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A GENERAL MODELING FRAMEWORK

» Let Z(-) be a realization of a spatial stochastic process defined for
all s € D c RY, where d is typically equal to 2 or 3

» We observe the value of Z(-) at a finite set of locations
S1,...,8, € D and wish to learn about the underlying process

» For all s € D, let
Z(s) = u(s) + Y(s) + e(s)
where
- p(+) is a deterministic mean function

- Y(-) is a mean-zero latent spatial process

- €(+) is a spatially independent error process, which is assumed to be

independent of Y(+)
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Definition A process is said to be second-order stationary if
E[Y(s)] = E[Y(s + h)] = u
and
cov[Y(s), Y(s + h)] = cov[Y(0), Y(h)] = C(h)

where the function C(h), h € R? is called the covariance
function

— Here, Y/(-) is a nonstationary spatial process with covariance
function C(s1,s2) = cov(Y(s1), Y(s2))
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» We focus on modeling C(s1,s2):

1. has to be a valid covariance function

2. has to be estimable (perhaps from only a single realization of the
process)

» Following Sampson (2010)'s categorization, the following are a few
approaches in the literature...

1. Smoothing and weighted-average methods

2. Basis function methods

3. Process convolutions / spatially-varying parameters
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1. SMOOTHING / WEIGHTED-AVERAGE METHODS

Idea: Construct a nonstationary spatial process by smoothing several
locally stationary processes

An example: (Fuentes, 2001):

- Divide the spatial region D into k disjoint subregions S;, for
i=1,...,k, such that D = U S5;

- Let Yi(-), Ya(+),..., Yk(-) be stationary spatial processes associated
with each of the subregions, with covariance functions estimated
using the observations in each subregion
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- Construct a global nonstationary process as a weighted average of
the locally stationary processes:

k

Y(s) = 3" wils) Yi(s),

i=1

where w;(s) is weight function based on the distance between s and
the ‘center’ of region §;

- The number of subregions is chosen using BIC
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Some other approaches:

Fuentes and Smith (2002) propose a continuous extension of the
original model where

Y(s) = /D w(s — u)Yy)(s)du

Nott and Dunsmuir (2002) propose letting

k
C(Y(s1), Y(s2)) = To + ) wi(s1)wi(s2) Co,(s1 — s2)

i=1 ) N
local residual covariance structure

Guillot et al. (2001) propose a nonparametric kernel estimator of a
nonstationary covariance matrix

Kim, Mallick, and Holmes (2005)’s approach automatically
partitions the spatial domain into disjoint regions and then fits a
piecewise Gaussian process model
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2. BASIS FUNCTION MODELS
Idea: decompose spatial covariance functions in terms of basis functions

An example: EOFs

- The Karhunen-Loéve (K-L) expansion of a covariance function is

Cy(s1,s2) Z Ack(s1)Pk(s2)

where {¢dk(-) :k=1,...,00} and {Ar : k=1,...,00} are the
eigenfunctions and eigenvalues, respectively, of the Fredholm
integral equation:

/D Cy (s1,52)0k(s)ds = Medhi(s2)
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- Using this expansion, we can write the process as
oo
Y(s)= Z akdr(s).
k=1

- It can be shown that the truncated decomposition
p
Yo(s) =D akdi(s)
k=1

is optimal in the sense that it minimizes the variance of the
truncation error among all sets of basis function representations of

Y (-) of order p.

- The ¢(s)s can be obtained numerically by solving the Fredholm
integral equation (can be difficult).



Nonstationary Models ||

- An alternative solution when repeated observations of the spatial
process (e.g., over time) are available: perform a principal
components analysis of the empirical covariance matrix

That is, if Xy is the empirical covariance matrix, we can solve the
eigensystem

Syd = OA,

where

- @ is the matrix of eigenvectors — called the “empirical orthogonal
functions” or EOFs

- N\ is the diagonal matrix with corresponding eigenvalues on the
diagonal
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- We can use ®« in place of Y = (Y(s1),..., Y(sn))', where
a = (ai,...,ap) are a collection of unknown parameters

— typically, truncated version of this approach are used for dimension
reduction

Advantages of using EOFs:

1. naturally nonstationary

Disadvantages of using EOFs:

1. prediction

2. measurement error
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Some other examples:

» Holland et al. (1998) represents a nonstationary spatial covariance
function as the sum of a stationary model and a finite sum of EOFs

» Nychka (2002) uses multiresolution wavelets instead of EOFs for
computational reasons. More recent work by Matsuo, Nychka, and
Paul (2008) has extended the approach to handle irregularly spaced
data

» Pintore and Holmes (2004) and Stephenson et al. (2005) induce
nonstationarity by evolving the stationary power spectrum with a
latent spatial power process

» Katzfuss (2014) propose a model with a low-rank representation of
a nonstationary Matérn (with covariance tapering) model for
computational considerations
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3. PROCESS CONVOLUTION MODELS / SPATIALLY-VARYING
PARAMETERS

Idea: use a constructive specification of a (Gaussian) process to
introduce nonstationarity

An example: (Higdon, 1998)
- Let k(-) : RY — R be a function satisfying

k(u)du < oo and k*(u)du < oo
Rd Rd

and W(-) denotes d-dimensional Brownian motion.
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- It can be shown that the process

is Gaussian with E[Y(s)] = 0 and
Cy(s1,82) = cov[Y(s1), Y(s2)] = /]Rd ks,(u)ks,(u)du
fors € D c R4

If the kernels k,(u) are of fixed shape, such as Gaussian kernels
varying only in location, the covariance is stationary, a function only
of Is;-s, 1.

