Method to push/pull vectors through mappings ϕ
- MANIFOLDLASSO: regression of data driven coordinates $\phi_{1: m}$ on domain-specific functions $\mathcal{G}=\left\{g_{1: p}\right\}$
- Significance
scientific data drivel language (torsions)

- explain learned coordinates by dictionaries of domain-relevant functions
- transmissible knowledge, compare embeddings from different experiments
- extensions to: estimated ∇g, simultaneous explanation of multiple manifolds

Summary of ManifoldLasso/FunctionalLasso

Technical contribution

- FunctionalLasso: non-linear sparse functional regression
- Method to push/pull vectors through mappings ϕ
- ManifoldLasso: regression of data driven coordinates $\phi_{1: m}$ on domain-specific functions $\mathcal{G}=\left\{g_{1: p}\right\}$
- Significance
scientific
language
(torsions)
data driven
coordinates
interpretable
coordinates

$=$
- explain learned coordinates by dictionaries of domain-relevant functions
- transmissible knowledge, compare embeddings from different experiments
- extensions to: estimated ∇g, simultaneous explanation of multiple manifolds

Learning with flows and vector fields [with Yu-chia Chen, Yoannis Kevrekidis]

Directed graph embedding Manifold + vector field [NIPS 2011]

Smoothed vector fields

1-Laplacian estimation
[Arxiv:2103.07626]

Helmholtz-Hodge decomposition

Independent loops [Arxiv:2107.10970] [NeurIPS 2021]

Outline

(1) Manifold coordinates with Scientific meaning

- Functional Lasso
- Pulling back the coordinate gradients
(2) Machine Learning 1-Laplacians, topology, vector fields
- 1-Laplacian $\Delta_{1}(\mathcal{M})$ estimation from samples
- Analysis of vector fields - Helmholtz-Hodge decomposition
- Harmonic Embedding Spectral Decomposition Algorithm
- Spectral Shortest Homologous Loop Detection

Why Laplacians? Why higher order?

- manifold \mathcal{M} (Assumed)
- $\Delta_{0}(\mathcal{M})=$ Laplace-Beltrami operator
- Data $\xi^{1}, \ldots \xi^{n}$ (Observed)
- \mathcal{L}_{0} is graph Laplacian, estimator of $\Delta_{0}(\mathcal{M})$, e.g. [Coifman, Lafon 2006]
\mathcal{L}_{0} and its principal e-vectors
- embedding data by Diffusion Maps [Coifman, Lafon 2006
- Function approximation - basis for any function on M
- Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
- Spectral Clustering $=$ topology + geometry

Higher order Laplacians $\Delta_{1}, \ldots \Delta_{k}$ also capture geometry and topology of \mathcal{M}

- Δ_{0} operates on functions, Δ_{1} on vector fields, Δ_{k} on k-forms

Our work

- estimate $\triangle_{1}(M)$ from data
- Helmholtz-Hodge decomposition of $\Delta_{1}(\mathcal{M})$ estimated from data
- Smoothing, function approximation, semi-supervised learning (Laplacian regularization) for vector fields on manifolds
- 1st (co-)homology embedding of graph edges
- Manifold prime decomposition
- find short loop bases in \mathcal{H}_{1}

Why Laplacians? Why higher order?

- manifold \mathcal{M} (Assumed)
- $\Delta_{0}(\mathcal{M})=$ Laplace-Beltrami operator
- Data $\xi^{1}, \ldots \xi^{n}$ (Observed)
- \mathcal{L}_{0} is graph Laplacian, estimator of $\Delta_{0}(\mathcal{M})$, e.g. [Coifman, Lafon 2006]
\mathcal{L}_{0} and its principal e-vectors
- embedding data by Diffusion Maps [Coifman, Lafon 2006]
- Function approximation - basis for any function on \mathcal{M}
- Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
- Spectral Clustering $=$ topology + geometry

Why Laplacians? Why higher order?

