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9.1 Overview

Modeling of the spatial dependence structure of environmental processes is fundamental to
almost all statistical analyses of data that are sampled spatially. The classical geostatistical
model for a spatial process {Y(s) : s € D} defined over the spatial domain D C R, specifies
a decomposition into mean (or trend) and residual fields, Y(s) = 1¢(s) + ¢(s). The process
is commonly assumed to be second order stationary, meaning that the spatial covariance
function canbe written C(s, s+h) = Cov(Y(s), Y(s+h)) = Cov(e(s),e(s+h)) = C(h),so that _
the covariance between any two locations depends only on the spatial lag vector connecting
them. There is a long history of modeling the spatial covariance under an assumption of
“intrinsic stationarity” in terms of the semivariograni, y (h) = %var( Y(s+h)—Y(s)). However,
itis now widely recognized that most, if not all, environmental processes manifest spatially
nonstationary or heterogeneous covariance structure when considered over sufficiently
large spatial scales.

A fundamental notion underlying most of the current modeling approaches is that the
spatial correlation structure of environmental processes can be considered to be approx-
imately stationary over relatively small or “local” spatial regions. This local structure is
typically anisotropic. The methods can then be considered to describe spatially varying,
locally stationary, anisotropic covariance structure. The models should reflect the effects of
known explanatory environmental processes (wind/transport, topography, point sources,
etc.). Ideally we would like to model these effects directly, but there have been only a few
recent approaches aiming at such explicit modeling (see Calder, 2008).

We distinguish our focus on nonstationarity in spatial covariance from nonstationarity in
the mean or trend, as commonly addressed by variants of universal kriging, and from non-
stationary processes modeled by intrinsic functions of order k (IRF-F) and characterized by
generalized covariance functions, including the one-dimensional special cases of fractional
and integrated Brownian motions. Filtered versions of these processes, or “spatial incre-
ments of order k,” are stationary. In some cases, appropriately identified universal kriging
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and intrinsic random function kriging are essentially equivalent (Christensen, 1990). See
also Stein (2001) and Buttafuoco and Castrignand (2005).

The “early” literature (reaching back only to the 1980s) on modeling of nonstationary
spatial covariance structure was primarily in the context of models for space—time random
fields. Prior to 1990, the only apparent approach to this feature of environmental monitor-
ing data (outside of local analyses in subregions where the process might be more nearly
stationary) derived from an empirical orthogonal function decomposition of the space—
time data matrix, a technique common in the atmospheric science literature. Reference to
this approach in the statistical literature dates at least back to Cohen and Jones (1969) and
Buell (1972, 1978), although perhaps the most useful elaboration of the method for spatial
analysis appears in Obled and Creutin (1986). A number of new computational approaches
were introduced in the late 1980s and early 1990s, beginning with Guttorp and Sampson’s
spatial deformation approach, first mentioned in print in a 1989 comment in a paper by
Haslett and Raftery (1989). Shortly following was Haas’ “moving window” spatial esti-
mation (Haas, 1990a, 1990b, 1995), although this approach estimates covariance structure
locally without providing a (global) model; Sampson and Guttorp’s claboration of their
first approach to the spatial deformation model based on multidimensional scaling (1992);
an empirical Bayes shrinkage approach of Loader and Switzer (1992); and Ochlert’s kernel
smoothing approach (1993). Guttorp and Sampson (1994) reviewed this literature on meth-
ods for estimating heterogencous spatial covariance functions with comments on further
extensions of the spatial deformation method. In this chapter we focus on the developments
from the late 1990s to the present, updating the review of methods provided by Sampson
(2007). There has been considerable development and application of kernel and process
convolution models, beginning with the work of Higdon (1998) and Fuentes (2001). But
despite a substantial growth in the literature of methods on nonstationary modeling, there
is almost no conveniently available software at this point in time for the various methods
reviewed here. This chapter presents no illustrative case studies and we refer the reader to
the original sources for applications.

We review the current literature under the headings of: smoothing and kernel meth-
ods, basis function models, process convolution models, and spatial deformation models,
concluding with brief mention of parametric models and further discussion.

9.2 Smoothing and Kernel-Based Methods

Perhaps the simplest approaches to dealing with nonstationary spatial covariance struc-
ture begin either from the perspective of locally stationary models, which arc empirically
smoothed over space, or from the perspective of the smoothing and /or interpolation of em-
pirical covariances estimated among a finite number of monitoring sites. Neither of these
perspectives incorporate any other explicit modeling of the spatial heterogeneity in the spa-
tial covariance structure. Haas” approach to spatial estimation for nonstationary processes
(Haas 1990a, 1990b, 1995) simply computes local estimates of the spatial covariance struc-
ture, but does not integrate these into a global model. Oehlert’s (1993) kernel smoothing
approach and Loader and Switzer’s (1992) empirical Bayesian shrinkage and interpolation
both aim to smoothly interpolate empirical covariances.

