## Stat547L: Spatial Statistics

### Jim Zidek<sup>2</sup>

<sup>2</sup>University of British Columbia

Term 1, 2017/18

# Designing monitoring networks

#### In this lecture you will learn:

- Uncertainty, information & the need for monitoring
- ۲
- That getting more information can increase not decrease your uncertainty for the phenomenon of interest
- The difference between aleatory uncertainty and epistemic uncertainty
- How to optimally redesign a monitoring network
- New challenges facing designers

### Example # 1 Capmon network.



#### **NOTES on Capmon network**

- No sense an "optimal" network for monitoring the environment.
- For administrative simplicity Capmon was a merger of three networks, each setup to monitor acid precipitation when that topic was fashionable.
- For simplicity, the sites were then adopted for other things, e.g, air pollution

Lessons learned:

A network's purposes often diverse & unforeseen.

## Example #2. NADP/NTN network

Monitors multivariate responses related to "acid precipitation"– another network merger with better defined siting rules!



#### Rules governing siting and types of NDP/NTN monitors:

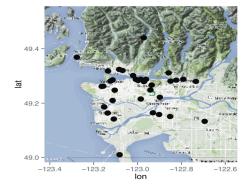
"The COLLECTOR should be installed over undisturbed land on its standard 1 meter high aluminum base. Naturally vegetated, level areas are preferred, but grassed areas and up or down slopes up to 15% will be tolerated. Sudden changes in slope within 30 meters of the collector should also be avoided. Ground cover should surround the collector for a distance of approximately 30 meters. In farm areas a vegetated buffer strip must surround the

collector for at least 30 meters."

# Example # 3. NA mercury monitoring sites



## Example # 4. Vancouver air quality monitors

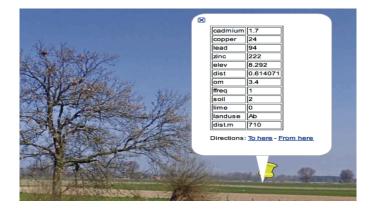


## Example # 5. Meuse river bank soil sampling sites

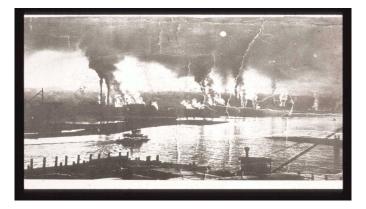


## The "street view"

Click on yellow tack:



## False creek circa 1900 before monitoring



### False creek circa 1990



## What do monitoring sites look like?

#### At Kitsilano High School



### What do monitoring sites look like? Near Robson Square



# Some specific objectives of monitoring

#### Measure process responses at critical points:

- Near a new smelter using arsenic
- Enable predictions of unmeasured responses
- Enable future forecasts
- Estimation of process parameter
  - physical model parameters
  - stochastic model parameters eg. covariance parameters
- Address societal concerns

#### • Non-compliance detection given regulatory standards

#### Health risk analysis

- & provide good estimates of relative risk
- determine how well sensitive sub-populations are protected
- can include all life, not just human

#### Time trend analysis

- are things getting worse?
- is climate changing?

# General purposes

Explore/reduce uncertainty re the environment:

- One form of uncertainty (*aleatory*) is irreducible (e.g. outcome of fair die toss
- The other (*epistemic*) (e.g. whether the die is fair) can increase or decrease. Implication: even an optimum design must be regularly revisited

## But what is "uncertainty"?

- Laplace: "Probability is the language of uncertainty"
- DeFinetti: "In life uncertainty is everything"
- Kolmorov & Renyi: "Entropy"
- Statisticians: "variance" or "standard error"

**8.1** Suppose  $X \sim N(0, 1)$ . Prove that uncertainty about *X*, i.e.  $Var(X \mid |X| < C)$  is increasing function of *C*.

**8.2** Suppose  $X \sim N(\eta, 1)$ . Prove that uncertainty about *X*, i.e. Var(X || X | < C) is increasing function of *C*. Warning:Very hard! <sup>1</sup>

<sup>&</sup>lt;sup>1</sup>I posed the problem years ago with a prize of \$100 but it was not solved until Jiahua Chen (UBC)did so Chen et al. [2010].