- manifold \mathcal{M} (Assumed)
- $\Delta_{0}(\mathcal{M})=$ Laplace-Beltrami operator
- Data $\xi^{1}, \ldots \xi^{n}$ (Observed)
- \mathcal{L}_{0} is graph Laplacian, estimator of $\Delta_{0}(\mathcal{M})$, e.g. [Coifman, Lafon 2006]
\mathcal{L}_{0} and its principal e-vectors
- embedding data by Diffusion Maps [Coifman, Lafon 2006]
- Function approximation - basis for any function on \mathcal{M}
- Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
- Spectral Clustering $=$ topology + geometry

Higher order Laplacians $\Delta_{1}, \ldots \Delta_{k}$ also capture geometry and topology of \mathcal{M}

- Δ_{0} operates on functions, Δ_{1} on vector fields, Δ_{k} on k-forms

Why Laplacians? Why higher order?

- manifold \mathcal{M} (Assumed)
- $\Delta_{0}(\mathcal{M})=$ Laplace-Beltrami operator
- $\Delta_{1}(\mathcal{M})$ is 1 -st order Laplacian operator
- Data $\xi^{1}, \ldots \xi^{n}$ (Observed)
- \mathcal{L}_{0} is graph Laplacian, estimator of $\Delta_{0}(\mathcal{M})$, e.g. [Coifman, Lafon 2006]
- \mathcal{L}_{1} is estimator of $\Delta_{1}(\mathcal{M})$ [Chen,M,Kevrekidis Arxiv:2103.07626]
\mathcal{L}_{0} and its principal e-vectors
- embedding data by Diffusion Maps [Coifman, Lafon 2006]
- Function approximation - basis for any function on \mathcal{M}
- Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
- Spectral Clustering $=$ topology + geometry

Higher order Laplacians $\Delta_{1}, \ldots \Delta_{k}$ also capture geometry and topology of \mathcal{M}

- Δ_{0} operates on functions, Δ_{1} on vector fields, Δ_{k} on k-forms

Our work

- estimate $\Delta_{1}(\mathcal{M})$ from data
- Helmholtz-Hodge decomposition of $\Delta_{1}(\mathcal{M})$ estimated from data
- Smoothing, function approximation, semi-supe
for vector fields on manifolds
- Ist (co-)homology embedding of graph edges
- find short loop bases in \mathcal{H}_{1}

Why Laplacians? Why higher order?

- manifold \mathcal{M} (Assumed)
- $\Delta_{0}(\mathcal{M})=$ Laplace-Beltrami operator
- $\Delta_{1}(\mathcal{M})$ is 1 -st order Laplacian operator
- Data $\xi^{1}, \ldots \xi^{n}$ (Observed)
- \mathcal{L}_{0} is graph Laplacian, estimator of $\Delta_{0}(\mathcal{M})$, e.g. [Coifman, Lafon 2006]
- \mathcal{L}_{1} is estimator of $\Delta_{1}(\mathcal{M})$ [Chen,M,Kevrekidis Arxiv:2103.07626]
\mathcal{L}_{0} and its principal e-vectors
- embedding data by Diffusion Maps [Coifman, Lafon 2006]
- Function approximation - basis for any function on \mathcal{M}
- Smoothing, semi-supervised learning (Laplacian regularization) on manifolds
- Spectral Clustering $=$ topology + geometry

Higher order Laplacians $\Delta_{1}, \ldots \Delta_{k}$ also capture geometry and topology of \mathcal{M}

- Δ_{0} operates on functions, Δ_{1} on vector fields, Δ_{k} on k-forms

Our work

- estimate $\Delta_{1}(\mathcal{M})$ from data
- Helmholtz-Hodge decomposition of $\Delta_{1}(\mathcal{M})$ estimated from data
- Smoothing, function approximation, semi-supervised learning (Laplacian regularization) for vector fields on manifolds
- 1st (co-)homology embedding of graph edges
- Manifold prime decomposition
- find short loop bases in \mathcal{H}_{1}

