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The big N problem

Log likelihood:

Prediction:

Covariance has O(N2) unique elements
Inverse and determinant take O(N3) 
operations

 

ℓ(σ,θ) = −n
2
log(2πσ) − 1

2
logdetΣ(θ)

+
1
2σ
(Z −µ(θ)TΣ(θ)−1(Z −µ(θ))

E(Z(s0 ) Z1,...,ZN, θ̂) = µ0 + Σ0,ZΣZ,Z
−1 (Z −µZ )



The Markov property

Discrete time:

A time symmetric version:

A more general version:
Let A be a set of indices >k, B a set 
of indices <k. Then

These are all equivalent.

(Xk Xk−1,Xk−2,...) = (Xk Xk−1)

 (Xk !
X−k ) = (Xk Xk−1,Xk+1)

XA ⊥ XB Xk



On a spatial grid
Let δi be the neighbors of the location i. 
The Markov assumption is

Equivalently for 
The pi are called local characteristics. 
They are stationary if pi = p.
A potential assigns a number VA(z) to 
every subconfiguration zA of a 
configuration z. (There are lots of 
them!)

 

P(Zi = zi !
Z− i =

!
z− i ) = P(Zi = zi Zδi

= zδi )

= pi (zi zδi )

i∉δ j  Zi ⊥ Zj !
Z− i,j



Graphical models

Neighbors are nodes connected with 
edges.

Given 2, 1 and 4 are independent. 
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Gibbs measure

The energy U corresponding to a 
potential V is       .

The corresponding Gibbs measure is

where

is called the partition function.

U(z) = VA(z)
A
∑

P(z) = exp(−U(z))
C

C = exp(−U(z))
z
∑



Nearest neighbor potentials

A set of points is a clique if all its 
members are neighbours. 
A potential is a nearest neighbor 
potential if VA(z)=0 whenever A is not a 
clique.



Markov random field

Any nearest neighbor potential induces 
a Markov random field:

where z’ agrees with z except possibly 
at i, so VC(z)=VC(z’) for any C not 
including i.

 

pi (zi !
z− i ) = P(

!
z)
P(
!
z')

z'
∑

=
exp(− VC(!

z))
C clique
∑

exp(− VC(!
z'))

C clique
∑

z '
∑



The Hammersley-Clifford 
theorem

Assume P(z)>0 for all z. Then P is a 
MRF on a (finite) graph with respect to 
a neighbourhood system Δ iff P is a 
Gibbs measure corresponding to a 
nearest neighbour potential.

Does a given nn potential correspond 
to a unique P?
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The Ising model

Model for ferromagnetic spin (values +1 
or -1). Stationary nn pair potential 
V(i,j)=V(j,i); V(i,i)=V(0,0)=v0; 
V(0,eN)=V(0,eE)=v1.

so     where

 

logit P(Zi = 1 !
Z− i =

!
z− i )

= −(v0 + v1(zi+eN + zi−eN + zi+eE + zi−eE ))

L(v) = exp(t0v0 + t1v1)
C(v)

t0 = zi∑ ; t1 = zizjj~i∑i∑



Interpretation

v0 is related to the external magnetic 
field (if it is strong the field will tend to 
have the same sign as the external 
field)
v1 corresponds to inverse temperature 
(in Kelvins), so will be large for low 
temperatures.
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Phase transition

At very low temperature there is a tendency 
for spontaneous magnetization. 
For the Ising model, the boundary 
conditions can affect the distribution of x0.
In fact, there is a critical temperature (or 
value of v1) such that for temperatures 
below this value, the boundary conditions 
are felt.
Thus there can be different probabilities at 
the origin depending on the values on an 
arbitrary distant boundary!



Simulated Ising fields



The auto-models

Let Q(x)=log(P(x)/P(0)). Besag’s auto-
models are defined by

When          and Gi(zi)=αi we get the 
autologistic model
When      and βij≤0

we get the auto-Poisson model

 
Q(
!
z) = ziGi (zi )

i=1

n

∑ + βijzizj
j~i
∑

i=1

n

∑
zi ∈{0,1}

Gi(zi ) = α izi − log zi !( )



Pseudolikelihood

Another approximate approach is to 
write down a function of the data which 
is the product of the     , I.e., acting 
as if the neighborhoods of each point 
were independent. 
This as an estimating equation, but not 
an optimal one. In fact, in cases of high 
dependence it tends to be biased.

pi (xδi
)



Recall the Gaussian formula

If

then

Let   be the precision matrix. Then 
the conditional precision matrix is
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(Y |X) ~ N(µY + ΣYXΣXX
−1 (X−µX ),

ΣYY − ΣYXΣXX
−1 ΣXY )

Q = Σ−1

ΣYY − ΣYXΣXX
−1 ΣXY( )−1 = QYY



Gaussian MRFs

We want a setup in which     
whenever i and j are not neighbors. 
Using the Gaussian formula we see that 
the condition is met iff Qij = 0.
Typically the precision matrix of a 
GMRF is sparse where the covariance 
is not. This allows fast computation of 
likelihoods, simulation etc.

 Zi ⊥ Zj !
Z− i,j



An AR(1) process

Let    . The lag k 
autocorrelation is φ|k|. The precision 
matrix has Qij = φ if |i-j|=1, Q11=Qnn=1 
and Qii=1+φ2 elsewhere, all other 0.
Thus Σ has N2 non-zero elements, while 
Q has N+2(N-1)=3N-2 non-zero 
elements.
Using the Gaussian formula we see that

Xt Xt−1 = φXt−1 + ε t

µ i − i =
φ

1+ φ2
(xi−1 + xi+1) Qi − i = 1+ φ2



Conditional autoregression 
Suppose that 

This is called a Gaussian conditional 
autoregressive (CAR) model. WLOG 
µi=0. If also   these 
conditional distributions correspond to 
a multivariate joint Gaussian 
distribution, mean 0 and precision Q 
with Qii=κi and Qij= -κiβij, provided Q is 
positive definite. If the βij are nonzero 
only when i~j we have a GMRF. 