## Possible design criteria

#### Add monitors to (i.e. "Gauge") sites:

- that maximally reduce uncertainty about their responses at their space-time points [because then measuring their responses eliminates their uncertainty]
- best minimize uncertainty about ungauged site responses
- give best process parameter estimates
- best detect non-compliers

## Designer challenges:

- Multiplicity of objectives
- Unforeseen & changing objectives
- Multiple responses at each site: which to monitor?
- Including prior knowledge
- Good process models
- Fit with existing networks
- Fit with reality!!!

### Exercises

**8.3** How might design criteria be arrived at in practice? Who should be responsible for setting them?

**8.4** Monitor placement should recognize such things as the geographical distribution of impacted populations (eg trees or fish). How can an optimal design be determined in such a context? Research question!

**8.5** Develop a design theory in a non–Gaussian context. Research question!

# Approaches to design

#### A big field [Zidek and Zimmerman, 2009]

- Space-filling designs
- Probability based designs
  - simple random sampling
  - stratified, multistage designs
  - e.g. (1) EPA's survey of lakes; (2) the EMAP project

### Model Based

- Regression model approach
  - eg to estimate the slope put 1/2 the data at each end of the data range
- Random fields (prediction, e.g. entropy) approach
- **Other**. In particular Zhengyuan Zhu (UNC) incorporates both of the latter, prediction and parameter estimation.

## Entropy based approach

#### "Gauges" sites with greatest "uncertainty"

- uncertainty = entropy
- maximally reduces uncertainty about "ungauged" sites
- best estimates predictive posterior distribution under entropy utility
- By passes specification of objectives Long history<sup>2</sup>, currently popular

<sup>&</sup>lt;sup>2</sup>General: Good [1952], Lindley [1956], Shewry and Wynn [1987]. Network design: Caselton and Zidek [1984],Sebastiani and Wynn [2002],Zidek et al. [2000]

# What is entropy?

Let **probability of uncertain event E** (e.g. heads on bent coin) be:

$$p = P(E)$$

That uncertainty becomes 0 when outcome becomes known.

Let reduction in uncertainty be

 $\phi(p)$  if *E* occurs  $\phi(1-p)$  if *E* does not occur

Expected reduction in uncertainty:

$$p\phi(p) + (1-p)\phi(1-p)$$

# Simple assumptions imply

:

$$\phi(p) = log(p)$$

**Conclusion:** knowing *E* occurred reduces entropy by

$$p \log(p) + (1-p) \log(1-p)$$

Thus "**uncertainty**" about *E* can be quantified as the **entropy** of the two point distribution (p, 1 - p):

## **Relative entropy**

But how much is that entropy?

Needs a **reference level**. Complete uncertainty about *E* would be the two point distribution (q, 1 - q) with q = 1/2. Thus the relative entropy would be

$$I(p,q) = p \log \left\{ rac{p}{q} 
ight\} + (1-p) \log \left\{ rac{(1-p)}{(1-q)} 
ight\}$$

This is f the **Kullback-Leibler** measure of the deviation of (p, 1 - p) from that reference level (the "state of equilibrium" in physics (thermodynamics).

# Multiple events

$$I(p,q) = \sum_{i} p_i \log \{p_i/q_i\}$$

### Continuous variables

Start with  $p_i \sim f(x_i)dx_i \& q_i \sim g(x_i)dx_i$  as approximations. Then as  $dx_i \rightarrow 0$ , this entropy converges to

$$I(f,g) = \int f(x) \log\left\{rac{f(x)}{g(x)}
ight\} dx > 0$$

Commonly  $g \equiv 1$  (*unitsoff*). In any event, f/g is a unitless quantity. Moreover Jacobean cancels under transformations of x making entropy an "intrinsic" measure of uncertainty – not scale dependent.

# Entropy framework

Adopt a Bayesian framework.

- $\theta$ : process parameter vector.
- Y : process response vector at future time T+1 including all sites (gauged & ungauged) conditional on
- $D_T$  set of all available data at time T
- *h*<sub>1</sub> & *h*<sub>2</sub>: baseline reference densities against which to measure uncertainty.