Estimating the 1-Laplacian with samples from \mathcal{M}

$$
\begin{gathered}
\mathcal{L}_{1}^{\text {down }}=\mathbf{B}_{\mathrm{E}}^{\top} \boldsymbol{W}_{V}^{-1} \mathbf{B}_{\mathrm{E}} \boldsymbol{W}_{\mathrm{E}} \\
\mathcal{L}_{1}^{\text {up }}=\mathbf{W}_{\mathrm{E}}^{-1} \mathbf{B}_{\mathrm{T}} \boldsymbol{W}_{\mathrm{T}} \mathbf{B}_{\mathrm{E}}^{\mathrm{T}} \\
\Downarrow \downarrow \\
\mathcal{L}_{1}=\mathrm{a} \cdot \mathcal{L}_{1}^{\text {down }}+\mathrm{b} \cdot \mathcal{L}_{1}^{\text {up }}
\end{gathered}
$$

\mathcal{L}_{1} estimation for Molecular Dynamics data (malonaldehyde)

graph Laplacian $w_{t}=1$, [Berry, Giannakis 2020], [Chen,M,Kevrekidis 2020]

Outline

(1) Manifold coordinates with Scientific meaning

- Functional Lasso
- Pulling back the coordinate gradients
(2) Machine Learning 1-Laplacians, topology, vector fields
- 1-Laplacian $\triangle_{1}(\mathcal{M})$ estimation from samples
- Analysis of vector fields - Helmholtz-Hodge decomposition
- Harmonic Embedding Spectral Decomposition Algorithm
- Spectral Shortest Homologous Loop Detection

Eigenfunctions of $\mathcal{L}_{1}-$ what are they useful for?

- Eigenfunctions of $\mathcal{L}_{1}=$ basis of vector fields on \mathcal{M}
- Helmholtz-Hodge Decomposition classifies eigenfunctions of \mathcal{L}_{1}

$$
\mathcal{C}_{1} \cong \mathbb{R}^{n_{E}} \cong \underbrace{\operatorname{Im} \mathcal{L}_{1}^{\text {down }}}_{\text {gradient }} \oplus \underbrace{\text { Null } \mathcal{L}_{1}}_{\text {harmonic }} \oplus \underbrace{\operatorname{Im} \mathcal{L}_{1}^{\text {up }}}_{\text {curl }}
$$

- Analysis of vector fields on \mathcal{M}
- Decompose onto harmonic, gradient, curl
- Smooth, predict, extend, complete a flow
- Analysis of \mathcal{M}
- $\mathcal{H}_{1}=$ Null \mathcal{L}_{1} Space of loops on \mathcal{M} (1st co-homology space)
- $\operatorname{dim} \mathcal{H}_{1}=\beta_{1}$ number of (independent loops)
- Find shortest loop basis

Helmholtz-Hodge decomposition for ocean buoys data

simplicial complex (V, E, T)

Flow Smoothing

Flow Completion - Semi-Supervised Learning (SSL)

A

B

- LaplacianRLS

UpDownLaplacianRLS

D

Outline

(1) Manifold coordinates with Scientific meaning

- Functional Lasso
- Pulling back the coordinate gradients
(2) Machine Learning 1-Laplacians, topology, vector fields
- 1-Laplacian $\triangle_{1}(\mathcal{M})$ estimation from samples
- Analysis of vector fields - Helmholtz-Hodge decomposition
- Harmonic Embedding Spectral Decomposition Algorithm
- Spectral Shortest Homologous Loop Detection

Connected sum and manifold (prime) decomposition

The connected sum ? $\mathcal{M}=\mathcal{M}_{1} \sharp \mathcal{M}_{2}$:
(1) removing two d-dimensional "disks" from \mathcal{M}_{1} and \mathcal{M}_{2} (shaded area)
(2) gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \sharp \mathcal{M}_{\kappa}$ into \mathcal{M}_{i} 's so that \mathcal{M}_{i} is a prime manifold

- $d=2$: classification theorem of surfaces ?
- $d=3$: the uniqueness of the prime decomposition was shown by Kneser-Milnor theorem ?
- $d \geq$ 5: ? proved the existence of factorization (but they might not be unique)

