2. Covariances



Valid covariance functions

The class of covariance functions is the
class of positive definite functions C:

EEaiajC(si,sj) =0
]
Why?
2 2 aiajc(si! sj) = Var(E aiz(si»

Bochner’s theorem: Every positive definite
function C continuous at 0,0 can be written

C(t) = [ exp(i < t,u > du(u)

for a finite measure p on R2,
(Spectral representation)



Spectral representation

By the spectral representation any isotropic
continuous correlation on R is of the form

T
p(v) = E(e'u X) ,v = |uf, X €R?

By isotropy, the expectation depends only on
the distribution G of |X|. Let Y be uniform on
the unit sphere. Then

o(v) = Ee"XIV _ E@, |X])



Isotropic correlation
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J,(u) is a Bessel function of the first kind
and order v.
Hence e

p(v) = [ @y (SV)IG(S)

and in the gase d=2

p(v) = f J, (sv)dG(s) (Hankel transform)
0



The Bessel function J,
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The exponential correlation

A commonly used correlation function
is p(v) = e V%, Corresponds to a
Gaussian process with continuous but
not differentiable sample paths.

More generally, p(v) = ¢c(v=0) + (1-c)e~/*
has a nugget c, corresponding to
measurement error and spatial
correlation at small distances.

All isotropic correlations are a mixture
of a nugget and a continuous isotropic
correlation.



The squared exponential
Using G'(x)= i—fe-“xw yields

p(v) = e 4
corresponding to an underlying
Gaussian field with analytic paths.

This is sometimes called the Gaussian
covariance, for no really good reason.

A generalization is the power(ed)
exponential correlation function,

o(v) = exp(- [%]K), O<k=<2



The spherical
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The Matérn class

2K X

¢2K (x2 +¢—2)1+K

1 v\ \'}
= 2l K [=
Piv) 2K"F(1<)(¢) (¢)

where K_ is a modified Bessel
function of the third kind and order «. It
corresponds to a spatial field with k-1
continuous derivatives

k=1/2 is exponential,;
k=1 is Whittle’ s spatial correlation;
K — » yields squared exponential.

G'(x) =
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Some other covariance/
variogram families

Name Covariance Variogram
Wave 2 sin(¢t) +o2(1- sin(¢t)
ot ot

. t2 2t2
Ratlona! o2 (1- ) 2 o
quadratic 1+ (])t2 1+ (])t2
Linear None < + o2t
Power law None 2 + o2t




Estimation of
variograms
Recall Y(v)=0"(1-p(V))

Method of moments: square of all pairwise
differences, smoothed over lag bins

_ Z(s.) - Z(s.))?
7(h) |N(h)|”;(m( (s))-Z(s))

N(h)={(| i): h-—s\s -s\sh+A2h}

Problems: Not necessarily a valid
variogram

Not very robust



A robust empirical
variogram estimator

(Z(x)-Z(y))? is chi-squared for Gaussian
data

Fourth root is variance stabilizing
Cressie and Hawkins:

{|N(1h)|2\2(si)— Z(s,)

y(h)=
0.457 + 2394
N(h)
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Least squares

Minimize

0>y 2([ (Z(si) - Z(s))]* - v (|si - s; ;9))2
]

Alternatives:

‘fourth root transformation
‘weighting by 1/y2
‘generalized least squares



Maximum likelihood

Z~N,(1,2) == alp(si-s;8)] = & V(6)
Maximize

w,o,0)=— glog(z:n:a)— %IogdetV(e)
+2l(2— WTVE)(Z- 1)
a

i=1Z/n a=G@O)/n G@O)=(Z-{1)'VO)'(Z-1)
and 6 maximizes the profile likelihood

/*(0)= —ElogGl (6)

%IogdetV(ﬂ)



A peculiar mli fit




Some more fits




All together now...




Asymptotics

Increasing domain asymptotics: let
region of interest grow. Station density
stays the same

Bad estimation at short distances, but
effectively independent blocks far apart

Infill asymptotics: let station density
grow, keeping region fixed.
Good estimates at short distances. No

effectively independent blocks, so
technically trickier



Stein’ s result

Covariance functions C, and C, are
compatible if their Gaussian measures
are mutually absolutely continuous.
Sample at {s;, i=1,...,n}, predict at s
(limit point of sampling points). Let e;(n)
be kriging prediction error at s for C,,
and V, the variance under C, of some
random variable.

If im_V,(ey,(n))=0, then
. Vp(eq(n)) 1
MYy (e, )




The Fourier transform
g:R‘—R

G(w) = F(9) = [g(s)exp(in's)ds

1
(2n)°

g(s) = F'(G) = [expl-io"s)G(w)do



Properties of
Fourier transforms

Convolution

F(f=g)=F(f)F(9)
Scaling
F(i(a) = %F(w / a)

Translation

F (f(-—b)) = exp(ib) F ()



Parceval’ s theorem

[f(s)’ds = f|F((o)|2 do

Relates space integration to frequency
integration. Decomposes variability.



Spectral representation
Stationary processes

Z(s) = f exp(is'w)dY(w)

Spectral process Y has stationary
increments ,
E|dY(w)| = dF(w)

If F has a density f, it is called the
spectral density.

Cov(Z(s,),Z(s,)) = [e"™ "o f(w)dw



Estimating the spectrum

For process observed on nxn grid,
estimate spectrum by periodogram

27j

0="50={|(n-1/2],.n-| (-1 /2]}

Equivalent to DFT of sample covariance



Properties of the
periodogram

Periodogram values at Fourier
frequencies (j,k)r/A are

uncorrelated
-asymptotically unbiased
‘not consistent

To get a consistent estimate of the
spectrum, smooth over nearby
frequencies



Some common
iIsotropic spectra

Squared exponential

0,2

270,
C(r) = o> exp(-alr’)

f(w)=

exp(- o] / 4a)

Matérn
f(®) = ¢(a? + o)™
(o r)” I, (culr]))

C(r) =
(r) 2" 'T (v + 1)a®




Thetford canopy heights

39-year thinned commercial
plantation of Scots pine in
Thetford Forest, UK

Density 1000 trees/ha

36m x 120m area surveyed for
crown height

Focus on 32 x 32 subset




Spectrum of canopy heights

AT
X34\

aVv-a®.




ion function

Correlat

-,

»
)/

SRR

.

()

¢
2®
*. ‘O
A
A \/
)




Global processes

Problems such as global warming
require modeling of processes that take
place on the globe (an oriented sphere).
Optimal prediction of quantities such
as global mean temperature need
models for global covariances.

Note: spherical covariances can take
values in [-1,1]-not just imbedded in R3.

Also, stationarity and isotropy are
identical concepts on the sphere.



Isotropic covariances
on the sphere

Isotropic covariances on a sphere are
of the form «

C(p,q) = 2 aP;(cosypq)

where p and q are directions, y,,
angle between them, and P, the
Legendre polynomials.

Example: a;=(2i+1)p'

the

1- p?
C(p,q) = 5~ 1
1- 2pcosypq +p



Global temperature

Global Historical Climatology Network
7280 stations with at least 10 years of
data. Subset with 839 stations with data
1950-1991 selected.
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Isotropic correlations