Finally compute the entropies with θ random

$$H(\mathbf{Y} \mid \theta) = E[-\log\left\{\frac{f(\mathbf{Y} \mid \theta, D)}{h_1(\mathbf{Y})}\right\} \mid D_T]$$
$$H(\theta) = E[-\log\left\{\frac{f(\theta \mid D_T)}{h_2(\theta)}\right\} \mid D_T]$$

Then we get **fundamental entropy identity** (Exercise):

$$H(\mathbf{Y}, \theta) = H(\mathbf{Y} \mid \theta) + H(\theta)$$

In other words, at time T

#### TOTAL UNCERTAINTY = UNCERTAINTY ABOUT RESPONSE GIVEN MODEL + MODEL UNCERTAINTY

# Design goal: add sites

Add (or subtract) sites at time T + 1. Let's focus on adding new sites to an existing network

- $\mathbf{Y} = (\mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}) =$  all site responses, time T +1
- Y<sup>(2)</sup> for site currently gauged (time T)
- **Y**<sup>(1)</sup> for sites currently ungauged (time T)

DESIGN GOAL: Partition  $\mathbf{Y}^{(1)} = (\mathbf{Y}^{(rem)}, \mathbf{Y}^{(add)})$  at time T so that

- Y<sup>(rem)</sup>: future ungauged sites
- **Y**<sup>(add)</sup> future new network stations.

## Entropy decomposition thm

Let 
$$U = Y^{(rem)}$$
;  $G = (Y^{(add)}, Y^{(2)})$ ;  $Y = [U, G]$ 

#### **Fundamental identity:**

$$TOT = PRED + MODEL + MEAS$$

where

$$PRED = E[-\log (f(\mathbf{U} | \mathbf{G}, \theta, D_T)/h_{11}(\mathbf{U} | D_T]],$$
  
$$MODEL = E[-\log(f(\theta | \mathbf{G}, D_T))/h_2(\theta)) | D_T],$$

and

$$MEAS = E[-\log f(\mathbf{G} \mid D_T)/h_{12}(\mathbf{G}) \mid D_T]$$

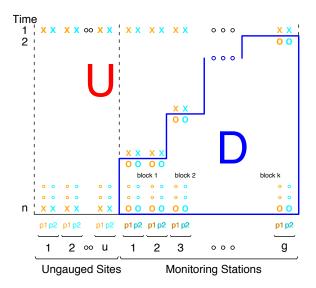
### Theorem: Maximizing MEAS = Minimizing MODEL + PRED

٠

## The environmental process



#### The multivariate data staircase



### Possible inferential objectives

- Forecasting: process values at time T + 1
- Spatial prediction: process values in U at time T
- Hindcasting: past values of the process at times t < T both in D sites as well as U sites, e.g. cancer vs air pollution.

#### Design objective for expanding the network:

Choose sites from **U** to "add" to the existing network at time T + 1.

**NOTATION:** *u*: ungauged sites at time *T* g: gauged sites at time T p = u + g: total number of sites

#### The process model

Transform responses as necessary. Remove regular temporal & trend components. Assume EnviroStat model: at time t = 1, ..., T + 1

$$\mathbf{Y}_{t}^{1\times p} \mid \boldsymbol{\beta}, \boldsymbol{\Sigma} \stackrel{ind}{\sim} \mathcal{N}(\mathbf{x}_{t}^{1\times k}\boldsymbol{\beta}^{k\times p}, \boldsymbol{\Sigma}^{p\times p})$$

$$oldsymbol{eta} \mid \mathbf{\Sigma}, oldsymbol{eta}_0, F \sim N(oldsymbol{eta}_0, F^{-1} \otimes \mathbf{\Sigma})$$

 $\boldsymbol{\Sigma} \sim G W(\Psi, \delta)$  # Inverted Wishart distribution

where  $\otimes$  denotes **Kronecker product**,  $F^{-1}$  covariance between rows;  $\Sigma$  covariance between columns.

#### The predictors

The  $x_t$  are assumed to be the same for all sites in the region

Question: what about site specific predictors?

- Random predictor at site *j* W<sup>*j*</sup> of Y<sup>*j*</sup>:
- model  $[Y^j, W^j]$  then  $[Y^j | W^j]$
- Nonrandom predictor  $w^j$ : fit  $\beta_0^j = \gamma w_j$  via empirical Bayes

#### **Matric-normal extension**

$$\mathbf{Y}^{(T+1)\times p} \mid \boldsymbol{\beta}, \boldsymbol{\Sigma} \sim \mathcal{N}(\mathbf{x}^{(T+1)\times k} \boldsymbol{\beta}^{k\times p}, \mathbf{I_{T+1}} \otimes \boldsymbol{\Sigma}^{p\times p})$$

**NOTE:** The IW distribution is the inverse  $\chi^2$  for matrices. It can be generalized to the GIW - it had different numbers of degrees of freedom for different steps in the data staircase for example.