Connected sum and manifold (prime) decomposition

The connected sum ? $\mathcal{M}=\mathcal{M}_{1} \sharp \mathcal{M}_{2}$:
(1) removing two d-dimensional "disks" from \mathcal{M}_{1} and \mathcal{M}_{2} (shaded area)
(2) gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \sharp \mathcal{M}_{\kappa}$ into \mathcal{M}_{i} 's so that \mathcal{M}_{i} is a prime manifold

- $d=2$: classification theorem of surfaces ?
- $d=3$: the uniqueness of the prime decomposition was shown by Kneser-Milnor theorem ?
- $d \geq 5$: ? proved the existence of factorization (but they might not be unique)

The decomposition of the higher-order homology embedding constructed from the k-Laplacian [Chen,M NeurIPS 2021]

Denote \mathbf{Y} the harmonic e-vectors of \mathcal{L}_{k}

Theoretic aim

- Recover the homology basis \mathbf{Y}_{i} of each prime manifold \mathcal{M}_{i} (\mathbf{Y}_{i} localized on each \mathcal{M}_{i})
- Provide an analogue to Orthogonal Cone Structure result ??? in spectral clustering $\left(\mathcal{H}_{0}\right)$
 Algorithmic aim
- Let $\hat{\mathbf{Y}}=\operatorname{diag}\left\{\mathbf{Y}_{i}\right\}$
- The null space basis of \mathcal{L}_{k} is only identifiable up to a unitary matrix

- \mathbf{Z} is localized, more interpretable than Y

The decomposition of the higher-order homology embedding constructed from the k-Laplacian [Chen,M NeurIPS 2021]

Denote \mathbf{Y} the harmonic e-vectors of \mathcal{L}_{k}

Theoretic aim

- Recover the homology basis \boldsymbol{Y}_{i} of each prime manifold \mathcal{M}_{i} (\mathbf{Y}_{i} localized on each \mathcal{M}_{i})
- Provide an analogue to Orthogonal Cone Structure result ??? in spectral clustering $\left(\mathcal{H}_{0}\right)$

Algorithmic aim

- Let $\hat{\mathbf{Y}}=\operatorname{diag}\left\{\mathbf{Y}_{i}\right\}$
- The null space basis of \mathcal{L}_{k} is only identifiable up to a unitary matrix

- \mathbf{Z} is localized, more interpretable than \mathbf{Y}

Harmonic Eigenfunctions Y (raw) vs. Z (decoupled)

Connected sum as a matrix perturbation: Assumptions

(1) Points are sampled from a decomposable manifold

- κ-fold connected sum: $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \sharp \mathcal{M}_{\kappa}$
- $\mathcal{H}_{k}(\mathrm{SC})$ (discrete) and $H_{k}(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_{i}
- Works for any consistent method to build \mathcal{L}_{k}
- We use our prior work ? for \mathcal{L}_{1}

(2) No k-homology class is created/destroyed during the connected sum
- If $\operatorname{dim}(\mathcal{M})>k$, then $\mathcal{H}_{k}\left(\mathcal{M}_{1} \sharp \mathcal{M}_{2}\right) \cong \mathcal{H}_{k}\left(\mathcal{M}_{1}\right) \oplus \mathcal{H}_{k}\left(\mathcal{M}_{2}\right)$?
- [Technical] The eigengap of \mathcal{L}_{k} is the min of each $\hat{\mathcal{L}}_{k}^{(i i)}: \delta=\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}$
(3) Sparsely connected manifold
- Not too many triangles are created/destroyed during connected sum (for $k=1$)
- Empirically, the perturbation is small even when \mathcal{M} is not sparsely connected
- [Technical] Perturbations of ℓ-simplex set Σ_{ℓ} are small (ϵ_{ℓ} and ϵ_{ℓ}^{\prime} are small) for $\ell=k, k-1$

Connected sum as a matrix perturbation: Assumptions

(1) Points are sampled from a decomposable manifold

- κ-fold connected sum: $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \sharp \mathcal{M}_{\kappa}$
- $\mathcal{H}_{k}(\mathrm{SC})$ (discrete) and $H_{k}(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_{i}
- Works for any consistent method to build \mathcal{L}_{k}
- We use our prior work ? for \mathcal{L}_{1}

