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If the kernels ks(u) are of fixed shape, such as Gaussian kernels 
varying only in location, the covariance is stationary, a function only 
of |s1-s2 |.  
If the parameters of the kernels, such as orientation and anisotropy 
of elliptical contours, vary in space, we have a nonstationary model.
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▶ A famous result (Thiebaux 1976; Thiebaux and Pedder 1987) uses a 
parametric class of Gaussian kernel functions in Equation 2 to give a 
closed-form covariance function; this result was later extended (Paciorek
2003; Paciorek and Schervish 2006; Stein 2005) to show that

is a valid, nonstationary, parametric covariance function on	𝑅#; 𝑑 ≥ 1, 
when 𝑔() is chosen to be a valid correlation function on 𝑅#; 𝑑 ≥ 1. 
Note that this equation no longer requires kernel functions to be 
specied. 
𝜃 is a generic parameter vector, 𝜎(,) represents a spatially-varying 
standard deviation, Σ , is a 𝑑×𝑑	matrix that represents the spatially-
varying local anisotropy (controlling both the range and direction of 
dependence), and



𝑄 𝑠, 𝑠2 	above is a Mahalanobis distance. Furthermore, choosing 𝑔(,) to be 
the Matern correlation function also allows for the introduction of 𝜅(𝑠), a 
spatially-varying smoothness parameter (Stein 2005; in this case, the 
Matern correlation function in in the above equation has smoothness
[𝜅 𝑠 + 𝜅 𝑠′ ]/2.
While this equation no longer requires the notion of kernel convolution, we 
refer to Σ , 	as the kernel matrix, since it was originally defined as the 
covariance matrix of a Gaussian kernel function (Thiebaux 1976).

• Kleiber and Nychka (2012) further extend this model to the multivariate 
setting.

• Calder (2007, 2008) proposes space-time versions of the Higdon model.
• Heaton (2014) extends process convolution models to spherical domains.
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𝑍 𝑠 = 𝑥 𝑠 2𝜷 + 𝑌 𝑠 + 𝜖(𝑠)
where 𝑌 𝑠 is a spatially dependent, mean zero, Gaussian process with 
covariance function 𝐶>? defined above, and 𝜖 𝑠 ~𝑁(0, 𝜏D 𝑠 ) is measurement 
error with (possibly) spatially varying variance.
Let 𝜽 represent the vector of all the variance-covariance parameters for 𝑌 𝑠
and 𝜖 𝑠 .  Then 

𝒁|𝒀, 𝜷, 𝜽	~	𝑁𝑛(𝑿𝜷 + 𝒀,𝑫 𝜽 )
where the ith row of 𝑿 is 𝑥(𝑠𝑖) and 𝑫 𝜽 is the diagonal matrix with elements 
𝜏D 𝑠𝑖 . Integrate out the latent process 𝒀 and we have the marginal likelihood 
of the observed data 𝒁 given all the parameters

𝒁|𝜷, 𝜽	~	𝑁𝑛(𝑿𝜷,𝑫 𝜽 + 𝜴 𝜽 )
where 𝜴 𝜽 has elements 

ΩPQ 𝜽 = 𝐶>?(𝑠𝑖, 𝑠𝑗; 𝜽)
the latter being specified by the parameters of the spatial correlation function 
𝑔(,) and the spatially varying Σ , , σ 𝑠 , 𝜏D 𝑠 ,	and/or 𝜅(𝑠), if the Matern is 
used.



For a particular application, the practitioner can specify the underlying 
correlation structure (through the correlation function 𝑔(,)) as well as 
determine which of Σ , , σ 𝑠 , 𝜏D 𝑠 ,	and/or 𝜅(𝑠) should be fixed or 
allowed to vary spatially. 
However, some care should be taken in choosing which quantities 
should be spatially-varying: for example, Anderes and Stein (2011) 
note that allowing both Σ , and 𝜅(𝑠) to vary over space leads to issues 
with identiability.
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To reduce the computational demands of fitting this model, Risser & Calder 
use the discretized basis kernel approach of Higdon (1998).  The estimated 
Gaussian kernel function at any specified location is a weighted average of 
“basis” kernel functions, estimated locally over the region of interest.
Define mixture component locations, typically on a regular grid, with 
parameters 𝜙𝑘 = ΣW, 𝜎2W, 𝜏2W, 𝜅W : 𝑘 = 1,⋯ , 𝐾 . Then the parameter set for 
arbitrary location 𝑠 is calculated as:

𝜙 𝑠 = ∑ 𝜔𝑘(𝑠)^
W_` 𝜙𝑘,

𝜔𝑘(𝑠) ∝ 𝑒𝑥𝑝 −
𝑠 − 𝑏𝑘 2

2𝜆𝜔
For example, the kernel matrix for location 𝑠 is Σ 𝑠 = ∑ 𝜔𝑘(𝑠)^

W_` Σ𝑘	.
We must specify the tuning parameter 𝜆𝜔 as well as the size and spacing of 
the grid of mixture locations. The modeler chooses which parameters should 
be spatially-varying: the kernel matrices, the process variance, the nugget 
variance, and the smoothness.
Having done so, the number of parameters is linear in 𝐾, the number of 
mixture component locations, instead of 𝑛, the sample size.
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Prediction proceeds by the usual conditional Gaussian calculations  using 
plug-in estimates of the parameters 𝜷g and 𝜽g, computed by local likelihood 
estimation, as explained below.