#### Bartlett decomposition:

**Reading Notation:** "u" means "ungauged" sites; "g" means "gauged" sites (with p = u + g:

$$\Sigma = \left( egin{array}{cc} \Sigma^{[u]} & \Sigma^{[ug]} \ \Sigma^{[gu]} & \Sigma^{[g]} \end{array} 
ight)$$

Bartlett decomposition:

$$\Sigma = T \Delta T'$$

where

$$\begin{split} T &= \left( \begin{array}{cc} I & \Sigma^{[ug]}(\Sigma^{[g]})^{-1} \\ 0 & I \end{array} \right) \\ \Delta &= \left( \begin{array}{cc} \Sigma^{[u]} - \Sigma^{[ug]}(\Sigma^{[g]})^{-1}\Sigma^{[gu]} & 0 \\ 0 & \Sigma^{[g]} \end{array} \right) \end{split}$$

## Generalized Inverted Wishart Distribution Reading

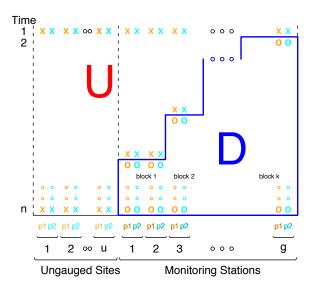
Let

$$\begin{split} &\Gamma^{[u]} &= \boldsymbol{\Sigma}^{[u|g]} = \boldsymbol{\Sigma}^{[u]} - \boldsymbol{\Sigma}^{[ug]} (\boldsymbol{\Sigma}^{[g]})^{-1} \boldsymbol{\Sigma}^{[gu]} \\ &\tau^{[u]} &= (\boldsymbol{\Sigma}^{[g]})^{-1} \boldsymbol{\Sigma}^{[gu]}. \end{split}$$

**Definition:** For  $\Sigma \sim GIW(\Psi, \delta)$ , interate the following decomposition starting with  $\Sigma^{[g]}$  to get successive deg's freedom  $\delta_0, \delta_1, \ldots$ :

$$\begin{split} \boldsymbol{\Sigma}^{[g]} &\sim G I W(\Psi^{[g]}, \delta^{[g]}) \\ \boldsymbol{\Gamma}^{[u]} &\sim I W(\Lambda_0 \otimes \Omega, \delta_0) \\ \tau^{[u]} \mid \boldsymbol{\Gamma}^{[u]} &\sim N\left(\tau_{0\,u}, H_0 \otimes \boldsymbol{\Gamma}^{[u]}\right) \end{split}$$

#### Reminder: the multivariate data staircase



 $\mathbf{g}_i^o$  denotes observed responses at gauged site *i* sites  $\mathbf{g}_i^m$  denotes missing data at gauged site *i*, *i* = 1,...,*g*.

Then 
$$D_T = \{ \mathbf{g}_1^o, ..., \mathbf{g}_g^o \}.$$

Then [Le and Zidek, 2006]:

$$\begin{bmatrix} \mathbf{Y}^{[u]} \mid D_{T}, \mathcal{H} \end{bmatrix} \sim \begin{bmatrix} \mathbf{Y}^{[u]} \mid \mathbf{Y}^{[g_{1}^{m}, \dots, g_{k}^{m}]}, D_{T}, \mathcal{H} \end{bmatrix} \times \\ \prod_{j=1}^{k-1} \begin{bmatrix} \mathbf{Y}^{[g_{j}^{m}]} \mid \mathbf{Y}^{[g_{j+1}^{m}, \dots, g_{k}^{m}]}, D_{T}, \mathcal{H} \end{bmatrix} \\ \times \begin{bmatrix} \mathbf{Y}^{[g_{k}^{m}]} \mid D_{T}, \mathcal{H} \end{bmatrix}.$$

and  $\mathbf{Y}^{[u]}$  only appears in first factor:

$$\begin{pmatrix} \mathbf{Y}^{[u]} \mid \mathbf{Y}^{[g_1^m, \dots, g_k^m]}, D, \mathcal{H} \end{pmatrix} \sim \\ t_{n \times u \ p} \left( \mu^{[u|g]}, \text{Dispersion}, \delta_0 - u + 1 \right). \\ \text{Dispersion} = (\delta_0 - u + 1)^{-1} \Phi^{[u|g]} \otimes (\Lambda_0 \otimes \Omega)$$

