

Markov random fields

Help from David Bolin, Johan
Lindström and Finn Lindgren

Håvard Rue 1965-

Finn Lindgren
1973-

The big N problem

Log likelihood:
$\begin{aligned} \ell(\sigma, \theta) & =-\frac{n}{2} \log (2 \pi \sigma)-\frac{1}{2} \log \operatorname{det} \Sigma(\theta) \\ & +\frac{1}{2 \sigma}\left(Z-\mu(\theta)^{\top} \Sigma(\theta)^{-1}(Z-\mu(\theta))\right.\end{aligned}$
Prediction:
$E\left(Z\left(s_{0}\right) \mid Z_{1}, \ldots, Z_{N}, \hat{\theta}\right)=\mu_{0}+\Sigma_{0, z} \Sigma_{z, Z}^{-1}\left(Z-\mu_{z}\right)$
Covariance has $\mathrm{O}\left(\mathrm{N}^{2}\right)$ unique elements
Inverse and determinant take $\mathbf{O}\left(\mathrm{N}^{3}\right)$ operations

The Markov property

Discrete time:

$$
\left(X_{k} \mid X_{k-1}, X_{k-2}, \ldots\right)=\left(X_{k} \mid X_{k-1}\right)
$$

A time symmetric version:

$$
\left(X_{k} \mid{\underset{\sim}{X}}^{-k}\right)=\left(X_{k} \mid X_{k-1}, X_{k+1}\right)
$$

A more general version:
Let A be a set of indices $>k$, B a set of indices <k. Then

$$
X_{A} \perp X_{B} \mid X_{k}
$$

These are all equivalent.

On a spatial grid

Let δ_{i} be the neighbors of the location i. The Markov assumption is

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{Z}_{\mathrm{i}}\right. & \left.=\mathbf{z}_{i} \mid{\underset{\sim}{-i}}_{-i}=\mathbf{z}^{-i}\right)=\mathbf{P}\left(\mathbf{Z}_{\mathrm{i}}=\mathbf{z}_{\mathrm{i}} \mid \mathbf{Z}_{\delta_{i}}=\mathbf{z}_{\delta_{i}}\right) \\
& =\mathbf{p}_{\mathrm{i}}\left(\mathbf{z}_{\mathrm{i}} \mid \mathbf{z}_{\delta_{i}}\right)
\end{aligned}
$$

Equivalently for $\mathbf{i} \notin \delta_{j} \quad Z_{i} \perp \mathbf{Z}_{\mathrm{j}} \mid{\underset{\sim}{2}}^{-\mathrm{i}, \mathrm{j}}$
The p_{i} are called local characteristics. They are stationary if $p_{i}=p$.
A potential assigns a number $\mathrm{V}_{\mathrm{A}}(\mathrm{z})$ to every subconfiguration z_{A} of a configuration z. (There are lots of them!)

Graphical models

Neighbors are nodes connected with edges. 2

3

Given 2, 1 and 4 are independent.

Gibbs measure

The energy U corresponding to a potential V is $U(z)=\sum_{A} V_{A}(z)$.

The corresponding Gibbs measure is

$$
P(z)=\frac{\exp (-U(z))}{C}
$$

where $C=\sum_{z} \exp (-U(z))$
is called the partition function.

Nearest neighbor potentials

A set of points is a clique if all its members are neighbours.
A potential is a nearest neighbor potential if $\mathrm{V}_{\mathrm{A}}(\mathrm{z})=0$ whenever A is not a clique.

Markov random field

Any nearest neighbor potential induces a Markov random field:

$$
p_{i}\left(z_{i} \mid z_{\sim}^{-i}\right)=\frac{P(z)}{\sum_{z^{\prime}} P\left(z_{\sim}^{\prime}\right)}=\frac{\exp \left(-\sum_{\mathrm{c} \text { clique }} V_{c}\left(z_{\sim}\right)\right)}{\sum_{z^{\prime}} \exp \left(-\sum_{\text {clique }} V_{c}\left(z_{\sim}^{\prime}\right)\right)}
$$

where z ' agrees with z except possibly at i, so $V_{c}(z)=V_{c}\left(z^{\prime}\right)$ for any C not including i .

