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1 Introduction
Statistical inference for point processes originates, as pointed out by Daley and Vere-Jones
(2005), in two sources: life tables, and counting phenomena. Among early sources of in-
ferential work are Graunt, Halley and Newton in the 18th century on the life table side, and
Newcomb, Abbé and Seidel in the second half of the 19th century on the counting side (for
Newcomb’s contributions, see Guttorp (2001); the others are all described by Daley and
Vere-Jones). The modern approach originated mainly in England in the 1950s and 60s, with
Bartlett and Cox as the main names. A few examples of point process patterns are shown in
Figure 1.

This paper will review the Bayesian contributions to inference for point processes. We
will only discuss non-Markovian processes, as lately much of the emphasis has been on
Markovian models, and we consider it important not to lose sight of the non-Markovian ones.
We make no pretense of a complete literature review; rather, we have chosen papers that we
think are interesting or important or that we can use to make a point. A more comprehensive
review paper is Møller and Waagepetersen (2007). Chapter 4 of the recent Handbook of
Spatial Statistics (Gelfand et al., 2010) is devoted to spatial point processes.

We start in section 2 by reviewing work on nonparametric estimation (Bayesian is al-
ways assumed unless otherwise specified) of the rate of a nonhomogeneous Poisson process.
Immediately we will see that many processes, and many inference problems, can be viewed
from more than one point of view. We then proceed to models derived from a Poisson process
using thinning, and show how one can use Bayes factors to distinguish between models of
late fall precipitation in upstate New York, USA.

The next section 3 deals with doubly stochastic models, and again we encounter the prob-
lem of how one views the inference. Section 4 deals with cluster processes, where we show
an application to brain imaging, and section 5 is about model selection. Here we compare the
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Figure 1: Examples of point process patterns. Left: a process which is both clustered and regular (a
Matérn type I process, section 2.4, yields the cluster centers and a Neyman-Scott process, section 4,
the points). Middle: a regular process (a Matérn type I process). Right: completely random process
(Poisson process, section 2.1). Shown is the Voronoi tesselation of the points. Generated by Ute Hahn
and Dietrich Stoyan.

Akaike criterion and the Bayes factor for selecting between types of cluster models. Finally,
a short summary is given in section 6.

We are grateful to the organizers of the Toledo conference for the opportunity to partici-
pate and to write this paper. We also need to thank the Norwegian Computing Center in Oslo,
Norway, and the University of Heidelberg, Germany, for accommodating visits by one or the
other of us. Alex Lenkoski provided many helpful comments, and we thank Ute Hahn and
Dietrich Stoyan for generating the patterns in Figure 1.

2 Poisson and related processes

2.1 Nonparametric estimation for nonstationary Poisson rate functions
In 1978 Aalen (1978) revolutionised point process analysis by introducing a general nonpara-
metric statistical theory for the class of multiplicative counting processes. It was a frequentist
theory, but received a Bayesian adaptation in the work of Lo (1982) for Poisson processes,
and Lo and Weng (1989) for the general multiplicative processes. Kim (1999) also dealt with
the general multiplicative process, but used a Lévy process prior. Here we will focus on Lo’s
treatment of the Poisson process case. Consider a Poisson process with intensity measure ν.
Lo showed that a gamma process prior is conjugate. To define the gamma process prior, con-
sider a σ-finite measure α, and say the measure µ is selected by a gamma process prior if for
disjoint sets A1, ..., Ak we have that the collection of random variables {µ(A1), ..., µ(Ak)}
are independent gamma random variables of scale 1 and means α(Ai). The measure µ is then
said to have shape measure α and scale parameter 1. We denote the corresponding probability
measure having these finite-dimensional distributions by Pα,1. We can rescale the measure
by an α-integrable positive random function β by defining βµ(A) =

∫
A
β(x)µ(dx) and the

corresponding probability measure is denoted Pα,β . Lo showed that if we observe indepen-
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dent realisations N1, ..., Nn of N , and assign a prior measure Pα,β to the intensity measure ν,
then the posterior measure is Pα+

∑n
1 Ni,β/(1+nβ).

Consider now the special case where β(x) = 1/θ, and suppose we are interested in
estimating the intensity νt = ν(0, t] under integrated squared error loss. It is not difficult to
verify that the Bayes estimator is

θ

θ + n

α(0, t]

θ
+

n

n+ θ

1

n

n∑

i=1

Ni(0, t],

i.e., a weighted average of the prior guess and the sample empirical estimate.
Generally the tools needed to estimate nonparametrically a nonhomogeneous Poisson

process with time dependent rate λ(t), assumed integrable over the period of observation A,
are the same as those for density estimation. Conditionally upon the total number of points
N = N(A) the points are distributed as the order statistics from a distribution with density
(Cox and Lewis, 1966)

f(s) = λ(s)/

∫

A

λ(u)du. (1)