- Here Λ<sub>0</sub> represents spatial covariance that links U to G
- Ω represents within site covariance e.g. a four hour block of ozone concentrations or several different chemical species
- δ<sub>0</sub> u + 1 > 0 is required to avoid a degenerate t-distribution. No such thing as a free lunch. Must keep u to realistic size. Don't see this with purely Gaussian process models.

Dispersion =  $(\delta_0 - u + 1)^{-1} \Phi^{[u|g]} \otimes (\Lambda_0 \otimes \Omega)$ 

#### Entropy calculation

The relevent entropy for  $Y^{[u]}$  is from that first factor in the entropy decomposition:

$$H\left[Y^{[u]} \mid Y^{[g_1^m, \dots, g_k^m]}, D\right] = \frac{p}{2} \log |\Lambda_0| + \text{irrelevant terms}$$

- Ungauged sites u must be partitioned into 'add' and 'rem' sites in optimal way.
- Applying the Bartlett decomposition tells us we must find the submatrix of |Λ<sub>0</sub>[add, add]| whose sub–determinant | Λ<sub>0</sub> | corresponds to the 'add' sites in the partitioned Y<sup>[u]</sup>.

**NOTE:** Will simultaneously minimize the entropy left in the 'rem' sites.

## Finding the 'add' sites

- NP-Hard: No exact algorithms for big networks
- Inexact Methods:
  - Greedy add (or subtract) one at a time
  - Reverse Greedy subtract one at a time
- Exact Methods:
  - Complete enumeration
  - Branch and bound

#### How many sites?

#### Compute:

## Entropy(*n*)

#### п

where n is the number of sites for success n's. The ratio will initially increase than decrease. Stop at the maximum (bang for the buck) n.

# Application: Redesign Vancouver's hourly *PM*<sub>10</sub> monitoring field.

- Increase 10 monitoring sites to 16–add 6 new stations from among 20 possible sites <sup>3</sup>.
- Use entropy approach with Normal–GIW predictive distribution.

<sup>&</sup>lt;sup>3</sup>Resembles actual study Nhu Le & I did [Ainslie et al., 2009]

## Method (Will see details in the Practicum:

#### Transform data

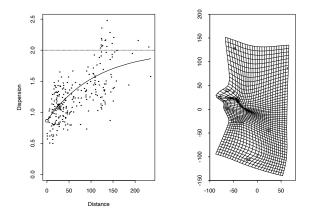
- Remove all-site (common) spatio-temporal trends This means fit the same model to all sites.
- Whiten" residuals with common 24 (hour) dimensional multivariate AR(1) model same idea result is approximately unautocorrelated temporal process
- 10 different station startup times means **monotone** ("staircase") data pattern – use GIW distribution with different degrees of freedom ( $\delta s$ ) for each staircase step
- Select the 6 new stations that jointly maximize conditional entropy

#### Preliminary data analysis:

 $PM_{10}$  levels at the 10 existing stations. Note differing startup times.

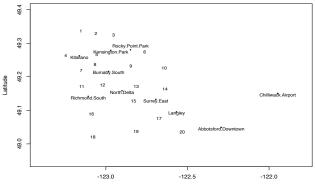
|                     | 0 50 150 250 350                                       |           |
|---------------------|--------------------------------------------------------|-----------|
| Chilliwack.Airport  |                                                        | Mar 1,95  |
| Abbotsford.Downtown | EED-E <b>ntropy (1000) (0000) (1000) (1000) (1000)</b> | Jul 19,94 |
| Kensington.Park     |                                                        | Jul 19,94 |
| Burnaby.South       | ED-3                                                   | Jul 19,94 |
| Rocky.Point.Park    |                                                        | Jul 19,94 |
| Surrey.East         |                                                        | Jul 19,94 |
| Kitsilano           |                                                        | Jul 19,94 |
| Langley             |                                                        | Jan 1,94  |
| North-Delta         |                                                        | Jan 1,94  |
| Richmond.South      |                                                        | Jan 1,94  |
|                     |                                                        |           |

Vancouver's ozone field is clearly non-stationary and the Sampson–Guttorp method was used to estimate the hypercovariance in the GIW matrix.



