Functional Data Analysis using Topological Summary Statistics

NIPS 2017: Synergies in Geometric Data Analysis Workshop

Lorin Crawford

Department of Biostatistics Center for Statistical Sciences Center for Computational Molecular Biology Brown University

In Collaboration with: Anthea Monod, Andrew Chen, Raúl Rabadán (Columbia University), and Sayan Mukherjee (Duke University)

December 8, 2017

Key Concepts and Terms

- * Topological Data Analysis (TDA):
 - Combines algebraic topology and other tools from pure mathematics to give mathematically rigorous and quantitative study of "shape"
- * Functional Data Analysis (FDA):
 - An area of statistics where it is of key interest to analyze data providing information about curves, surfaces, images, and any other variables that vary over a given continuum

Modeling Variation across Shapes

Phylogeny of Darwin's Finch Beaks [Gould (1977)] Fossil Classification

[Boyer et al. (2011)]

History of Shape Statistics

- * Classical shape statistics represented three-dimensional shapes as user defined landmark points placed on the shape.
- This representation was partly due to the limited imaging and processing technology of the time.
- Computational methodology that effectively incorporate information embedded in three-dimensional shapes simply did not exist.

Shape Representations

 Methods have been developed to generate automated geometric morphometrics for shapes, bypassing the need for user-specified landmarks

[Boyer et al. (2011)]

Shape Representations

 Currently, much improved imaging technologies allow threedimensional shapes to be represented as meshes --- a collection of vertices, faces, and edges

[Boyer et al. (2011)]

Motivation

- * Methods for geometric morphometrics are known to suffer from structural errors when comparing shapes that are highly dissimilar.
- * These analyses require the specification of a metric, which is not always a straightforward task.
- * Turner et al. (2014) developed a statistical summary of shape data known as the persistent homology transform (PHT).
 - * The PHT bypasses the need to specify landmarks, and is robust to highly dissimilar and non-isomorphic shapes.

Motivation

But more needs to be done to fully integrate TDA measures with FDA methods...

Main Objective(s)

 Transform shapes or images into a representation that can be used in wide range of functional data analytic methods (e.g. generalized functional linear models, GFLMs)

Desired Transformation Properties:

- Injective mapping, so that the resulting measures are summary statistics
- We want to be able to compute distances or define probabilistic models in the transformed space

Topological Summaries:

- Persistent Homology Transform (PHT)
- Smooth Euler Characteristic Transform (SECT)

Construct a filtration ${\cal K}$

The *persistent homology* of \mathcal{K} , denoted by $PH_*(\mathcal{K})$, keeps track of the progression of homology groups generated by the filtration

Let M be a shape of \mathbb{R}^d that can be written as a finite simplicial complex K. And let $\nu \in S^{d-1}$ be any unit vector over the unit sphere.

Let M be a shape of \mathbb{R}^d that can be written as a finite simplicial complex K. And let $\nu \in S^{d-1}$ be any unit vector over the unit sphere.

We define a filtration $K(\nu)$ of K parameterized by a height function r as

$$K(\nu)_r = \{x \in K : x \cdot \nu \le r\}$$

The k-th dimensional persistence diagram $X_k(K,\nu)$ summarizes how the topology of the filtration $K(\nu)$ changes over the height parameter r

For direction ν_1 :

For direction ν_2 :

Definition: The persistent homology transform (PHT) of $K \subset \mathbb{R}^d$ is the function

$$\operatorname{PHT}(K): S^{d-1} \to \mathcal{D}^d$$
$$\nu \mapsto \left(X_0(K,\nu), X_1(K,\nu), \dots, X_{d-1}(K,\nu) \right).$$

- * The PHT measures the change in homology by the height filtration over all directions on the unit sphere.
- * It allows for the comparisons and similarity studies between shapes.
- The PHT preserves information, and a notion of statistical sufficiency was suggested for the PHT.

[Turner et al. (2014)]

Example Using the PHT

Ex: Phylogenetic groups of primate calcanei with 67 genera.

Pitfalls of the PHT

- * Most widely used functional regression models use covariate that have an inner product structure defined in the Hilbert space.
- * The geometry of the space of persistence diagrams is known to be a Alexandrov space with curvature bounded from below.
- * The PHT does not admit a simple inner product structure as it is a collection of persistence diagrams.
- * Therefore, it is challenging to use in all standard functional data analytic methods.