Papers by Fuentes (2001, 2002a, 2002b) and by Nott and Dunsmuir (2002) propose con-
ceptually related approaches for representing nonstationary spatial covariance structure
in terms of spatially weighted combinations of stationary spatial covariance functions
assumed to represent the local covariance structure in different regions. First, consider
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dividing the spatial domain D into k subregions S;, each with a sufficient number of points
to estimate a (stationary) variogram or spatial covariance function locally. Fuentes (2001)

represents the spatial process Y(s), as a weighted average of “orthogonal local stationary
processes”:

k
Y(s) =) wi(s)Yi(s) (9.1)
i=1

where w;(s) is a chosen weight function, such as inverse squared distance between s and
the center of subregion §,. The nonstationary spatial covariance structure is given by

Cov(Y(s), Yw) = >

i=

| wi(s)w, (u)Cov(Yi(s), Yi(u))

=5 w (s uCh(s - u) 92)

where Cy, (s — u) represents a stationary spatial covariance function. Fuentes chooses the
number of subgrids, k, using a Bayesian information criterion (BIC). The stationary pro-
cesses Yj(s) are actually “local” only in the sense that their corresponding covariance func-
tions, Cy,(s — u), are estimated locally, and they are “orthogonal” by assumption in order
to represent the overall nonstationary covariance simply as a weighted sum of covari-
ances. Fuentes estimates the parameters with a Bayesian approach providing predictive
distributions accounting for uncertainty in the parameter estimates without resorting to
computationally intensive MCMC methods.

Fuentes and Smith (2001) proposed to extend the finite decomposition of Y(x) of Fuentes
(2001) to a continuous convolution of local stationary processes:

Y(x) = /D w(x — 5)Yy(s)(x)ds. (9.3)

Estimation would require that the spatial field of parameter vectors 6(s), indexing the sta-
tionary Gaussian processes, be constrained to vary smoothly. In practice, the integrals of
(9.3) and spectral representations of the spatial covariance (Fuentes, 2002a) are approxi-
mated with discrete sums involving k independent spatial locations s; and corresponding
processes Y, (s), as in Equation (9.2) above. (See also Fuentes, 2002b.)

Nott and Dunsmuir’s (2002) approach, proposed as a more computationally feasible
alternative to something like the spatial deformation model of Sampson and Guttorp (1992),
has the stated aim of reproducing an empirical covariance matrix at a set of monitoring sites
and then describing the conditional behavior given monitoring site values with a collection
of stationary processes. We will use the same notation as that above, although for Nott and
Dunsmuir, 7 will index the monitoring sites rather than a smaller number of subregions,
and the Cy,(x — y) represent local residual covariance structure after conditioning on values
at the monitoring sites. These are derived from locally fitted stationary models. In their

general case, Nott and Dunsmuir’s representation of the spatial covariance structure can
be written

k
Cov(Y(x), Y(y)) = Zo(x, y) + Y _ wix)wi(y)Cq (x - y)

where Zy(x, y) is a function of the empirical covariance matrix at the monitoring sites,
C = {cij], and the local stationary models computed so that Cov(Y(x;), Y(x;)) = ci;. They
further propose to replace the empirical covariance matrix C by the Loader and Switzer
(1992) empirical Bayes shrinkage estimator € = yC + (1 — y)C,, where Cy is a covariance
matrix obtained by fitting some parametric covariance function model. In this case, it can
be shown that the Nott and Dunsmuir estimate for covariances between monitored and
unmonitored sites is the same as that of the proposed extrapolation procedure of Loader
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and Switzer, but the estimate for covariances among unmonitored sites is different, and in
particular, not dependent on the order with which these unmonitored sites are considered,
as was the case for Loader and Switzer’s proposal.

Guillot et al. (2001) proposed a kernel estimator similar to the one introduced by Oehlert
(1993), although they do not reference this earlier work. Let D denote the spatial domain
so that the covariance function C(x, y) is defined on D x D, and suppose an empirical
covariance matrix C = [c;;] computed forsites {x;, i =1, ..., nn}. Defineanonnegative kernel
K integrating to one on D x D and let K.(u, v) = ¢ YK (u/e, v/e) for any real positive €.
Thendefinea partition {Dy, ..., D,}of D (suchas the Voronoi partition). The nonparametric,
nonstationary estimator of C obtained by regularization of C is

Cxy) = Z Cij / Ki(x —u,y — v)dudv. (9.4)
i

D, x D,

The authors prove positive definiteness of the estimator for positive definite kernels, discuss
selection of the bandwidth parameter ¢, and demonstrate an application where, surpris-
ingly, kriging with the nonstationary covariance model is outperformed by kriging with a
fitted stationary model.

Finally, we note the nonsmooth, piecewise Gaussian model approach of Kim, Mallick
and Holmes (2005), which automatically partitions the spatial domain into disjoint regions
using Voronoi tessellations. This model structure, specifying stationary processes within
regions (tiles of the tessellation) and independence across regions, is fitted within a Bayesian
framework. It is applied to a soil permeability problem where this discrete nonstationary
structure seems justified.