If the parameters of the kernels, such as orientation and anisotropy
of elliptical contours, vary in space, we have a nonstationary model.
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- Higdon (1998) proposes a discrete approximation to a nonstationary
Gaussian process:

k
Y(s) = Z ks(u;) x;
i=1

where the x;'s are i.i.d. N(0, \?) random variables associated with
each knot location u;.




Nonstationary Models ||

- Higdon (1998) proposes using this model for North Atlantic ocean
temperatures. In this model, the kernels were weighted averages of
fixed ‘basis kernels’
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Some other examples:

» Kernel parameters can vary smoothly in space (Higdon, Swall, and
Kern, 1999; Paciorek and Schervish, 2006):
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» A famous result (Thiebaux 1976; Thiebaux and Pedder 1987) uses a
parametric class of Gaussian kernel functions in Equation 2 to give a
closed-form covariance function; this result was later extended (Paciorek
2003; Paciorek and Schervish 2006; Stein 2005) to show that

L ZE) =)
s')

CN3(s,5';0) = ()0 — (VA6
‘E(S)+E(s’) /4
D)

-

is a valid, nonstationary, parametric covariance function on R%; d > 1,
when g() is chosen to be a valid correlation function on R%; d > 1.
Note that this equation no longer requires kernel functions to be
specied.

0 is a generic parameter vector, o(-) represents a spatially-varying
standard deviation, Z(-) is a dxd matrix that represents the spatially-
varying local anisotropy (controlling both the range and direction of
dependence), and

. I -1
Qs,s) = (s—¢)" (2(5) + (s )) (s—)

2
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Q(s,s’) above is a Mahalanobis distance. Furthermore, choosing g(-) to be
the Matern correlation function also allows for the introduction of k(s), a
spatially-varying smoothness parameter (Stein 2005; in this case, the
Matern correlation function in in the above equation has smoothness

[k(s) + k(s')]/2.

While this equation no longer requires the notion of kernel convolution, we
refer to Z(-) as the kernel matrix, since it was originally defined as the
covariance matrix of a Gaussian kernel function (Thiebaux 1976).

» Kleiber and Nychka (2012) further extend this model to the multivariate
setting.

« Calder (2007, 2008) proposes space-time versions of the Higdon model.

« Heaton (2014) extends process convolution models to spherical domains.
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SUMMARY

- lots of models — some have been well studied, some haven't
- very little work on model comparison

- with the exception of the basis function models, computation is a
BIG challenge

- no general software

- recent work has focused on understanding the reasons for
nonstationarity (e.g., covariates)
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To appear in the Journal of Statistical Software:

Local Likelihood Estimation for Covariance Functions with Spatially-Varying
Parameters: The convoSPAT Package for R

Mark D. Risser
Catherine A. Calder
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Z(s) =x(s)'B+Y(s)+ €e(s)

where Y (s) is a spatially dependent, mean zero, Gaussian process with
covariance function €5 defined above, and e(s)~N (0, t2(s)) is measurement
error with (possibly) spatially varying variance.
Let 8 represent the vector of all the variance-covariance parameters for Y (s)
and e(s). Then

Z|Y,B,06 ~N (XB+Y,D(09))
where the it" row of X is x(s;) and D(0) is the diagonal matrix with elements

74(s;). Integrate out the latent process Y and we have the marginal likelihood
of the observed data Z given all the parameters

Z|B,6 ~N, (XB,D(O)+ 02(0))
where 2(0) has elements
0;;(0) = N (s, s;;0)
the latter being specified by the parameters of the spatial correlation function
g(+) and the spatially varying 2(+), 6(s), 72(s), and/or k(s), if the Matern is
used.



For a particular application, the practitioner can specify the underlying
correlation structure (through the correlation function g(-)) as well as
determine which of 2(+), o(s), t2(s), and/or k(s) should be fixed or
allowed to vary spatially.

However, some care should be taken in choosing which quantities
should be spatially-varying: for example, Anderes and Stein (2011)
note that allowing both 2(-) and k(s) to vary over space leads to issues
with identiability.
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To reduce the computational demands of fitting this model, Risser & Calder
use the discretized basis kernel approach of Higdon (1998). The estimated
Gaussian kernel function at any specified location is a weighted average of
“pasis” kernel functions, estimated locally over the region of interest.

Define mixture component locations, typically on a regular grid, with
parameters {¢, = (Zy, 0%, Tk, K ): k = 1,---,K}. Then the parameter set for
arbitrary location s is calculated as:

¢(s) = Tk=1 () Pr,

Is — by |I*
w,(s) X exp{— 27

w

For example, the kernel matrix for location s is 2(s) = YX_; w,(s) %, .