The Hammersley-Clifford theorem

Assume $P(z)>0$ for all z. Then P is a MRF on a (finite) graph with respect to a neighbourhood system Δ iff P is a Gibbs measure corresponding to a nearest neighbour potential.

Does a given nn potential correspond to a unique P ?

Peter Clifford
1944-

John Hammersley 1920-2004

The Ising model

Model for ferromagnetic spin (values +1 or -1). Stationary nn pair potential
$\mathrm{V}(\mathrm{i}, \mathrm{j})=\mathrm{V}(\mathrm{j}, \mathrm{i}) ; \mathrm{V}(\mathrm{i}, \mathrm{i})=\mathrm{V}(0,0)=\mathrm{v}_{0}$;
$V\left(0, e_{N}\right)=V\left(0, e_{E}\right)=V_{1}$.
logit $P\left(Z_{i}=1 \mid Z_{\sim}^{-i}={\underset{\sim}{z}}^{-i}\right)$
$=-\left(v_{0}+v_{1}\left(z_{i+e_{N}}+z_{i-e_{N}}+z_{i+e_{E}}+z_{i-e_{E}}\right)\right)$
so $L(v)=\frac{\exp \left(t_{0} v_{0}+t_{1} v_{1}\right)}{C(v)}$ where

$$
t_{0}=\sum z_{i} ; \quad t_{1}=\sum_{i} \sum_{\mathrm{j} \sim} z_{i} z_{j}
$$

Interpretation

v_{0} is related to the external magnetic field (if it is strong the field will tend to have the same sign as the external field)
v_{1} corresponds to inverse temperature (in Kelvins), so will be large for low temperatures.

Rudolf Peierls 1907-1995

Ernst Ising

Phase transition

At very low temperature there is a tendency for spontaneous magnetization.
For the Ising model, the boundary conditions can affect the distribution of \mathbf{x}_{0}. In fact, there is a critical temperature (or value of v_{1}) such that for temperatures below this value, the boundary conditions are felt.
Thus there can be different probabilities at the origin depending on the values on an arbitrary distant boundary!

Simulated Ising fields

The auto-models

Let $Q(x)=\log (P(x) / P(0))$. Besag' s automodels are defined by

$$
Q(z)=\sum_{i=1}^{n} z_{i} G_{i}\left(z_{i}\right)+\sum_{i=1}^{n} \sum_{j i=i} \beta_{i j} z_{i} z_{j}
$$

When $\mathrm{z}_{\mathrm{i}} \in\{0,1\}$ and $\mathrm{G}_{\mathrm{i}}\left(\mathrm{z}_{\mathrm{i}}\right)=\alpha_{i}$ we get the autologistic model
When $G_{i}\left(z_{i}\right)=\alpha_{i} z_{i}-\log \left(z_{i}!\right)$ and $\beta_{i j} \leq 0$ we get the auto-Poisson model

Pseudolikelihood

Another approximate approach is to write down a function of the data which is the product of the $p_{i}\left(x_{\delta_{i}}\right)$, l.e., acting as if the neighborhoods of each point were independent.
This as an estimating equation, but not an optimal one. In fact, in cases of high dependence it tends to be biased.

Recall the Gaussian formula
If $\quad\binom{\mathbf{X}}{\mathbf{Y}} \sim \mathbf{N}\left(\binom{\mu_{\mathbf{X}}}{\mu_{\mathbf{Y}}} \cdot\left(\begin{array}{ll}\Sigma_{\mathbf{X X}} & \Sigma_{\mathbf{X Y}} \\ \Sigma_{\mathbf{Y X}} & \Sigma_{\mathbf{Y Y}}\end{array}\right)\right)$
then $(\mathbf{Y} \mid X) \sim N\left(\mu_{\mathbf{Y}}+\Sigma_{\mathbf{Y X}} \Sigma_{\mathbf{X X}}^{-1}\left(X-\mu_{\mathbf{X}}\right)\right.$,

$$
\left.\Sigma_{Y Y}-\Sigma_{Y X} \Sigma_{\mathbf{X X}}^{-1} \Sigma_{\mathbf{X Y}}\right)
$$

Let $Q=\Sigma^{-1}$ be the precision matrix. Then the conditional precision matrix is

$$
\left(\Sigma_{Y Y}-\Sigma_{Y X} \Sigma_{X X}^{-1} \Sigma_{\mathrm{XY}}\right)^{-1}=\mathrm{Q}_{\mathrm{YY}}
$$

Gaussian MRFs

We want a setup in which $Z_{i} \perp Z_{i} \mid Z_{\sim}^{-i, j}$ whenever i and j are not neighbors. Using the Gaussian formula we see that the condition is met iff $\mathrm{Q}_{\mathrm{ij}}=0$.
Typically the precision matrix of a GMRF is sparse where the covariance is not. This allows fast computation of likelihoods, simulation etc.