9.3 Basis Function Models

The earliest modeling strategy in the literature for nonstationary spatial covariance structure
in the context of spatial-temporal applications was based on decompositions of spatial
processes in terms of empirical orthogonal functions (EOFs). The original methodology in
this field has received renewed attention recently in the work of Nychka and colleagues
(Nychka and Saltzman, 1998; Holland et al., 1998; Nychka et al., 2002). Briefly, considering
the same spatial-temporal notation as above, the 1 x 1 empirical covariance matrix C may
be written with a spectral decomposition as

nr
S=FAF =) MFF (9.5)
k
k=1

where it = min(n, T). The extension of this finite decomposition to the continuous spatial
case represents the spatial covariance function as

Cxy) = > MFr(x)Fily) (9.6)
k=1

where the eigenfunctions F(x) represent solutions to the Fredholm integral equation and
correspond to the Karhunen-Loéve decomposition of the (mean-centered) field as

Y 1) =Y At) Fel(x). (97)

k=1
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The modeling and computational task here is in computing a numerical approximation
to the Fredholm integral equation, or equivalently, choosing a set of generating functions
e1(x), . . -, ep(x) that are the basis for an extension of the finite eigenvectors Fy to eigenfunc-
tions Fx(x). (See Guttorp and Sampson (1994), Creutin and Obled (1982), Obled and Creutin
(1986), and Preisendorfer (1988, Sec. 2d) for further details.)

In Holland et al. (1998), the spatial covariance function is represented as the sum of a
conventional stationary isotropic spatial covariance model and a finite decomposition in
terms of empirical orthogonal functions. This corresponds to a decomposition of the spatial
process as a sum of a stationary isotropic process and a linear combination of M additional
basis functions with random coefficients, the latter sum representing the deviation of the
spatial structure from stationarity.

Nychka et al. (2002) introduced a multiresolution wavelet basis function decomposition
with a computational focus on large problems with observations discretized to the nodes
of a (large) N x M grid. The example application in this chapter is to air quality model
output on a modest 48 x 48 grid. In the current notation, suppressing the temporal index,

they write
NM

Y(x) =Y AFx). 9.8)
k=1

In the discrete case, they write F = [Fy;], where Fi; = Fi(x;), x; being the ith grid point,
so that one can write Z = FA and C = FX 4F'. For the basis functions Fy, they use a “W”
wavelet basis with parent forms that are piecewise quadratic splines that are 1ot orthogonal
or compactly supported. These were chosen because they can approximate the shape of
common covariance models, such as the exponential, Gaussian and Matérn, depending
on the specification (and off-diagonal sparcity) of the matrix X'4. Recent work (Matsuo,
Nychka, and Paul, 2008) has extended the methodology to accommodate irregularly spaced
monitoring data and a Monte Carlo expectation-maximization (EM) estimation procedure
practical for large datasets. They analyze an ozone monitoring network dataset with 397
sites discretized (again) to a 48 x 48 grid.

Pintore, Holmes, and colleagues (Pintore and Holmes, 2004; Stephenson et al., 2005)
work with both Karhunen-Loéve and Fourier expansions. Nonstationarity is introduced
by evolving the stationary spectrum over space in terms of a latent spatial power process.
The resulting models are valid in terms of the original covariance function, but with local
parameters. A Bayesian framework is used with MCMC estimation.

9.4 Process Convolution Models

Higdon (1998) introduced a process convolution approach for accommodating nonsta-
tionary spatial covariance structure. (See also Higdon, Swall, and Kern (1999).) The basic
idea is to consider the fact that any stationary Gaussian process Z(s) with correlogram
p(d) = [z k(s)k(s — d)ds can be expressed as the convolution of a Gaussian white noise
process ¢(s) with kernel k(s)

Y(s) = | k(s — u)¢(u)du. (9.9)
JRB2

A particular case of interest is the choice of bivariate Gaussian density functions with 2 x 2
covariance matrix X for the kernel, which results in processes with stationary anisotropic
Gaussian correlation functions with the principal axes of & determining the directions of
the anisotropic structure.
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To account for nonstationarity, Higdon (1998) and Higdon et al. (1999) let the kernel vary
smoothly with spatial location. Letting k,(-) denote a kernel centered at the point s, with a
shape depending on s, the correlation between two points s and s’ is

p(s,s) = ‘ ks(u)ks (u)du. (9.10)

Jg2

Higdon et al. (1999) demonstrate the particular case where the k,(-) are bivariate Gaussian
densities characterized by the shape of ellipses underlying the 2 x 2 covariance matrices. The
kernels are constrained to evolve smoothly in space by estimating the local ellipses under
a Bayesian paradigm that specifies a prior distribution on the parameters of the ellipse (the
relative location of the foci) as a Gaussian random field with a smooth (in fact, Gaussian)
spatial covariance function. It should be noted that the form of the kernel determines the
shape of the local spatial correlation function, with a Gaussian kernel corresponding to a
Gaussian covariance function. Other choices of kernels can lead to approximations of other
common spatial correlation functions.