The Euler Characteristic

The Euler characteristic (EC) χ for a finite simplicial complex K^d for d=3 is defined by:

$$\chi(K^3) = V - E + F,$$

where V, E, and F are the numbers of vertices, edges, and faces, respectively.

Euler Characteristic Curve

Definition: The *EC curve* is defined by:

$$\chi_{\nu}^{K} : [a_{\nu}, b_{\nu}] \to \mathbf{Z} \subset \mathbf{R}$$
$$x \mapsto \chi(K_{\nu}^{x}).$$

[Turner et al. (2014)]

Euler Characteristic Curve

[Turner et al. (2014)]

Smooth Euler Characteristic Curve

The smooth Euler characteristic (SEC) curve is computed by:

- 1. Taking the mean value of the EC curve $\bar{\chi}_{\nu}^{K}$ over $[a_{\nu}, b_{\nu}]$
- 2. Subtracting it from the value of the EC curve $\chi_{\nu}^{K}(x)$ at every $x \in [a_{\nu}, b_{\nu}]$

Euler Characteristic Curve

[Turner et al. (2014)]

Smooth Euler Characteristic Curve

Conventional Wisdom in Statistics

- * SECT summaries are a collection of curves this is a decidedly infinite-dimensional topological summary statistic.
- By construction, the SECT is a continuous, linear function that is an element of the Hilbert space L² with a simple inner product structure.
- This means that their structure allows for quantitative comparisons using the full scope of functional and nonparametric regression methodology.
- * This is the basis of functional data analysis (FDA).

Predicting Clinical Outcomes in Radiogenomics

- Radiomics: A newer subfield of genetics and genomics which focuses on the study of correlations between <u>imaging or network</u> <u>features</u> and <u>genetic variation</u>.
- * Gliomas are a collection of tumors arising from glia or their precursors within the central nervous system.
- * Of all gliomas, glioblastoma multiforme (GBM) is the most aggressive and most common in humans.

Predicting Clinical Outcomes in Radiogenomics

- Magnetic resonance images (MRIs) of primary GBM tumors were collected from ~40 patients archived by the The Cancer Imaging Archive (TCIA)
- These patients also had matched genomic and clinical data collected by The Cancer Genome Atlas (TCGA)
- * **Goal:** We want to use the SECT to predict clinical outcomes:
 - * Overall Survival (OS)
 - Disease Free Survival (DFS)

Application to Glioblastoma Multiforme

Regression with Functional Covariates

Assume that we have a finite response $\boldsymbol{y} = (y_1, \ldots, y_n)^{\mathsf{T}}$.

Denote the SECT features as square integrable functions $F_{\nu}(t)$ on the real interval domain \mathcal{T} where $t \in \mathcal{T}$.

Regression with Functional Covariates

Assume that we have a finite response $\boldsymbol{y} = (y_1, \ldots, y_n)^{\mathsf{T}}$.

Denote the SECT features as square integrable functions $F_{\nu}(t)$ on the real interval domain \mathcal{T} where $t \in \mathcal{T}$.

Given a real-valued measure dw, a functional regression model takes on the form

$$\boldsymbol{y} \sim p(\boldsymbol{y} \mid \boldsymbol{\mu}), \quad g^{-1}(\boldsymbol{\mu}) = \boldsymbol{\eta} + \boldsymbol{\varepsilon} = \int_{\mathcal{T}} \sum_{\nu=1}^{m} f(F_{\nu}(t)) \, \mathrm{d}\boldsymbol{w}(t) + \boldsymbol{\varepsilon}.$$

Here f is a smooth operator from \mathbf{L}^2 to \mathbf{R} to be estimated over m directions.

Functional Linear Models

Classical parametric inferences assume that f is linear in the covariates:

$$\boldsymbol{\eta} = \sum_{\nu=1}^{m} \langle F_{\nu}(t), \boldsymbol{\beta}_{\nu}(t) \rangle,$$

Functional Linear Models

Classical parametric inferences assume that f is linear in the covariates:

$$\boldsymbol{\eta} = \sum_{\nu=1}^{m} \langle F_{\nu}(t), \boldsymbol{\beta}_{\nu}(t) \rangle,$$

where unlike traditional linear regression,

- $\beta_{\nu}(t)$ is an unknown smooth parameter function that is also square integrable on the domain \mathcal{T} ;
- $\langle \cdot, \cdot \rangle$ denotes an inner product in the Hilbert space \mathbf{L}^2 .