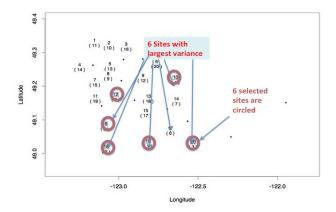
#### The original 10 PM<sub>10</sub> monitoring sites

Also **20** possible new locations – subregions with no existing monitors & big populations.



Longitude

Locations of the old and **newly selected** 'add' sites (square **brackets**). The ranks of the 20 sites by estimated variance is in curved brackets and those selected. Notice  $6^t$  hselected site.



Alternative design strategies: #1

**Non-Compliance detection design:** Select sites with max prob of finding sites out of compliance with regulatory standards.

#### Probability & best design is day-dependent!

- which day?
- a simulated future day? Average day? Bad day?

#### How to implement?

- monitor sites most likely to noncomply?
- do not monitor sites least likely?
- what about existing sites?

**Example:** What if the 6 sites had been selected to catch noncompliance rather than to maximize entropy?

Say we use 10 station hourly data for  $PM_{10}$ , February 28, 1999 & hierarchical Bayes predictive distribution

**DETECTION CRITERION:** 

argmax PR{daily max  $PM_{10}$  Y<sup>6added</sup>  $\geq$  50 ( $\mu g m^{-3}$ )}

**RESULT:** Same as for entropy based design!!!

#### NOTES:

- Entropy does not work for detecting noncompliance nearly as well on August 1, 1998!
- The selected new sites are now determined pretty much by their posterior estimated variances. That is because the spatial correlation is now quite small – strength hard to borrow.
- Oesigning for noncompliance seems largely unexplored issue

### Alternative design strategy #2

Site selection for fields of extremes: Very difficult since spatial dependence declines when looking say at monthly maxima rather than daily maxima.

Yet regulatory criteria metrics (risk) usually base on extremes!

**Example:** EPA'S *PM*<sub>10</sub> criterion:

For particles of diameters of 10 micrometers or less:

Annual Arithmetic Mean: 50  $\mu$ g m<sup>-3</sup>

24 - hour Average:  $150^{FN} \mu \text{g m}^{-3}$ 

The three year average of 98-th annual percentiles of 24 hour averages must be  $\leq$  150 ( $\mu g m^{-3}$ ) at all sites in an urban area. Complex metric  $\Rightarrow$  need predictive distribute to simulate its distribution!

#### The bad news for fields of extremes

- Insufficient data, spatial and temporal.
- Extremes have small inter site dependence
  - between some site pairs, not others
- Conventional approaches fail
- Multivariate extreme value distributions not tractable
  - conditional computation (e.g. entropy) difficult
  - simulating extreme fields hard
- Elusive design objective

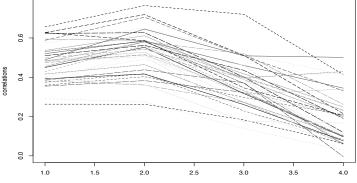
## The good news

Joint distribution of extremes approximately a log multivariate t distribution. Hence can:

- have convenient conditional, marginal distributions
- accommodate existing sites and historical data
- permit simulation of complex metric distributions
- have explicitly computable entropy's, regression models, etc
- I can enable "elusive objectives issue" to be bypassed

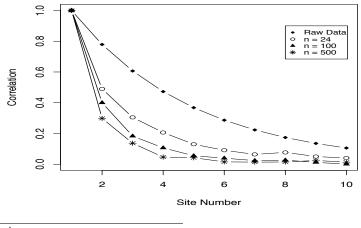
#### Some detail: Inter-site correlations

**Inter–site dependence declines with time span** of extremes for many but not all site pairs **Example:** The figure shows Vancouver's  $PM_{10}$  intersite correlation between maxima computed for various time spans.



raw data, daily, weekly, monthly (30 days) (please look at points 1, 2, 3, and 4 only)

**Simulation study**<sup>4</sup>: multinormal responses; maxima with varying ranges at 10 sites. Multivariate t results show smaller loss of dependence. Inter-site correlations for maxima for simulated fields of extremes. Big n = light tails.