Paciorek and Schervish (2006) extend this approach and create a class of closed-form
nonstationary covariance functions, including a nonstationary Matérn covariance param-
eterized by spatially varying covariance parameters in terms of an eigen-decomposition of
the kernel covariance matrix k(-). .

Calder and Cressie (2007) discuss a number of topics associated with convolution-based
modeling including the computational challenges of large datasets. Calder (2007, 2008)
extends the approach to dynamic process convolutions for multivariate space-time moni-
toring data.

D’Hondt et al. (2007) apply the process convolution model with Gaussian kernels (which
they call a nonstationary anisotropic Gaussian kernel (AGK) model) to the nonstationary
anisotropic texture in synthetic aperture radar (SAR) images. The Gaussian kernels are
estimated locally, in contrast to the Bayesian smoothing methods of Higdon and Paciorek
and Schervish.

9.5 Spatial Deformation Models

The spatial deformation approach to modeling nonstationary or nonhomogeneous spatial
covariance structures has been considered by a number of authors since the early work
represented in Sampson and Guttorp (1992) and Guttorp and Sampson (1994). We first
review the modeling approach, as presented by Meiring et al. (1997). We will then review
some of the other work on this methodology, focusing on recently introduced Bayesian
methods.

Suppose that temporally independent samples Y;; = Y (x,, t) are available at N sites
{xi,i =1,..., N, typically in R?} and at T points in time {t = 1,..., T}. X = [X; X;]
represents the matrix of geographic locations. We now write the underlying spatial-temporal
process as

Y (X, 8 =p(x )+ v ()" E (X)+ E, (x, ), (9.11)

where 1 (x, t) is the mean field, and E; (x) is a zero mean, variance one, continuous second-
order spatial Gaussian process, i.e., Cov(E(x), E¢(y)) — [x > y]1.
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The correlation structure of the spatial process is expressed as a function of Euclidean
distances between site locations in a bijective transformation of the geographic coordinate
system

cor(E(x), Ex(y)) = po(I f(x) = f(¥)ID), (9.12)

where f(-) is a transformation that expresses the spatial nonstationarity and anisotropy,
ps belongs to a parametric family with unknown parameters ¢, v(x) is a smooth function
representing spatial variance, and E, (x, t) represents measurement error and/or very short
scale spatial structure, assumed Gaussian and independent of E,. For mappings from R? to
R?, the geographic coordinate system has been called the “G-plane” and the space repre-
senting the images of these coordinates under the mapping is called the “D-plane,” Perrin
and Meiring (1999) prove that this spatial deformation model is identifiable for mappings
from R* to R} assuming only differentiability of the isotropic correlation function pq().
Perrin and Senoussi (2000) derive analytic forms for the mappings f (-) under ditferentia-
bility assumptions on the correlation structure for both the model considered here, where
pe() is considered to be a stationary and isotropic correlation function (“stationary and
isotropic reducibility”), and for the case where this correlation function is stationary, but
not necessarily isotropic (“stationary reducibility”).

Mardia and Goodall (1992) were the first to propose likelihood estimation and an exten-
sion to modeling of multivariate spatial fields (multiple air quality parameters) assuming
a Kronecker structure for the space x species covariance structure. Likelihood estimation
and an alternative radial basis function approach to representation of spatial deformations
was proposed by Richard Smith in an unpublished report in 1996.

Meiring et al. (1997) fit the spatial deformation model to the empirically observed cor-
relations among a set of monitoring sites by numerical optimization of a weighted least
squares criterion constrained by a smoothness penalty on the deformation computed as
a thin-plate spline. The problem is formulated so that the optimization is with respect
to the parameters, ¢, of the isotropic correlation model and the coordinates of the moni-
toring sites, & = f (x,), in the deformation of the coordinate system. This is a large and
often difficult optimization problem. It becomes excessively taxing when uncertainty in
the estimated model is assessed by resampling methods or cross-validation. However,
it is the approach that is implemented in the most conveniently available software for
fitting the deformation model. These are the EnviRo.stat R programs that accompany
the text by Le and Zidek (2006) on the analysis of environmental space-time processes
(http://enviro.stat.ubc.ca/).

lovleff and Perrin (2004) implemented a simulated annealing algorithm for fitting the spa-
tial deformation model by optimization, with respect to correlation function parameters ¢
and D-plane coordinates of the monitoring sites, & = f (x,), of a least squares criterion of
goodness-of-fit to an empirical sample covariance matrix. Rather than impose an analytic
smoothness constraint on the mapping (such as the thin-plate, spline-based, bending en-
ergy penalty of Meiring et al. (1997)), they use a Delaunay triangulation of the monitoring
sites to impose constraints on the random perturbations of the D-plane coordinates &; that
guarantee that the resulting mapping f(x;) is indeed bijective, i.e., it does not “fold.” Using
any of the other methods discussed here, the achievement of bijective mappings has relied
on appropriate tuning of a smoothness penalty or prior probability model for the family of
deformations.