Limitations for Functional Linear Models

- * In many applications, it is considered too restrictive to only assume linear effects on the functional covariates.
- * For example, it is reasonable to assume that interactions between modes of brain activity extend well beyond additivity.
- Nonlinear kernel regression models serve as a natural alternative choice, as they often display greater predictive accuracy than linear models.

Assume the target function f to be an element of the reproducing kernel Hilbert space (RKHS) **H** equipped with an inner product, with

Assume the target function f to be an element of the reproducing kernel Hilbert space (RKHS) **H** equipped with an inner product, with

$$\mathbf{H} = \left\{ f \,|\, f\left(F_{\nu}(t)\right) = \sum_{j=1}^{\infty} c_j \psi_j\left(F_{\nu}(t)\right) \text{ and } \|f\|_{\mathbf{H}}^2 = \sum_{j=1}^{\infty} c_j^2 / \lambda_j < \infty \right\},\$$

and estimator function

$$\widehat{f}(F_{\nu}(t)) = \sum_{i=1}^{n} \alpha_i k\left(F_{\nu}(t), F_{\nu,i}(t)\right).$$

We can posit a generalized functional kernel regression model

 $\boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{K})$

where K is a symmetric and positive-definite covariance (kernel) matrix with elements $K_{ij} = k (F_{\nu,i}(t), F_{\nu,j}(t))$.

We can posit a generalized functional kernel regression model

 $\boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{K})$

where \boldsymbol{K} is a symmetric and positive-definite covariance (kernel) matrix with elements $\boldsymbol{K}_{ij} = k \left(F_{\nu,i}(t), F_{\nu,j}(t) \right)$.

Here we may consider for example:

1. $k(s, v) = s^{\mathsf{T}} v / p + h;$ 2. $k(s, v) = \exp\{-h \|s - v\|^2\};$ 3. $k(s, v) = \log(\|s - v\|^h + 1).$

Bayesian Functional Kernel Regression

When modeling continuous outcomes

$$\boldsymbol{y} = \boldsymbol{\eta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \tau^2 \boldsymbol{I}),$$

Bayesian Functional Kernel Regression

When modeling continuous outcomes

$$\boldsymbol{y} = \boldsymbol{\eta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \tau^2 \boldsymbol{I}),$$

where each parameter is assumed to come from the following prior distributions

$$\boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{K}), \quad \sigma^{-2}, \tau^{-2} \sim \mathcal{G}(\kappa_1, \kappa_2).$$

We will exclusively consider the posterior distribution that arises in the limits $\kappa_1 \to 0$ and $\kappa_2 \to 0$.

Posterior Inference and Sampling

Markov chain Monte Carlo (MCMC) via a Gibbs sampler for the regression model:

(1)
$$\boldsymbol{\eta} | \boldsymbol{y}, \omega, \sigma^2, \tau^2 \sim \mathcal{N}(\boldsymbol{m}^*, \boldsymbol{V}^*)$$
 where $\boldsymbol{m}^* = \tau^{-2} \boldsymbol{V}^* \boldsymbol{y}$ and $\boldsymbol{V}^* = \tau^2 \sigma^2 (\tau^2 \boldsymbol{K} + \sigma^2 \boldsymbol{I}_n)^{-1}$;

(2) $\sigma^2 | \boldsymbol{y}, \boldsymbol{\eta}, \omega, \tau^2 \sim \mathcal{G}(a^*, b^*)$ where $a^* = n/2$ and $b^* = \boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{K}^{-1} \boldsymbol{\eta}/2$;

(3) $\tau^2 | \boldsymbol{y}, \boldsymbol{\eta}, \omega, \sigma^2 \sim \mathcal{G}(a^*, b^*)$ where $a^* = n/2$ and $b^* = \boldsymbol{y}^{\mathsf{T}} \boldsymbol{y}/2$.

