\square

Unsupervised learning

 in the age of Big DATA

Marina Meila

Department of Statistics
University of Washington

Supervised, Reinforcement, Unsupervised Learning

- We are witnessing an AI/ML revolution
- this is led by Supervised and Reinforcement Learning
- i.e. Prediction and Acting
- Unsupervised learning (clustering analysis, dimension reduction, explanatory models) in a much more primitive state of development
- Everybody does them
- Exploration, explanation, understanding
- Is the next big challenge

Unsupervised learning is the next big challenge

Research in my group

- Unsupervised learning at scale
- Clustering
- Dimension reduction
- Models for preferences
- Mathematics/theory/theorems/models - validation/checking/guarantees
- Algorithms and computation
- Geometry
- Non-linear dimension reduction
- Topological data analysis
- Combinatorics
- Graphs, rankings
for the sciences

- Clustering

Unsupervised learning is the next big challenge

Research in my group

- Unsupervised learning at scale
- Clustering
- Dimension reduction
- Models for preferences

- Mathematics/theory/theorems/models - validation/checking/guarantees
- Algorithms and computation
- Geometry
- Non-linear dimension reduction
- Topological data analysis
- Combinatorics
- Graphs, rankings
for the sciences

- Clustering

Unsupervised learning is the next big challenge

Research in my group

- Unsupervised learning at scale
- Clustering
- Dimension reduction
- Models for preferences

- Mathematics/theory/theorems/models - validation/checking/guarantees
- Algorithms and computation
- Geometry
- Non-linear dimension reduction
- Topological data analysis
- Combinatorics
- Graphs, rankings
- Clustering
for the sciences

Machine Learning/AI in the picture

 (statistics, optimization, theoretical computer science)
Artificial intelligence

Speech recognition
Image captioning
Self driving cars
Translation
Playing chess

Finance
Health
Power grid control
Robotics

```
""What a human can do in
```

""What a human can do in
about l second"
about l second"
-- Andrew Ng cca }201

```
    -- Andrew Ng cca }201
```


Hard sciences

Neuroscience
Biology
Chemistry
Astronomy
Physics

Machine Learning in the picture

 (statistics, optimization, theoretical computer science)Artificial intelligence
Speech recognition
Image captioning
Self driving cars
Translation
Playing chess

Neuroscience
Biology
Chemistry
Astronomy
Physics

Correct?

Scientific discovery by machine learning and the mythical human "expert"

- Big data
- Allows us to ask more detailed questions (e.g "personalized medicine")
- Big data contains more complex patterns
- Machine Learning discovers patterns fast
- Typically - validation by "domain experts"
- Often Hypotheses are cheap, experiments are expensive

Drowning in hypotheses...
Validation is the bottleneck

- Validation by visualization
- is qualitative not quantitative
- hard/impossible in dimension >3

Drowning in hypotheses...
Validation is the bottleneck

- Validation by visualization
- is qualitative not quantitative
- hard/impossible in dimension >3

Drowning in hypotheses...
Validation is the bottleneck

- Validation by visualization
- is qualitative not quantitative
- hard/impossible in dimension >3
- can't be crowdsourced


```
Select all
peptides that bind to this substrate
```

Select all images with
AGN (Active Galactic Nuclei)

Manifold Learning

non-linear dimension reduction

- When?
- Data in high dimensions
- Data can be described by a small number of parameters
- Large sample size necessary - for consistency

Manifold Learning

 non-linear dimension reductionWhen?

- Data in high dimensions
- Data can be described by a small number of parameters
- Large sample size necessary - for consistency BIG DATA

■ Problems?

- "Too expensive to perform for large data sets"
- Results not comparable between algorithms, "good only for visualization"

Manifold Learning and Clustering

for Millions of Points

https://www.github.com/megaman
megaman: Manifold Learning for Millions of Points

buid passing pypi wo.1.1 license BSD
meganan is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms to large data sets. On a personal computer megaman can embed 1 million data points with hundreds of dimensions in 10 minutes. megaman is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.

Package documentation can be found at http://mmp2.github.io/megaman/
You can also find our arXiv paper at http://arxiv.org/abs/1603.02763

Examples

- Tutorial Notebook

Installation with Conda

The easiest way to install megaman and its dependencies is with conda, the cross-platform package manager for the scientific Python ecosystem.

James McQueen

Grace Telford

Yu-chia Chen

Manifold Learning for Millions of

Points

- English words and phrases taken from Google news (3,000,000 phrases originally represented in 300 dimensions by the Deep Neural Network word2vec [Mikolov et al]
- Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).
preprocessed by Jake VanderPlas, figure by Grace Telford

Galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra oriqinally in 3750 dimensions).

Survey: sdss Program: legacy Target: CALAXY
RA $=322.77804$, Dec $=0.07382$, Plate $=988$, Fiber $=97$, MJD $=52520$ $z=0.13228 \pm 0.00003$ Class=GALAXY
No warnings.

Sloan Digital Sky Survey: where the spectra are from in the Universe

- We estimate the distortion! (called push-forward Riemannian metric)

Isomap ML algorithm

+ Exploring the configurations of

 small molecules aspirin ooRiemann metric measures geometric

meta-stable

- Configuration space of the Aspirin molecule (210,000 states $\times 21$ atoms x 3 dim) after non-linear embedding with Diffusion Maps, colored by the torsion of the $\mathrm{CH}_{3}{ }^{-}$ $\mathrm{C}=\mathrm{O}$ bond.