Damian et al. (2001, 2003) and Schmidt and O’Hagan (2003) independently proposed
similar Bayesian modeling approaches for inference concerning this type of spatial de-
formation model and for subsequent spatial estimation accounting for uncertainty in the
estimation of the spatial deformation model underlying the spatial covariance structure.
We present here details of the model of Damian et al. (2001, 2003).
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For a Gaussian process with constant mean, ¢ (x, ) = 1, and assuming a flat prior for u,
the marginal likelihood for the covariance matrix X has the Wishart form

i T
F Uyl Z)) = 2r 217702 exp {—Ehu‘] 'C} (9.13)

where C is the sample covariance with elements,

-
Cy = ;« 12_1: (ir = 0) (v — 1), (9.14)
and the true covariance matrix is parameterized as X = (0, v,, &), with L = (u,-v,-)"/2
po(lt&i — &;11), and & = f(x;). The parameters to be estimated are (¢, v, &;i =1, ..., N}.
The Bayesian approach requires a prior onall of these parameters. The novel and challeng-
ing aspect of the problem concerns the prior for the spatial configuration of the &. Writing
the matrix = = [&], ..., &v]' =[ 3] 5], Damian et al. (2001, 2003) use a prior of the form

7 (Z) o exp {—51—7 [5/KE + 5/ K3 } (9.15)

where K is a function of the geographic coordinates only—the “bending energy matrix”
of a thin-plate spline (see Bookstein, 1989)—and t is a scale parameter penalizing “non-
smoothness” of the transformation f. Mardia, Kent, and Walder (1991) first used a prior
of this form in the context of a deformable template problem in image analysis. It should
be noted that the bending energy matrix K is of rank 1 — 3 and the quadratic forms in the
exponent of this prior are zero for all affine transformations, so that the prior is flat over
the space of all affine deformations and thus is improper.

The parameter space is highly multidimensional and the posterior distributions are not of
closed form, therefore, a Metropolis-Hastings algorithm was implemented to sample from
the posterior. (See Damian et al. (2001) for details of the MCMC estimation scheme.) Once
estimates for the new locations have been obtained, the transformation is extrapolated to
the whole area of interest using a pair of thin-plate splines.

Schmidt and O’Hagan (2003) work with the same Gaussian likelihood, but utilize a
general Gaussian process prior for the deformation. When considered in terms of the coor-
dinates &, the effect of this on the form of the prior 7(Z) is to center the coordinate vectors
Zj, J = 1,2, attheir geographic locations and to replace K with a full rank ¢ovariance matrix
of a form to be specified. Utilizing the known interpretation of thin-plate splines as kriging
for an intrinsic random function with a particular form of (generalized) covariance matrix,
we see that the Damian et al. (2001) approach may be considered similarly to correspond
to a prior for the deformation considered as an intrinsic random function. Schmidt and
O’Hagan (2003) also differ from Damian et al. (2001) in their choice of parametric isotropic
correlation models and in many of the details of the MCMC estimation scheme, but they
are otherwise similarly designed methods.

The atmospheric science literature includes a number of papers with deformation models
motivated or determined explicitly by physical processes. (See, for example, Riishojgaard
(1998) and Fu et al. (2004).) Xiong et al. (2007) implement a nonlinear mapping model
for nonstationary covariance-based kriging in a high-dimensional (p = 19) metamodeling
problem using computer simulation data.

Anderes and Stein (2008) are the first authors to address the application of the deformation
model to the case of a single realization of a spatial process obtained as the deformation
of an isotropic Gaussian random field. They present a complete mathematical analysis
and methodology for observations from a dense network with approximate likelihood
computations derived from partitioning the observations into neighborhoods and assuming
independence of the process across partitions.
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= ) e

9.6 Discussion

There is clearly much active work on the development and application of models for nonsta-
tionary spatial processes in an expanding range of fields beyond the atmospheric science
and environmental applications that motivated most of the early work in this field. We
have seen novel applications in image analysis (D’Hondt et al., 2007) and “metamodel-
ing in engineering design” (Xiong et al., 2007). It appears unlikely that there will prove to
be one “best” approach for all applications from among the major classes reviewed here:
kernel smoothing, process convolution models, spectral and basis functions models, and
deformation models.