(2) No k-homology class is created/destroyed during the connected sum
- If $\operatorname{dim}(\mathcal{M})>k$, then $\mathcal{H}_{k}\left(\mathcal{M}_{1} \sharp \mathcal{M}_{2}\right) \cong \mathcal{H}_{k}\left(\mathcal{M}_{1}\right) \oplus \mathcal{H}_{k}\left(\mathcal{M}_{2}\right)$?
- [Technical] The eigengap of \mathcal{L}_{k} is the min of each $\hat{\mathcal{L}}_{k}^{(i i)}: \delta=\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}$
(3) Sparsely connected manifold
- Not too many triangles are created/destroyed during connected sum (for $k=1$)
- Empirically, the perturbation is small even when \mathcal{M} is not sparsely connected
- [Technical] Perturbations of ℓ-simplex set Σ_{ℓ} are small (ϵ_{ℓ} and ϵ_{ℓ}^{\prime} are small)
for $\ell=k, k-1$

Connected sum as a matrix perturbation: Assumptions

(1) Points are sampled from a decomposable manifold

- κ-fold connected sum: $\mathcal{M}=\mathcal{M}_{1} \sharp \cdots \sharp \mathcal{M}_{\kappa}$
- $\mathcal{H}_{k}(\mathrm{SC})$ (discrete) and $H_{k}(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_{i}
- Works for any consistent method to build \mathcal{L}_{k}
- We use our prior work ? for \mathcal{L}_{1}

(2) No k-homology class is created/destroyed during the connected sum
- If $\operatorname{dim}(\mathcal{M})>k$, then $\mathcal{H}_{k}\left(\mathcal{M}_{1} \sharp \mathcal{M}_{2}\right) \cong \mathcal{H}_{k}\left(\mathcal{M}_{1}\right) \oplus \mathcal{H}_{k}\left(\mathcal{M}_{2}\right)$?
- [Technical] The eigengap of \mathcal{L}_{k} is the min of each $\hat{\mathcal{L}}_{k}^{(i i)}: \delta=\min \left\{\delta_{1}, \cdots, \delta_{\kappa}\right\}$
(3) Sparsely connected manifold
- Not too many triangles are created/destroyed during connected sum (for $k=1$)
- Empirically, the perturbation is small even when \mathcal{M} is not sparsely connected
- [Technical] Perturbations of ℓ-simplex set Σ_{ℓ} are small (ϵ_{ℓ} and ϵ_{ℓ}^{\prime} are small) for $\ell=k, k-1$

Subspace perturbation

Theorem 1
Under Assumptions 1-3

$$
\begin{gathered}
\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2} \leq\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+\left(1+\sqrt{\epsilon_{k}^{\prime}}\right)^{2} \sqrt{\epsilon_{k-1}^{\prime}}+4 \sqrt{\epsilon_{k-1}}\right]^{2}(k+1)^{2} ; \text { and } \\
\left\|\operatorname{DiffL}_{k}^{\text {up }}\right\|^{2} \leq\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+2 \epsilon_{k}+4 \sqrt{\epsilon_{k}}\right]^{2}(k+2)^{2}
\end{gathered}
$$

and there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_{k} \times \beta_{k}}$ such that

$$
\begin{equation*}
\left\|\mathbf{Y}_{N_{k},:}-\hat{\mathbf{Y}}_{N_{k},:} \mathbf{O}\right\|_{F}^{2} \leq \frac{8 \beta_{k}\left[\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2}+\| \text { DiffL }_{k}^{\text {up }} \|^{2}\right]}{\min \left\{\delta_{1}, \cdots, \delta_{\kappa}\right\}} \tag{1}
\end{equation*}
$$

- Assu. 2: no topology is destroyed/created
- Assu. 3: sparsely connected
- N_{k} : bound only simplexes that are not altered during connected sum