With Alexandre Tkatchenko and Stefan Chmiela.

Directed graph embedding Manifold + vector field [NIPS 2011]

Smoothed vector fields

1-Laplacian estimation

Helmholtz-Hodge decomposition

Independent loops
(H_{1} basis)

ManifoldLasso: coordinates with physical meaning

Model free guarantees for clustering

- Given a "good" clustering C of a data set, prove that there is no other good clustering C' too different from C

Model free guarantees for clustering

- Given a "good" clustering C of a data set, prove that there is no other good clustering C' too different from C

Model free guarantees for clustering

- Framework:
- Given a "good" clustering C of a data set, prove that there is no other good clustering C' too different from C

Clustering with data driven

guarantees

$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{-} \leftarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{-}$

 MD simulation at $\mathrm{T}=900 \mathrm{~K}$ 6 atoms x 3 dim
with Jim Pfaendtner and Chris Fu

Modeling Preferences

Burger preferences
$n=6, N=600$
med-rare med rare ...
done med-done med ...
med-rare rare med ...

Elections Ireland, $n=5, N=1100$
Roch Scal McAl Bano Nall
Scal McAl Nall Bano Roch Roch McAl

College programs $n=533, N=53737, t=10$
DC116 DC114 DC111 DC148 DB512 DNO21 LMO54 WD048 LMO20 LMO50 WD028
DN008 TR071 DN012 DN052
FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

- Preference data is
- Discrete
- Many valued
- Non-Euclidean
- Has algebraic/combinatorial structure
- Goal: do "statistics as usual" on large preference data
- .e.g what is the mean? Variance?
- Clustering? Regression? Bayesian inference?
- Estimate the structure of preferences

+ Statistics with rankings

- Modeling permutations by counting inversions
- Flexible models, with interpretable parameters
- Allow for efficient computation when consensus exists
- Adapt to various types of missing data (e.g. top-k rankings, ratings, pairwise comparisons)
- Software github.com/mmp2/dpmm-gmm
- C+matlab code performing Bayesian non-parametric clustering for ranked data

College programs $n=533, N=53737, t=10$
DC116 DC114 DC111 DC148 DB512 DNO21 LMO54 WD048 LMO20 LMO50 WD028
DN008 TR071 DNO12 DN052
FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

* Degree programs preference data: the clusters found

Students pay within each cluster, preferences do price of exam not depend on "grades/points" only success as ${ }^{2}$ points iumb $r^{5} 6$ new record for grades
Minister insists school subjects are not being 'dumbed down' ohn Wualshe and
katherine Donneclly \qquad

10 . 10
15
cluster

The Structure of preferences

$N=5000$ people ranked $n=12$ types of sushi sake |ebi |ika |uni |tamago |kappa-maki |tekka-maki |anago |toro |maguro ebi |kappa-maki |tamago |ika |toro |maguro |tekka-maki |anago |sake |uni toro |ebi |maguro |ika |tekka-maki |uni |sake |anago |kappa-maki |tamago tekka-maki |tamago |sake |ebi |ika |kappa-maki |maguro |toro |uni |anago tamago |maguro |kappa-maki |ebi |sake |anago |uni |tekka-maki |toro |ika uni |toro |ebi |anago |maguro |tekka-maki |ika |sake |kappa-maki |tamago maguro |ika |toro |tekka-maki |ebi |uni |sake |tamago |anago |kappa-maki

- Preferences have hierarchical structure
- This was estimated from data (along with consensus and dispersions)
- Current work: partial rankings sake |ebi,ika |
uni | toro,ebi,anago | maguro,tekka-maki |

The Structure of preferences

- Applied to peer review, surveys, social choice
- Upcoming Electoral Geometry and Gerrymandering group

Summary -- next challenges

- Finding explanations / descriptions
- Unsupervised learning
- Validation
- Of explanations
- Of scientific hypotheses
- Is much more costly than generating hypotheses (requires more data, new experiments, expert involvement)

Summary -- next challenges

- Finding explanations / descriptions
- Unsupervised learning
- Validation
- Of explanations
- Of scientific hypotheses
- Is much more costly than generating hypotheses (requires more data, new experiments, expert involvement)
- With BIG Data - machines must assist humans in validation process
- Mathematics must assist human intuition with non-Euclidean data
- Theory must assist computation (and conversely)

Ongoing and future projects

- Discovery in Materials Science and Molecular Chemistry, Active learning for material discovery (solar cells materials) (Alex)
- Discovering the structure of point clouds = geometric data analysis (James, Weicheng)
- interpretable coordinates,
- ML with vector fields,
- finding the boundary of the data manifold,
- manifolds with noise,
- finding the loop basis and prime manifold decomposition
- Networks - which graph properties are stable/statistically significant?
- Modeling preferences and applications to peer review
- Clustering with data driven guarantees
...at the scale of the current data

What do my students do? know?

- Implement in python
- Apply to scientific data/problems (data analysis)
- Develop algorithms and methods
- Think geometrically
- Prove consistency or (sometimes) use other people's proofs
- Be a reliable programmer
- 580s (some), multivariate analysis, non-parametric statistics
- Optimization/combinatorics/graph theory/CS algorithms/differential geometry - depending on the research topic
- Select ML areas (e.g sparse regression) - go deeper as needed
- Willingness to learn new math or ML
$+$

Thank You!