Although this chapter covers substantial literature, the recent methodologies are still not
mature in a number of respects. First, most of the approaches reviewed here are not easily
applied as the developers of these methods have, for the most part, not made software avail-
able for use by other investigators. A number of questions of practical importance remain
to be addressed adequately through analysis and application. Most of the literature re-
viewed above addresses the application of the fitted spatial covariance models to problems
of spatial estimation, as in kriging. The Bayesian methods, all propose to account for the un-
certainty in the estimation of the spatial covariance structure, but the practical effects of this
uncertainty have not yet been demonstrated. There remains a need for further development
of diagnostic methods and experience in diagnosing the fit of these alternative models. In
particular, the nature of the nonstationarity, or equivalently, the specification or estimation
of the appropriate degree of spatial smoothness in these models expressed in prior distri-
butions or regularization parameters, needs further work. For the Bayesian methods, this
translates into a need for further understanding and/or calibration of prior distributions.

This chapter has focused on nonparametric approaches to the modeling of nonstationary
spatial covariance structure for univariate spatial processes. In some cases one may wish
to formally test the hypothesis of nonstationarity (Fuentes, 2005; Corstanje et al., 2008).
Mardia and Goodall (1992), Gelfand et al. (2004), and Calder (2007, 2008) address multi-
variate problems that are addressed in further detail in Chapter 28. Some parametric models
have also been introduced. These include parametric approaches to the spatial deformation
model, including Perrin and Monestiez’ (1998) parametric radial basis function approach
to the representation of two-dimensional deformations. Parametric models appropriate for
the characterization of certain point source effects have been introduced by Hughes-Oliver
etal. (1998, 1999, 2009). -

References

Anderes, E.B. and Stein, M.L. (2008). Estimating deformations of isotropic Gaussian random fields
on the plane. Annals of Statistics, 36, 719-741.

Bookstein, F.L. (1989). Principal warps — Thin-plate splines and the decomposition of deformations.
[EEE Transactions on Pattern Analysis, 11, 567-585.

Buell, E.C. (1972). Integral equation representation for factor analysis. Journal of Atmospheric Science,
28, 1502-1505.

Buell, E.C. (1978). The number of significant proper functions of two-dimensional fields. Journal of
Applied Meteorology, 17, 717-722.

Buttafuoco, G. and Castirgnano, A. (2005). Study of the spatio-temporal variation of soil moisture
under forest using intrinsic random functions of order k. Geoderma, 128, 208-220.




128 Handbook of Spatial Statistics

Calder, C.A. (2007). Dynamic factor process convolution models for multivariate space-time data with
application to air quality assessment. Environmental and Ecological Statistics, 14, 229-247.
Calder, C.A. (2008). A dynamic process convolution approach to modeling and ambient particulate

matter concentrations. Environnietrics, 19, 39-48.

Calder, C.A.and Cressie, N. (2007). Some topics in convolution-based spatial modeling. In: Proceedings
of the 56t Session of the nternational Statistical Institute, Lisboa. International Statistical Institute.
Voorburg, the Netherlands.

Christensen, R. (1990). The equivalence of predictions from universal kriging and intrinsic random
function kriging. Matiematical Geology, 22, 655-664.

Cohen, A., and Jones, R.H. (1969). Regression on a random field. Journal of the American Statistical
Association, 64, 1172-1182.

Corstanje, R, Grunwald, S., and Lark, R.M. (2008). Inferences from fluctuations in the local variogram
about the assumption of stationarity in the variance. Geoderima, 143, 123-132.

Creutin, J.D. and Obled, C. (1982). Objective analyses and mapping techniques for rainfall fields: An
objective comparison. Water Resources Research, 18, 413-431.

Damian, D., Sampson, P.D., and Guttorp, P. (2001). Bayesian estimation of semi-parametric non-
stationary spatial covariance structures. Envirommetrics, 12, 161-178.

Damian, D., Sampson, PS., and Guttorp, P (2003). Variance modeling for nonstationary spa-
tial processes with temporal replicates. Journal of Geophysical Research-Atmospheres, 108, D24,
8778.

D’Hondt, O., Lopez-Martiez, C., Ferro-Famil, L., and Pottier, E. (2007). Spatially nonstationary
anisotropic texture analysis in SAR images. IEEE Transactions on Geoscience and Rewmote Sens-
ing, 45, 3905-3918.

Fu, WW,, Zhou, G.Q., and Wang, H.J. (2004). Ocean data assimilation with background error covari-
ance derived from OGCM outputs. Advances in Abmospheric Sciences, 21, 181-192.

Fuentes, M. (2001). A new high frequency kriging approach for nonstationary environmental pro-
cesses. Environmetrics, 12, 469-483.

Fuentes, M. (2002a). Spectral methods for nonstationary spatial processes. Bionietrika, 89, 197-210.

Fuentes, M. (2002b). Interpolation of nonstationary air pollution processes: A spatial spectral ap-
proach. Statistical Modelling, 2, 281-298.

Fuentes, M. (2005). A formal test for nonstationarity of spatial stochastic processes. Journal of Multi-
variate Analysis, 96, 30-54.

Fuentes, M. and Smith, R.L. (2001). A new class of nonstationary spatial models. Tech report, North
Carolina State Univ. Institute of Statistics Mimeo Series #2534, Raleigh.