Subspace perturbation

Theorem 1
Under Assumptions 1-3

$$
\begin{aligned}
&\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2} \leq\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+\left(1+\sqrt{\epsilon_{k}^{\prime}}\right)^{2} \sqrt{\epsilon_{k-1}^{\prime}}+4 \sqrt{\epsilon_{k-1}}\right]^{2}(k+1)^{2} ; \text { and } \\
& \| \text { DiffL }_{k}^{\text {up }} \|^{2} \leq\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+2 \epsilon_{k}+4 \sqrt{\epsilon_{k}}\right]^{2}(k+2)^{2}
\end{aligned}
$$

and there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_{k} \times \beta_{k}}$ such that

$$
\begin{equation*}
\left\|\mathbf{Y}_{N_{k},:}-\hat{\mathbf{Y}}_{N_{k},:} \mathbf{O}\right\|_{F}^{2} \leq \frac{8 \beta_{k}\left[\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2}+\| \text { DiffL }_{k}^{\text {up }} \|^{2}\right]}{\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}} \tag{1}
\end{equation*}
$$

- Assu. 2: no topology is destroyed/created
- Assu. 3: sparsely connected
- N_{k} : bound only simplexes that are not altered during connected sum

Subspace perturbation

Theorem 1
Under Assumptions 1-3

$$
\begin{aligned}
&\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2} \leq\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+\left(1+\sqrt{\epsilon_{k}^{\prime}}\right)^{2} \sqrt{\epsilon_{k-1}^{\prime}}+4 \sqrt{\epsilon_{k-1}}\right]^{2}(k+1)^{2} ; \text { and } \\
& \| \text { DiffL }_{k}^{\text {up }} \|^{2} \leq\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+2 \epsilon_{k}+4 \sqrt{\epsilon_{k}}\right]^{2}(k+2)^{2}
\end{aligned}
$$

and there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_{k} \times \beta_{k}}$ such that

$$
\begin{equation*}
\left\|\mathbf{Y}_{N_{k},:}-\hat{\mathbf{Y}}_{N_{k},:} \mathbf{O}\right\|_{F}^{2} \leq \frac{8 \beta_{k}\left[\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2}+\| \text { DiffL }_{k}^{\text {up }} \|^{2}\right]}{\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}} \tag{1}
\end{equation*}
$$

- Assu. 2: no topology is destroyed/created
- Assu. 3: sparsely connected
- N_{k} : bound only simplexes that are not altered during connected sum

Subspace perturbation

Theorem 1
Under Assumptions 1-3

$$
\begin{gathered}
\left\|\operatorname{DiffL}_{k}^{\text {down }}\right\|^{2} \leq\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+\left(1+\sqrt{\epsilon_{k}^{\prime}}\right)^{2} \sqrt{\epsilon_{k-1}^{\prime}}+4 \sqrt{\epsilon_{k-1}}\right]^{2}(k+1)^{2} ; \text { and } \\
\left\|\operatorname{DiffL}_{k}^{\text {up }}\right\|^{2} \leq\left[2 \sqrt{\epsilon_{k}^{\prime}}+\epsilon_{k}^{\prime}+2 \epsilon_{k}+4 \sqrt{\epsilon_{k}}\right]^{2}(k+2)^{2}
\end{gathered}
$$

and there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_{k} \times \beta_{k}}$ such that

$$
\begin{equation*}
\left\|\mathbf{Y}_{N_{k},:}-\hat{\mathbf{Y}}_{N_{k},:} \mathbf{O}\right\|_{F}^{2} \leq \frac{8 \beta_{k}\left[\| \text { DiffL }_{k}^{\text {down }}\left\|^{2}+\right\| \text { DiffL }_{k}^{\text {up }} \|^{2}\right]}{\min \left\{\delta_{1}, \cdots, \delta_{k}\right\}} \tag{1}
\end{equation*}
$$

- Assu. 2: no topology is destroyed/created
- Assu. 3: sparsely connected
- N_{k} : bound only simplexes that are not altered during connected sum

Harmonic Embedding Spectral Decomposition Algorithm

In Simplicial complex (V, E, T), weights $\mathbf{W}_{V}, \mathbf{W}_{E}, \mathbf{W}_{T}$
(1) Compute \mathcal{L}_{1}
(2) Eigendecomposition

$$
\beta_{1}, \mathbf{Y} \leftarrow \operatorname{Null}\left(\mathcal{L}_{1}\right)
$$