Risser and Calder consider a number of out-of-sample evaluation criteria:

𝑀𝑆𝑃𝐸 =
1
𝑚m 𝑧Q∗ − 𝑧̂Q∗

D
q

Q_`

𝑝𝑀𝑆𝐷𝑅 =
1
𝑚m

𝑧Q∗ − 𝑧̂Q∗
D

𝜎𝑗s

q

Q_`

And a continuous rank probability score, CRPS (Gneiting and Raftery 2007), 
which measures the fit of the predictive density. Larger CRPS (smaller 
negative values) indicates better model fit.
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Computationally efficient inference.

Fast and efficient inference for a nonstationary process convolution
model has yet to be made readily available for general use. The equation for 
the nonstationary spatial covariance, 𝐶>?(𝑠, 𝑠2; 𝜃), requires some kind of 
constraints and has suffered from a lack of widespread use due to the 
complexity of the requisite model fitting and limited pre-packaged options. 
Focusing on the spatially-varying local anisotropy matrices, the covariance 
function requires a kernel matrix at every observation and prediction location 
of interest.

Paciorek and Schervish (2006) accomplish this by modeling Σ(,) as itself a 
(stationary) stochastic process, assigning Gaussian process priors to the 
elements of the spectral decomposition of Σ(,); alternatively, Katzfuss (2013) 
uses a basis function representation of Σ(,). Both of these models are highly 
parameterized and require intricate Markov chain Monte Carlo methods for 
model fitting.
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Computationally efficient inference.

Risser and Calder achieve computational efficiency using 

(1) the discrete mixture representation above, and its requisite 
specification of the size/spacing of the basis grid, and the tuning 
parameter for the weight function, and

(2) the idea of using local likelihood estimation (Tibshirani and 
Hastie, 1987), rather than aim to optimize the full log-likelihood.
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Computationally efficient inference.

First, recall REML estimation.  The full log likelihood is

The “restricted” log likelihood (based on “n-p” linear combinations having 
expected value zero for all possible parameter values, can be written.

(See the paper for specification of the matrix P.)  We maximize this and 
estimate 𝛽 by
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Computationally efficient inference.

With Local Likelihood Estimation (LLE), rather than optimize the 
restricted likelihood directly, we maximize it on neighborhoods for each 
mixture component 𝑏W, a neighborhood depending on a radius 𝑟, the 
“span” or window size for each mixture component:

𝑁W = 𝑠𝑖 ∈ 𝑠1,⋯ , 𝑠𝑛 : 𝑠𝑖 − 𝑏𝑘 ≤ 𝑟
and

𝑍>x = 𝑍 𝑠 : 𝑠 ∈ 𝑁W

Note:  The restricted likelihood to be optimized for each neighborhood will 
be based on a stationary version of the spatial model:

where 𝑌y  is a stationary process with covariance function
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Computationally efficient inference.

Note:  The kernel matrices are parameterized in terms of of the eigenvalues 
and angle of rotation of its spectral decomposition 

The full model can be fit after plugging REML estimates into the covariance 
function 𝐶>? 𝑠, 𝑠2; 𝜃 	using the discrete basis representation
to calculate the likelihood for the observed data.
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Computationally efficient inference.
This is a very nice computational method, but it requires specification of 
many moving parts:
• the number and placement of mixture component locations, 
• selecting which of the spatial dependence parameters should be fixed or 

allowed to vary spatially, 
• the tuning parameter 𝜆 for the weighting function w, 
• the fitting radius r for the local likelihood estimation. 
Parameter estimates for this model are likely to be sensitive to the choice of 
K and the placement of mixture component locations. Tibshirani and Hastie 
(1987) discuss the importance of choosing the radius r, suggesting that the 
model should be fit using a range of r values, and use a global criterion 
such as the maximized overall likelihood, cross-validation, or Akaike's
Information Criterion to choose the final model. This strategy could either 
be implemented on a trial-and-error basis or in an automated scheme. Of 
course, regardless of the number and locations of the mixture component 
centroids, the radius r should be chosen such that a large enough number 
of data points are used to estimate a local stationary model.



The  convoSPAT package for R