Gelfand, A.E., Schmidt, A.M., Banerjee, S., and Sirmans, C.F. (2004). Nonstationary multivariate pro-
cess modeling through spatially varying coregionalization. Test, 13, 263-312.

Guillot, G., Senoussi, R., and Monestiez, P. (2001). A positive definite estimator of the non stationary
covariance of random fields. In: GeoENV 2000: Third European Conference on Gevstatistics for
Envirommental Applications, P. Monestiez, D. Allard, and R. Froidevaux, Eds., Kluwer, Dordrecht,
the Netherlands, 333-344.

Guttorp, P, and Sampson, PD. (1994). Methods for estimating heterogeneous spatial covariance
functions with environmental applications. In: Handbook of Statistics, vol. 12, G.P. Patil and C.R.
Rao, Eds., Elsevier Science, New York, pp. 661-689.

Haas, T.C.(1990a). Kriging and automated variogram modeling within a moving window. Atmospheric
Environmment, 24A, 1759-1769.

Haas, T.C. (1990b). Lognormal and moving window methods of estimating acid deposition. Journal
of the American Statistical Association, 85, 950-963.

Haas, T.C. (1995). Local prediction of a spatio-temporal process with an application to wet sulfate
deposition. Journal of the American Statistical Association, 90, 1189-1199.

Haslett, ]. and Raftery, A.E. (1989). Space-time modelling with long-memory dependence: Assessing
Ireland’s wind resource (with discussion). Journal of the Royal Statistical Society, Ser. C, 38, 1-50.

Higdon, D. (1998). A process-convolution approach to modeling temperatures in the North Atlantic
Ocean, fournal of Environmental and Ecological Statistics, 5, 173-190.

Higdon, D.M,, Swall, ]., and Kern, J. (1999). Non-stationary spatial modeling. In Bayesian Statistics 6,
J.M. Bernardo, J.O. Berger, A.P. David, and A.F.M. Smith, Eds., Oxford University Press, Oxford,
U.K., pp. 761-768.




t of Spatial Statistics

space-time data with
cs, 14, 229-247.
1 ambient particulate

deling. In: Proceedings
al Statistical Institute.

and intrinsic random
e American Statistical
in the local variogram
132.

s for rainfall fields: An

semi-parametric non-

w nonstationary spa-
Atmospheres, 108, D24,

>atially nonstationary
ience and Remote Sens-

‘kground error covari-
181-192.

ry environmental pro-

metrika, 89, 197-210.
A spatial spectral ap-

-esses. Journal of Multi-
els. Tech report, North
nary multivariate pro-
-312.

»r of the non stationary
ence on Geostatistics for

ds., Kluwer, Dordrecht,

ous spatial covariance
1.12, G.P. Patiland C.R.

1g window. Atmospheric
acid deposition. Journal
plication to wet sulfate
dependence: Assessing
' Society, Ser. C, 38, 1-50.

es in the North Atlantic

. In Bayesian Statistics 6,
Iniversity Press, Oxford,

Constructions for Nonstationary Spatial Processes 129

Holland, D., Saltzman, N., Cox, L., and Nychka, D. (1998). Spatial prediction of dulfur diox-
ide in the eastern United States. In: GeoENV [I: Gevstatistics for Environmental Applications. ).
Gomez-Hernandez, A. Soares, and R. Froidevaux, Eds. Kluwer, Dordrecht, the Netherlands,
pp- 65-76.

Hughes-Oliver, J.M. and Gonzalez-Farias, G. (1999). Parametric covariance models for shock-induced
stochastic processes. Journal of Statistical Planning and Inference, 77, 51-72.

Hughes-Oliver, J.M., Gonzalez-Farias, G., Lu, J.C., and Chen, D. (1998). Parametric nonstationary
spatial correlation models. Statistics and Probability Letters, 40, 267-278.

Hughes-Oliver, J.M., Heo, T.Y., and Ghosh, S.K. (2009). An auto regressive point source model for
spatial processes. Enwvirometrics, 20, 575-594.

lovieff, S. and Perrin, O. (2004). Estimating a non-stationary spatial structure using simulated anneal-
ing. Journal of Computational and Graphical Statistics, 13, 90~105.

Kim, H.M., Mallick, B.K., and Holmes, C.C. (2005). Analyzing nonstationary spatial data using piece-
wise Gaussian processes. Journal of the American Statistical Association, 100, 653-658.

Le, N.D. and Zidek, ].V. (2006). Statistical Analysis of Environmmental Space-Time Processes. Springer, New
York.

Loader, C., and Switzer, P. (1992). Spatial covariance estimation for monitoring data. In: Statistics in
Environmental and Earth Sciences, A. Walden and P. Guttorp, Eds., Edward Arnold, London,
pp- 52-70.