An AR(1) process

Let $X_{t} \mid X_{t-1}=\phi X_{t-1}+\varepsilon_{t}$. The lag k autocorrelation is $\phi^{|k|}$. The precision matrix has $Q_{i j}=\phi$ if li-jl=1, $Q_{11}=Q_{n n}=1$ and $Q_{i i}=1+\phi^{2}$ elsewhere, all other 0 .
Thus Σ has N^{2} non-zero elements, while Q has $\mathbf{N + 2 (N - 1) = 3 N - 2 ~ n o n - z e r o ~}$ elements.
Using the Gaussian formula we see that

$$
\mu_{i \mid-i}=\frac{\phi}{1+\phi^{2}}\left(\mathbf{x}_{i-1}+\mathbf{x}_{i+1}\right) \quad \mathbf{Q}_{\mathrm{i} \mid-\mathrm{i}}=1+\phi^{2}
$$

Conditional autoregression

Suppose that

$$
Z_{i} \mid{\underset{\sim}{2}}^{-i} \sim N\left(\mu_{i}+\sum_{i \neq j} \beta_{i j}\left(x_{i}-\mu_{j}\right), \kappa_{i}^{-1}\right)
$$

This is called a Gaussian conditional autoregressive (CAR) model. WLOG $\mu_{i}=0$. If also $\kappa_{i} \beta_{\mathrm{ij}}=\kappa_{j} \beta_{\mathrm{ji}}$ these conditional distributions correspond to a multivariate joint Gaussian distribution, mean 0 and precision Q with $Q_{i i}=\kappa_{i}$ and $Q_{i j}=-\kappa_{i} \beta_{\mathrm{ij}}$, provided Q is positive definite. If the β_{ij} are nonzero only when i~j we have a GMRF.

Likelihood calculation

The Cholesky decomposition of a pd square matrix A is a lower triangular matrix L such that $A=L L^{\top}$.
To solve $A y=b$ first solve $L v=b$
(forward substitution), then $L^{\top} y=v$
(backward substitution).
If a precision matrix $\mathbf{Q}=\mathrm{LL}^{\top}$,
$\log \operatorname{det}(Q)=2 \sum \log \left(\mathrm{~L}_{\mathrm{i}, \mathrm{i}}\right)$. The quadratic form in the likelihood is $w^{\top} u$ where $u=Q w$ and $w=(z-\mu)$. Note that

$$
\mathbf{u}_{\mathrm{i}}=\mathbf{Q}_{\mathrm{i}, \mathrm{i}} \mathbf{w}_{\mathrm{i}}+\sum_{\mathrm{j} ; \mathrm{j} \sim \mathrm{i}} \mathbf{Q}_{\mathrm{i}, \mathrm{j}} \mathbf{w}_{\mathrm{j}}
$$

Simulation

Let $x \sim N(0, I)$, solve $L^{\top} v=x$ and set
$\mathrm{z}=\mu+\mathrm{v}$.
Then $E(z)=\mu$ and $\operatorname{Var}(z)=\left(L^{\top}\right)^{-1} I L^{-1}=$
$\left(L^{\top}\right)^{-1}=\mathbf{Q}^{-1}$.

Spatial covariance

Whittle (1963) noted that the solution to the stochastic differential equation

$$
\left(\Delta-\frac{1}{\phi^{2}}\right)^{(k+1) / 2} Z(s)=W(s)
$$

has covariance function

$$
\operatorname{Cov}(\mathbf{Z}(\mathbf{s}), Z(s+\mathbf{h})) \propto\left(\frac{\|\mathbf{h}\|}{\phi}\right)^{\kappa} \mathcal{K}_{\kappa}\left(\frac{\|\mathbf{h}\|}{\phi}\right)
$$

Rue and Tjelmeland (2003) show that one can approximate a Gaussian random field on a grid by a GMRF.