Posterior Predictive Distribution

To predict outcomes for individuals in a test set T, based on what we observe in the sample set S, let

$$\{ \boldsymbol{y}_{T}^{(b)} = \boldsymbol{\eta}_{T}^{(b)} \}_{b=1}^{B}$$

[Speed and Balding (2014)]

Posterior Predictive Distribution

To predict outcomes for individuals in a test set T, based on what we observe in the sample set S, let

$$\{ \boldsymbol{y}_{T}^{(b)} = \boldsymbol{\eta}_{T}^{(b)} \}_{b=1}^{B}$$

where, for B MCMC samples, we define

$$\boldsymbol{\eta}_T^{(b)} = \boldsymbol{K}_{TS} \boldsymbol{K}_{SS}^{-1} \boldsymbol{\eta}_S^{(b)}, \quad b = 1, \dots, B$$

with K_{TS} and K_{SS} being submatrices that are found by first computing $K^* = [K_{SS}; K_{ST}; K_{TS}; K_{TT}].$

[Speed and Balding (2014)]

Predicting Clinical Outcomes in Radiogenomics

- * Compare the SECT with three key types of glioblastoma tumor characteristics:
 - * mRNA Gene Expression Measurements
 - Tumor Morphometry
 - Tumor Volume and Geometrics
- We attempt to predict two clinical outcomes:
 - Disease Free Survival (DFS)
 - Overall Survival (OS)
- Perform 80-20 (in / out of sample) splits; 100 times
- Predictive Measure: Root Mean Square Error of Prediction (RMSEP)

Prediction Results

	Disease Free Survival		Overall Survival	
Data Type	RMSEP	Pr[Optimal]	RMSEP	Pr[Optimal]
Gene Expression	0.944 (0.035)	0.20	0.981 (0.030)	0.27
Morphometrics	0.942 (0.035)	0.07	0.965 (0.029)	0.15
Volume	0.939 (0.035)	0.06	0.964 (0.029)	0.16
SECT	0.803 (0.035)	0.69	0.958 (0.028)	0.42

Average RMSPE across both clinical outcomes. The number in parenthesis is the standard error due to random sampling

Future Directions and Ongoing Work

- Proving Sufficiency for Summary Statistics of 3D Shapes:
 - An important open problem is proving that the transformations defined by the SECT and PHT are capturing all *sufficient information* needed to fully characterize a given shape.
- Improving Phenotypic prediction with Manifold Approximation and Multiple Kernel Learning:
 - Begin to learn about the manifold underlying the 3D shapes in order to extract information about their intrinsic geometries
- * Gene Set Enrichment Analysis Using Sufficient Shape Statistics:
 - It is of natural interest to probe whether variation in shape is correlated with molecular signaling pathway dysregulation.
 - Build a framework for analyzing the heterogeneity of fitness trajectories in cells exposed to therapy (i.e. stress).

Relevant References

The Persistent Homology Transform (PHT):

* Turner, K., S. Mukherjee, and D. M. Boyer (2014). Persistent homology transform for modeling shapes and surfaces. *Information and Inference: A Journal of the IMA*. **3**(4): 310–344.

The Smooth Euler Characteristic Transform (SECT):

 L. Crawford, A. Monod, A.X. Chen, S. Mukherjee, and R. Rabadán (2017). Functional data analysis using a topological summary statistic: the smooth Euler characteristic transform. *arXiv*. 1611.06818.

Tropical Sufficient Statistics for Persistent Homology (Tropix):

 A. Monod, S. Kališnik Verovšek, J.Á. Patiño-Galindo, and L. Crawford (2017). Tropical sufficient statistics for persistent homology. *arXiv*. 1709.02647.

Available Source Code

Crawford Lab Website:

http://www.lcrawlab.com

The Smooth Euler Characteristic Transform (SECT):

https://github.com/RabadanLab/SECT

Bayesian Approximate Kernel Regression (BAKR):

https://github.com/lorinanthony/BAKR

Acknowledgements

Collaborators:

- *Andrew Chen (Columbia University)
- *Anthea Monod, Ph.D. (Columbia University)
- Sayan Mukherjee, Ph.D. (Duke University)
- *Raúl Rabadán, Ph.D. (Columbia University)

Contributors:

- Nicolas Garcia Trillos, Ph.D. (Brown University)
- ***ECOG-ACRIN** Cancer Research Group

*Data Availability:

- **The Cancer Imaging Archive (TCIA)**
- **The Cancer Genome Atlas (TCGA)**

BROWN School of Public Health

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Center for Topology of Cancer Evolution and Heterogeneity

A member of the National Cancer Institute's Physical Sciences in Oncology Network

THANK YOU!