We must specify the tuning parameter 1, as well as the size and spacing of
the grid of mixture locations. The modeler chooses which parameters should
be spatially-varying: the kernel matrices, the process variance, the nugget
variance, and the smoothness.

Having done so, the number of parameters is linear in K, the number of

mixture component locations, instead of n, the sample size.
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Prediction proceeds by the usual conditional Gaussian calculations using
plug-in estimates of the parameters B and 8, computed by local likelihood
estimation, as explained below.

Risser and Calder consider a number of out-of-sample evaluation criteria:

1 Y
MSPE = EZ(ZJ- — 2;
j=1

Z —Z
pMSDR _—z

And a continuous rank probability score, CRPS (Gneiting and Raftery 2007),
which measures the fit of the predictive density. Larger CRPS (smaller
negative values) indicates better model fit.
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Computationally efficient inference.

Fast and efficient inference for a nonstationary process convolution

model has yet to be made readily available for general use. The equation for
the nonstationary spatial covariance, C¥°(s,s’; 8), requires some kind of
constraints and has suffered from a lack of widespread use due to the
complexity of the requisite model fitting and limited pre-packaged options.
Focusing on the spatially-varying local anisotropy matrices, the covariance
function requires a kernel matrix at every observation and prediction location
of interest.

Paciorek and Schervish (2006) accomplish this by modeling Z(-) as itself a
(stationary) stochastic process, assigning Gaussian process priors to the
elements of the spectral decomposition of X(+); alternatively, Katzfuss (2013)
uses a basis function representation of X(-). Both of these models are highly
parameterized and require intricate Markov chain Monte Carlo methods for
model fitting.
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Computationally efficient inference.

Risser and Calder achieve computational efficiency using

(1) the discrete mixture representation above, and its requisite
specification of the size/spacing of the basis grid, and the tuning
parameter for the weight function, and

(2) the idea of using local likelihood estimation (Tibshirani and
Hastie, 1987), rather than aim to optimize the full log-likelihood.
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Computationally efficient inference.

First, recall REML estimation. The full log likelihood is
£7(8,6;7) = —3log|@ + D| - 5(Z ~ XB) (2 + D)~ (Z — XB),

The “restricted” log likelihood (based on “n-p” linear combinations having
expected value zero for all possible parameter values, can be written.

1 1 1
cR0;2) = —5 log |22+ D| — 5 log X' (Q+D)'X| - §szz,

(See the paper for specification of the matrix P.) We maximize this and
estimate (5 by

B=(XT(Q+D)'X)"'XT(2+D)"'Z,
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Computationally efficient inference.

With Local Likelihood Estimation (LLE), rather than optimize the
restricted likelihood directly, we maximize it on neighborhoods for each
mixture component b, a neighborhood depending on a radius r, the
“span” or window size for each mixture component:
Ni = 1{s; €{sy -, Sphills; = byll < 7}
and
Zy, =1{Z(s):s € Ny}

Note: The restricted likelihood to be optimized for each neighborhood will
be based on a stationary version of the spatial model:

—_—

Z(s) =x(s) " B+Y(s) +&(s),

where Y is a stationary process with covariance function

CS(s — ) = a2 (|Z12(s - &) |)
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Computationally efficient inference.

Note: The kernel matrices are parameterized in terms of of the eigenvalues
and angle of rotation of its spectral decomposition

¥ cos(n) —sin(n) ] [ A1 0O ][ cos(n) sin(n)
sin(n)  cos(n) 0 Ao —sin(n) cos(n)

The full model can be fit after plugging REML estimates into the covariance
function CN5(s, s’; @) using the discrete basis representation
to calculate the likelihood for the observed data.
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Computationally efficient inference.

This is a very nice computational method, but it requires specification of

many moving parts:

» the number and placement of mixture component locations,

» selecting which of the spatial dependence parameters should be fixed or
allowed to vary spatially,

» the tuning parameter A for the weighting function w,

 the fitting radius r for the local likelihood estimation.

Parameter estimates for this model are likely to be sensitive to the choice of
K and the placement of mixture component locations. Tibshirani and Hastie
(1987) discuss the importance of choosing the radius r, suggesting that the
model should be fit using a range of r values, and use a global criterion
such as the maximized overall likelihood, cross-validation, or Akaike's
Information Criterion to choose the final model. This strategy could either
be implemented on a trial-and-error basis or in an automated scheme. Of
course, regardless of the number and locations of the mixture component
centroids, the radius r should be chosen such that a large enough number
of data points are used to estimate a local stationary model.



The convoSPAT package for R
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Figure 1: Left: true mixture component ellipses with observation locations (red) and valida-
tion locations (green). Right: simulated data.



20 convoSPAT: Local Likelihood Estimation for Spatially-Varying Covariance Functions
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Figure 2: Predictions and prediction errors from the stationary model (a. and b.) and the
nonstationary model (c. and d.).



