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The choice of spatial scale–
some questions  

1. Which spatial scale is correct?
2. What if there is spatial misalignment?
3. How do we change from one spatial 

scale to another?
4. What if we have different spatial datasets 

that come to us on different spatial 
scales? 

5.  How do we combine data sources?
We need to be careful not to be misled in 
our inferences.



Changes of support

Observed Inference Method
point point kriging
point line contouring
point area block kriging 
area point ecological inference
area area misalignment



Some issues in  
model assessment

Spatiotemporal misalignment
Grid boxes vs observations

Types of error
Measurement error and bias
Model error
Approximation error

Manipulate data or model output?



Assessing the  
SARMAP model

60 days of hourly observations at 32 
sites in Sacramento region
Hourly model runs for three “episodes”



Task

Estimate from data the ozone level in a 
grid square. 
Issues:

Transformation
Diurnal cycle
Temporal dependence
Spatial dependence
Space-time interaction



Transformation

Heterogeneous variability–mean and 
variance positively related
Square root transformation
All modeling now on square root scale–
approximately normal



Diurnal cycle



Spatial dependence



Estimating a  
grid square average

Estimate using

(not averages of squares of kriging 
estimates on the square root scale)

Vt (s) = Zt (s)
Vt (s) = µ t (s) +Wt (s)
Wt (s) = α1(s)Wt−1(s) + α2 (s)Wt−2 (s) + Yt (s)
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Afternoon comparison



Nighttime comparison



Regional  
climate models

Not possible to do long runs of global 
models at fine resolution
Regional models (dynamic 
downscaling) use global model as 
boundary conditions and runs on finer 
resolution
Output is averaged over land use 
classes
“Weather prediction mode” uses 
reanalysis as boundary conditions



Comparison of  
model to data

Model output daily averaged 3hr 
predictions on (12.5 km)2 grid
Use open air predictions only
RCA3 driven by ERA 40/ERA Interim
Data daily averages point 
measurements (actually weighted 
average of three hourly measurements, 
min and max)
Aggregate model and data to seasonal 
averages



Data

SMHI synoptic stations in south central 
Sweden, 1961-2008 
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F igure 1: T he left-hand panel displays a map of Sweden indicat ing the 17 locat ions that were
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D. T he locat ion denoted with an asterisk was kept aside for cross-validat ion purposes. T he

right-hand panel summarizes the data availability. For each of the 17 locat ions, the shaded



Upscaling

Geostatistics: predicting grid square 
averages from data
Difficulties:
Trends
Seasonal variation
Long term memory features
Short term memory features



Long term  
memory models

Long range dependence, continued
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A “simple” model

Yt(s) = µ t (s) + ϕ t (s) + exp(α t (s))ηt (s)

space-time trend

periodic seasonal
component

noise

seasonal
variability



Seasonal part
Seasonal patterns

st(s) = A(s) cos(2�t/365.25 + ⇥(s))
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φ t (s) = A(s)cos(2πt / 365.25 + θ(s))



Seasonal variability

Modulate noise
           two term Fourier series
 

Seasonal patterns, continued
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• To capture the strong seasonal patterns in the variance let

⇥t(s) = ⇧t(s) ⇤t(s)

log ⇧t(s) = �0(s) + �1(s) sin(2⌅t/365.25) + �2(s) cos(2⌅t/365.25) +

�3(s) sin(2⌅t/182.625) + �4(s) cos(2⌅t/182.625).
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ζ t (s) = exp(α t (s))ηt (s)
α t (s)



Both long and short 
memory

Consider a stationary Gaussian 
process with spectral density

Examples:
B(f) constant: fractionally differenced 
process (FD)
B(f) exponential: fractional exponential 
process (FEXP) (log B truncated 
Fourier series)

Sη (f) = B(f) 4sin
2 (πf)

−δ

Short term 
memory

Long term
memory



Estimated SDFs of 
standardized noise

Clear evidence of both short and long 
memory parts

Estimated SDFs of standardized noise

Dotted: FD process

Solid: FEXP process, p=3

• Strong evidence of both

short and long range

dependence.

• Spatial patterns in the

parameter estimates.
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• Negative association between the long range dependent parameter and either

latitude or log10 of elevation [See also Király and Jánosi, 2005]
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Space-time model

Gaussian white measurement error
Process model in wavelet space

scaling coefficients have mean linear in 
time and latitude 
separable space-time covariance

Gaussian spatially varying parameters



Dependence parameters

LTM

Short term
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Figure 8: Posterior predicted means (left panel) and standard deviations (right panel) for

the parameters characterizing the spatially-varying FEXP process.
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Trend estimates



Estimating grid squares

Pick q locations systematically in the 
grid square
Draw sample from posterior 
distribution of Y(s,t) for s in the 
locations and t in the season
Compute seasonal average
Compute grid square average



Downscaling

Climatology terms:
Dynamic downscaling
Stochastic downscaling
Statistical downscaling

Here we are using the term to allow
• data assimilation for RCM
• point prediction using RCM



Downscaling model

 Y(s,t) = !β0(s,t) + β1!x(s,t) + ε(s,t)

 
!β0(s,t) = β0(t) + β(s,t) smoothed 

RCM
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Figure 1: Posterior mean of the additive calibration term �0,t (black solid line) and 95% cred-
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30, 2007.
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Comparisons





Reserved stations

Borlänge: Airport that has changed 
ownership, lots of missing data
Stockholm: One of the longest 
temperature series in the world. 
Located in urban park.
Göteborg: Urban site, located just 
outside the grid of model output



Predictions and data



Annual scale
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Comments

Nonstationarity
in mean
in covariance

Uncertainty in model output
”Extreme seasons” where down-and 
upscaling agree with each other but not 
with the model output
Model correction approaches





Statistical analysis of 
computer code output

Often the process model is expensive 
to run (in time, at least), especially if 
different runs needed for MCMC
Need to develop real-time 
approximation to process model
Kalman filter is a dynamic linear model 
approximation
SACCO is an alternative Bayesian 
approach



Basic framework

An emulator is a random (Gaussian) 
process η(x) approximating the process 
model for input x in Rm.
Prior mean m(x) = h(x)Tβ

Prior covariance

Run the model at n input values to get n 
output values, so 
 

v(x1,x2 ) = σ2c(x1,x2 )

 

(d β,σ2 ) ∼ N(Hβ,σ2C)

(η i( ) β,σ2,d) ∼ N(m∗,Σ∗ )



The emulator

Integrating out β and σ2 we get

where q = dim(β) and

where t(x)T = (c(x,x1),…,c(x,xn))
m** is the emulator, and we can also 
calculate its variance

 

η(x) −m∗∗ (x)
σ̂c∗∗ (x,x)12

∼ tn−q

m∗∗ (x) = h(x)T β̂ + t(x)TC−1(d −Hβ̂)



An example
y=7+x+cos(2x)
q=1, hT(x)=(1 x) n=5



Conclusions

Model assessment constraints:
•  amount of data
•  data quality
•  ease of producing model runs
•  degree of misalignment
Ideally the model should have
•  similar first and second order 
properties to the data
•  similar peaks and troughs to data (or 
simulations based on the data)