 
Zi !
Z− i ~ N(µ i + βij (xj − µ j )

i≠ j
∑ ,κ i−1)

κ iβij = κ jβ ji



Likelihood calculation  

The Cholesky decomposition of a pd 
square matrix A is a lower triangular 
matrix L such that A=LLT. 
To solve  Ay = b first solve Lv = b 
(forward substitution), then LTy = v 
(backward substitution).
If a precision matrix Q = LLT,       
log det(Q) = 2 . The quadratic 
form in the likelihood is wTu where 
u=Qw and w=(z-µ). Note that

log∑ Li,i( )

ui = Qi,iwi + Qi,jwj
j:j~i
∑



Simulation

Let x ~ N(0,I), solve LTv = x and set        
z = µ + v.  
Then E(z) = µ and Var(z) = (LT)-1IL-1= 
(LLT)-1 = Q-1.



Spatial covariance

Whittle (1963) noted that the solution to 
the stochastic differential equation

has covariance function

Rue and Tjelmeland (2003) show that 
one can approximate a Gaussian 
random field on a grid by a GMRF.

Δ −
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Z(s) =W(s)

 
Cov(Z(s),Z(s + h)) ∝ h

φ
⎛
⎝⎜

⎞
⎠⎟

κ

Kκ

h
φ

⎛
⎝⎜

⎞
⎠⎟



Solution

Write

where are piecewise linear on a 
(possibly nonregular) grid and
      are  appropriately chosen normal 
random variables. 
Let      and A=(Ai•). 
If Y is Z observed with spatial error 

Z(s) = ψk (s)wk
k
∑

ψk (s)

wk

 Aii = (ψ1(si ),...,ψN(si))
η

 
Y w ∼N(Aw,Qη

−1), w ~ N(µ,Q−1)



Basis functions
Intro B, W, M, & R SPDE/GMRF Example End Finite Projection Markov Lattices ... and beyond

Piecewise linear representations

x(u) = cos(u1) + sin(u2) x(u) =
P

k

 
k

(u) x
k

Guiding principle

Attack the SPDE with local finite dimensional representations
instead of covariances or kernels (subsets of Green’s functions)!

Finn Lindgren - finn.lindgren@math.ntnu.no Matérn/SPDE/GMRF



Unequal spacing

Lindgren and Rue show how one can 
use finite element methods to 
approximate the solution to the sde 
(even on a manifold like a sphere) on a 
triangulization on a set of possibly 
unequally spaced points.



Covariance approximation



Hierarchic model

Data model:

Latent model:

If Bayesian, parameter model:  

For INLA, need 

p(y z;θ)

p(z θ)
Z = Aw + βB w ~ N(0,Q−1)

p(θ)

p(y z,θ) = p(yi
i
∏ zi,θ)



INLA

Laplace’s approximation:
x*=argmax(f(x)). Taylor expansion 
around x*: f(x)≈f(x*)+(x-x*)2f”(x*)/2

Interested in predictive distribution    
p(z|y) and posterior density p(θ|y)

=
2π

N ʹ́f (x*)
eNf(x*)φ N ʹ́f (x*) (x − x*)( )

eNf(x) ≈ eNf(x*)e−N ʹ́f (x*) (x−x*)2 /2



f(x)=sin(x)/x

Analysis of the error

• As n ! 1, then the integrand gets more and more peaked.
• Error tends to zero as n ! 1
• Detailed analysis gives that the relative error is 1 +O(1/n)

• The figure above shows an example with g(x) = sin(x)/x

Laplace approximations — Why does it work?

David Bolin



Posterior manipulation

p(y x,θ)p(x θ) = p(y,x θ) ≡ p(x y,θ)p(y θ)

Thus

p(θ y)∝p(y θ)p(θ) =
p(y x,θ)p(x θ)
p(x y,θ)

p(θ)

Using the Laplace approximation on
f(x)=log(              /N) we get a Gaussian
 approximation

where            depend on Q, β and D2f.

p(x y,θ)

x | y,θ ≈ N(µ*,Q*)
µ*,Q*



What INLA computes

Joint posterior of parameters (Laplace 
approximation)
Marginal posterior of latent variable 
(integral Laplace approximation or 
numerical integration)
Not computing the joint predictive 
distribution



Computational comparison

n=20×2500 obs, m=20×15000 kriging locs
Estimation O(n3), storage O(n2)≈20GB
Kriging O(mn+n3), storage O(mn+n2)≈130GB
INLA Estimation + kriging O(m3/2), storage 
O(m+n)≈50MB



Global temperature analysis

obs = climate + anomaly + elevation + 
error
Climate covariance parameters:

Intro B, W, M, & R SPDE/GMRF Example End Large problems GHCN INLA Climate Weather

Estimated climate covariance properties 1970-1989
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Intro B, W, M, & R SPDE/GMRF Example End Large problems GHCN INLA Climate Weather

Empirical Climate 1970−1989 (C)
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Intro B, W, M, & R SPDE/GMRF Example End Large problems GHCN INLA Climate Weather

Std dev for Climate 1970−1989 (C)
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Intro B, W, M, & R SPDE/GMRF Example End Large problems GHCN INLA Climate Weather

Empirical Anomaly 1980 (C)
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Intro B, W, M, & R SPDE/GMRF Example End Large problems GHCN INLA Climate Weather

Std dev for Anomaly 1980 (C)
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