Mardia, K.V, and Goodall, C.R. (1992). Spatial-temporal analysis of multivariate environmental mon-
itoring data. In: Multivariate Environmmental Statistics 6. N.K. Bose, G.P. Patil, and C.R. Rao, Eds,,
North Holland, New York, pp. 347-385.

Mardia, K.V., Kent, ]. T, and Walder, A.N. (1991). Statistical shape models in image analysis. In: Com-
puting Science and Statistics: Proceedings of the 23rd Symposiun on the hiterface. E.M. Keramidas,
ed., Interface Foundation of America, Fairfax, VA., pp. 550-557.

Matsuo, T., Nychka, D., and Paul, D. (2008). Nonstationary covariance modeling for incomplete data:
Monte Carlo EM approach. Forthcoming. See http://www.image.ucar.edu/~nycka/man.html

Meiring, W., Monestiez, ., Sampson, P.D., and Guttorp, P. (1997). Developments in the modelling
of nonstationary spatial covariance structure from space-time monitoring data. In: Geostatistics
Wallongong '96, E.Y. Baafi and N. Schofield, eds., Kluwer, Dordrecht, the Netherland, pp. 162-
173.

Nott, D.J. and Dunsmuir, W.T.M. (2002). Estimation of nonstationary spatial covariance structure.
Biometrika, 89, 819-829.

Nychka, D. and Saltzman, N. (1998). Design of air quality networks. In: Case Studies in Environmental
Statistics. D. Nychka, W. Piegorsch, and L. Cox, eds. Springer-Verlag, New York, pp. 51-76.

Nychka, D., Wikle, C., and Royle, ].A. (2002). Multiresolution models for nonstationary spatial co-
variance functions. Statistical Modelling, 2, 315-331.

Obled, Ch. and Creutin, ].D. (1986). Some developments in the use of empirical orthogonal functions
for mapping meteorological fields. journal of Applied Meteorology, 25, 1189-1204.

Oehlert, G.W. (1993). Regional trends in sulfate wet deposition. Journal of the American Statistical
Association, 88, 390-399.

Paciorek, C.J. and Schervish, M.J. (2006). Spatial modelling using a new class of nonstationary covari-
ance functions. Environmetrics, 17, 483-506.

Perrin, O. and Meiring, W. (1999). Identifiability for non-stationary spatial structure. Journal of Applied
Probability, 36, 1244-1250.

Perrin, O. and Monestiez, P. (1998). Modeling of non-stationary spatial covariance structure by para-
metric radial basis deformations. In: GeoENV II: Geostatistics for Environmental Applications. J.
Gomez-Hernandez, A. Soares, and R. Froidevaux, eds. Kluwer, Dordrecht, the Netherland, pp.
175-186.

Perrin, O. and Senoussi, R. (2000). Reducing non-stationary random fields to stationarity and isotropy
using a space deformation. Statistics and Probability Letters, 48, 23-32.

Pintore, A. and Holmes, C. (2004). Spatially adaptive non-stationary covariance functions
via spatially adaptive spectra. Forthcoming. (Submitted manuscript available from
http:/ /www.stats.ox.ac.uk/~cholmes/).

Preisendorfer, R.W. (1988). Principal Component Analysis in Meteorology and Oceanography. Elsevier,
Amsterdam.




130 Handbook of Spatial Statistics

Riishojgaard, L.P. (1998). A direct way of specifying flow-dependent background error correlations
for meteorological analysis systems. Tellus Serics A-Dynamic Meteorology and Oceanography, 50,
42-57.

Sampson, P.D. (2001). Spatial covariance. In El-Shaarawi, A.H., Pierorcsh WW., Eds. Encyclopedia of
Environmetrics. New York: John Wiley & Sons, 2002, vol. 4, pp. 2059-2067.

Sampson, P.D., and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance
structure. Journal of the American Statistical Association, 87, 108-119.

Schmidt, A.and O'Hagan, A. (2003). Bayesian inference for nonstationary spatial covariance structure
via spatial deformations. fournal of the Royal Statistical Sociely, Series B, 65, 743-758.

Smith, R.H. (1996). Estimating nonstationary spatial correlations. Preprint (hitp://www.stat.unc.
edu/faculty/rs/papers/RLS_Papers.html).

Stein, M.L. (2001). Local stationarity and simulation of self-affine intrinsic random functions. [EEE
Transactions on Inforination Theory, 47, 1385-1390.

Stephenson, J., Holmes, C., Gallagher, K. and Pintore, A. (2005). A statistical technique for modelling
non-stationary spatial processes. In: Geostatistics Banff 2004, O. Leuangthong and C.V. Deutsch,
Eds., pp. 125-134.

Wikle, C.K., and Cressie, N. (1999). A dimension-reduced approach to space-time Kalman filtering.
Biometrika, 86, 815-829.

Xiong, Y., Chen, W., Apley, D., and Ding, X.R. (2007). A non-stationary covariance-based kriging

method for metamodelling in engineering design. International Journal for Numerical Methods in
Engincering, 71, 733-756.