Solution

Write $Z(s)=\sum_{k} \psi_{k}(s) w_{k}$
where $\psi_{\mathrm{k}}(\mathbf{s})$ are piecewise linear on a (possibly nonregular) grid and \mathbf{w}_{k} are appropriately chosen normal random variables.
Let $A_{i}=\left(\psi_{i}\left(s_{i}\right), \ldots, \psi_{N}\left(s_{i}\right)\right)$ and $A=\left(A_{i}\right)$.
If Y is Z observed with spatial error η

$$
\mathbf{Y} \mid \mathbf{w} \sim \mathbf{N}\left(\mathbf{A w}, \mathbf{Q}_{\eta}^{-1}\right), \quad \mathbf{w} \sim \mathbf{N}\left(\mu, \mathbf{Q}^{-1}\right)
$$

Basis functions

Unequal spacing

Lindgren and Rue show how one can use finite element methods to approximate the solution to the sde (even on a manifold like a sphere) on a triangulization on a set of possibly unequally spaced points.

Covariance approximation

Hierarchic model

Data model: $p(y \mid z ; \theta)$

Latent model: $p(z \mid \theta)$

$$
Z=A w+\beta B \quad w \sim N\left(0, Q^{-1}\right)
$$

If Bayesian, parameter model: $\mathbf{p}(\boldsymbol{\theta})$

For INLA, need

$$
p(y \mid z, \theta)=\prod_{i} p\left(y_{i} \mid z_{i}, \theta\right)
$$

INLA

Laplace's approximation:

$x^{*}=\operatorname{argmax}(f(x))$. Taylor expansion around $x^{*}: f(x) \approx f\left(x^{\star}\right)+\left(x-x^{*}\right)^{2 f "}\left(x^{*}\right) / 2$

$$
\begin{aligned}
& e^{\operatorname{Nf}(x)} \approx e^{N f\left(x^{*}\right)} e^{-N f^{\prime \prime}\left(x^{*}\right)\left(x-x^{*}\right)^{2} / 2} \\
= & \sqrt{\frac{2 \pi}{N\left|f^{\prime \prime}\left(x^{*}\right)\right|}} e^{N f\left(x^{*}\right)} \phi\left(\sqrt{N\left|f^{\prime \prime}\left(x^{*}\right)\right|}\left(x-x^{*}\right)\right)
\end{aligned}
$$

Interested in predictive distribution p(zly) and posterior density p(Өly)

$f(x)=\sin (x) / x$

Posterior manipulation

$$
p(y \mid x, \theta) p(x \mid \theta)=p(y, x \mid \theta)=p(x \mid y, \theta) p(y \mid \theta)
$$

Thus

$$
p(\theta \mid y) \propto p(y \mid \theta) p(\theta)=\frac{p(y \mid x, \theta) p(x \mid \theta)}{p(x \mid y, \theta)} p(\theta)
$$

Using the Laplace approximation on $f(x)=\log (p(x \mid y, \theta) / N)$ we get a Gaussian approximation
$x \mid y, \theta \approx N\left(\mu^{*}, Q^{*}\right)$
where μ^{*}, Q^{*} depend on Q, β and $D^{2} f$.

What INLA computes

Joint posterior of parameters (Laplace approximation)
Marginal posterior of latent variable (integral Laplace approximation or numerical integration)
Not computing the joint predictive distribution

Computational comparison

$\mathrm{n}=20 \times 2500$ obs, $\mathrm{m}=20 \times 15000$ kriging locs Estimation $O\left(n^{3}\right)$, storage $O\left(n^{2}\right) \approx 20 G B$
Kriging $O\left(m n+n^{3}\right)$, storage $O\left(m n+n^{2}\right) \approx 130 G B$ INLA Estimation + kriging $\mathbf{O}\left(\mathrm{m}^{3 / 2}\right)$, storage O(m+n) $\approx 50 \mathrm{MB}$

Global temperature analysis

obs = climate $\boldsymbol{+}$ anomaly + elevation + error
Climate covariance parameters:

Standard deviations

Empirical Anomaly 1980 (C)

Std dev for Anomaly 1980 (C)