(3) Independent Component Analysis

$$
\mathbf{Z} \leftarrow \text { ICANOPREWhite }(\mathbf{Y})
$$

Out Z

Outline

(1) Manifold coordinates with Scientific meaning

- Functional Lasso
- Pulling back the coordinate gradients
(2) Machine Learning 1-Laplacians, topology, vector fields
- 1-Laplacian $\triangle_{1}(\mathcal{M})$ estimation from samples
- Analysis of vector fields - Helmholtz-Hodge decomposition
- Harmonic Embedding Spectral Decomposition Algorithm
- Spectral Shortest Homologous Loop Detection

Spectral Shortest Homologous Loop Detection

In $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots \mathbf{z}_{\beta_{1}}\right],(V, E)$, edge lengths d_{E} for $I=1$: β_{1}
(1) Remove edges e with low $\left|\mathbf{Z}_{l e}\right|$, keep top $1 / \beta_{1}$ fraction $E_{\text {keep }}$
(2) Construct $G_{I}=\left(V, E_{\text {keep }}\right)$, edge weights d_{E}
(0) Repeat for a lot of edges in $E_{\text {keep }}$
(1) select $e=\left(t, s_{0}\right) \in E_{\text {keep }}$
(2) find shortest path s_{0} to t
$P_{e} \leftarrow \operatorname{Dijkstra}\left(V, E_{\text {keep }} \backslash\{e\}, s_{0}, t, d_{E}\right)$

- $C_{l} \leftarrow \operatorname{argmin}_{e} \operatorname{length}\left(\operatorname{loop}\left(P_{e}\right)\right)$

Out loops $C_{1: \beta}$

Shortest loop basis on real data

Summary - Manifold Learning beyond embedding algorithm

- Manifolds, vector fields, ..
- historically used for modeling scientific data
- represented analytically

NOW representations learned from data

- machine learning needs to handle new mathematical concepts
- need to output results in scientific language
- Generic method for Interpretation in the language of the domain
- by finding coordinates from among domain-specific functions
- non-parametric and non-linear
- Extended manifold learning from scalar functions to vector fields
- first 1-Laplacian estimator
- continuous limit derived
- natural extensions of smoothing, semi-supervised learning to vector field data
- perturbation result for prime manifold decomposition
- algorithm for shortest loop basis

Summary - Manifold Learning beyond embedding algorithm

- Manifolds, vector fields, ...
- historically used for modeling scientific data
- represented analytically

NOW representations learned from data

- machine learning needs to handle new mathematical concepts
- need to output results in scientific language
- Generic method for Interpretation in the language of the domain
- by finding coordinates from among domain-specific functions
- non-parametric and non-linear
- Extended manifold learning from scalar functions to vector fields
- first 1-Laplacian estimator
- continuous limit derived
- natural extensions of smoothing, semi-supervised learning to vector field data
- perturbation result for prime manifold decomposition
- algorithm for shortest loop basis

Summary - Manifold Learning beyond embedding algorithm

- Manifolds, vector fields, ...
- historically used for modeling scientific data
- represented analytically

NOW representations learned from data

- machine learning needs to handle new mathematical concepts
- need to output results in scientific language
- Generic method for Interpretation in the language of the domain
- by finding coordinates from among domain-specific functions
- non-parametric and non-linear
- Extended manifold learning from scalar functions to vector fields
- first 1-Laplacian estimator
- continuous limit derived
- natural extensions of smoothing, semi-supervised learning to vector field data
- perturbation result for prime manifold decomposition
- algorithm for shortest loop basis

Samson Koelle, Yu-Chia Chen, Hanyu Zhang, Alon Milchgrub
Hugh Hillhouse (UW), Jim Pfaendtner (UW), Chris Fu (UW)
A. Tkatchenko (Luxembourg), S. Chmiela (TU Berlin), A. Vasquez-Mayagoitia (ALCF)

Thank you

References I