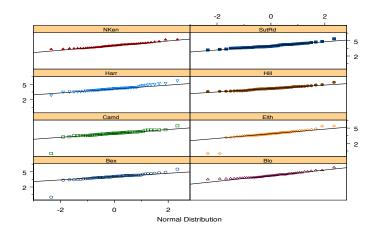
<sup>4</sup>Chang et al. [2007]

#### **Exercises**

**23.6** Try the simulation experiment yourself and confirm that for heavier tails lead to increased intersite correlations

## An approach to monitoring extremes

Empirical results  $\mapsto$  log multivariate - t distribution as approximation to joint distribution of extremes field. QQplots for weekly maxima of hourly log *PM*<sub>10</sub> London 1997 data  $\rightarrow$ **marginal normality of extremes**:



## T approx approach cont'd

## Empirical results $\rightarrow$ well-calibrated 95% (etc) prediction intervals. Supports use of multivariate approximation.

| Credibility Level | Mean | Median |
|-------------------|------|--------|
| 30%               | 35   | 35     |
| 95%               | 96   | 97     |
| 99.9%             | 99.9 | 1      |

Table : Summary of coverage probabilities at different credibility levels for the simulated precipitation data over 319 grid cells, Canadian Climate Model Use of log multivariate t distribution for extreme fields promising. But:

- How far can approximation go? Need new theory
- Must test approximation on case-by-case basis
- need to compare regular and extreme-entropy designs.

## Summary

In this lecture we have seen:

- Why environmental monitoring networks are needed and what they look like
- Why spatio-temporal theory is needed in their design
- A class of models with associated software that provide a platform for designing them.
- The entropy and other criteria for design.

We saw that networks are needed for control and mitigation. Also saw some issues arising:

- Current designs need to be revisited fitness for use.
- Simpler control metrics than the current ones would be preferable for transparency and analysis.
- The current design criteria have not been well spelled out.

#### Some conclusions

- Current urban networks may be inadequate for surveillance of extremes. Much more attention needs to be paid
- But the MaxEnt strategy may be a way out of this problem.
- The EnviroStat approach needs an upgrade that takes account of recent theoretical developments .

#### References

- B Ainslie, C Reuten, DG Steyn, Nhu Le, and James Zidek. Application of an entropy-based bayesian optimization technique to the redesign of an existing monitoring network for single air pollutants. *Journal of Environmental Management*, 90(8):2715–2729, 2009. ISSN 03014797. doi: 10.1016/j.jenvman.2009.02.016.
- William F Caselton and James V Zidek. Optimal monitoring network designs. *Statistics & Probability Letters*, 2(4): 223–227, 1984.
- Howard Chang, Audrey Qiuyan Fu, Nhu D Le, and James V Zidek. Designing environmental monitoring networks to measure extremes. *Environmental and Ecological Statistics*, 14(3):301–321, 2007.
- Jiahua Chen, Constance van Eeden, and James Zidek. Uncertainty and the conditional variance. *Statistics & probability letters*, 80(23):1764–1770, 2010.
- Irving John Good. Rational decisions. Journal of the Royal

*Statistical Society. Series B (Methodological)*, pages 107–114, 1952.

- Nhu D Le and James V Zidek. *Statistical analysis of environmental space-time processes*. Springer Science & Business Media, 2006.
- Dennis V Lindley. On a measure of the information provided by an experiment. *The Annals of Mathematical Statistics*, pages 986–1005, 1956.
- Paola Sebastiani and Henry P Wynn. Maximum entropy sampling and optimal bayesian experimental design. *Journal* of the Royal Statistical Society: Series B (Statistical Methodology), 62(1):145–157, 2002.
- Michael C Shewry and Henry P Wynn. Maximum entropy sampling. *Journal of Applied Statistics*, 14(2):165–170, 1987.
- J Zidek and D Zimmerman. Monitoring network designs. Handbook of Spatial Statistics (ed. A. Gelfand, P. Diggle, M. Fuentes and P. Guttorp), pages 131–148, 2009.
- James V Zidek, Weimin Sun, and Nhu D Le. Designing and integrating composite networks for monitoring multivariate

gaussian pollution fields. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 49(1):63–79, 2000.