Diggle (1985) used this fact to develop a kernel estimator for the intensity, and Peeling et al.
(2007) used a histogram type estimator in setting up a Bayesian analysis of an interesting
problem in musicology. In order to create a Bayesian structure, it has been popular to assign a
prior related to a Gaussian process, typically of the form exp(X(t)) whereX(t) is a Gaussian
process. By the same misnomer as for the lognormal distribution, this tends to be called a
log Gaussian Cox process, although it is the log intensity which is Gaussian, and in our
context serves as a prior for a nonhomogeneous Poisson process intensity, while the setup
mathematically (albeit not conceptually) corresponds to a doubly stochastic Poisson process
(Cox, 1955). The doubly stochastic Poisson process if of course of interest in its own right
(see section 3). The conditional likelihood for this model, given the realisation of λ(s), s ∈ A,
is simply the usual Poisson likelihood

L(λ(s)) = exp
(∫

A

(log λ(s)dNs − λ(s)ds)
)
. (2)

For random infinite dimensional λ(s) the integral in the exponential of (2) cannot be evaluated
explicitly, which makes Bayesian inference with a prior Y (t) based on a Gaussian process in-
tractable. Cressie and Rathbun (1994) and Møller et al. (1998) used a discretisation approach
to obtain a tractable expression for the likelihood and Beneš et al. (2005) applied this to the
Bayesian problem we are considering in this section. The idea is to approximate the contin-
uous process Y (t) by a sequence of step functions in the linear case, and values on a grid in
the spatial case. Waagepetersen (2004) showed that the resulting posterior density converges
to the true posterior as the discretisation interval shrinks to zero. Both he and Beneš et al.
(2005) pointed out the sensitivity of the resulting inference to the discretisation scheme.

Heikkinen and Arjas (1998) took a similar route, using piecewise constant functions with
random number of jumps of random size as prior on the intensity function, but not thinking
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of this as an approximation to a smooth prior process. It does not follow, for example, that
the posterior mean is piecewise constant. In fact, it typically comes out smooth.

Kottas (2006) used the representation in (1) to develop a different estimation method.
Treating γ =

∫
A
λ(u)du as a separate parameter, he used explicit density estimation tools to

estimate f(s). We let A = (0, T ]. Then f is estimated as a Dirichlet mixture of scaled beta
densities (supported on (0, T ]). The Dirichlet process is determined by a precision parameter
α, which is given a gamma prior, and a base distribution, which is a function of the location
and dispersion of the beta distributions. These are taken to be independent uniform and
inverse gamma, respectively. Finally, γ is given a Jeffreys prior of the form 1/x.

2.2 The thinning approach to simulation
Lewis and Shedler (1979) introduced the standard approach to generating nonhomogeneous
Poisson processes on a set A. If the rate is λ(s) and we write λ∗ = supt∈A λ(t), their thinning
approach is to generate a homogeneous Poisson process of rate λ∗, and then keep a point at
location τ with probability λ(τ)/λ∗. This is, of course, a form of rejection sampling.

Adams et al. (2009) extended the Lewis-Shedler method to enable exact computation
of the posterior distribution of a nonhomogeneous Poisson process with a Gaussian process
prior of the form λ∗σ(X(s)), where σ(x) = (1 + exp(−x))−1, by keeping track of the
deleted locations as well as the values of the Gaussian process at both the deleted and the kept
locations, which they think of as a latent variable. Their approach is to use a Markov chain
Monte Carlo approach containing three types of steps: changing the number of deleted points,
the locations of the deleted points, and the values of the Gaussian process. The likelihood of
this finite system can then be written down explicitly, without the need to evaluate integrals
of Gaussian processes. Their approach appears to outperform the discretisation approach of
the previous subsection on smooth intensity functions.

2.3 Extensions
Many of the methods for point processes on the line generalise to spatial processes. In some
cases these extensions are non-straightforward, mainly concerning the lack of well-ordering
of R2. A fairly recent review is Kottas and Sanso (2007), section 2.4. Interesting applications
include Skare et al. (2007) who modelled a spatial pattern of badger territories and the dis-
tribution of pores in 3D translucent alumina using an inhomogeneous Poisson process with
high intensity near the edges of an unobserved Voroni tessellation. We have chosen not to
focus on parametric rate models (which abound e.g. in the software reliability literature,Kuo
and Yang (1996); Huang and Bier (1999)), since most of these are very similar to Bayesian
models for iid data.

2.4 Matérn thinning
Matérn (1960) introduced three different thinnings of Poisson processes in order to produce
point processes that were more regular than the Poisson. Type I simply deletes all pairs of
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points that are within a radius R of another point. This is perhaps the simplest hard core
rejection model in the literature. Type II introduces independent uniform marks ti, called
times, to each of the original points. The point with the smallest mark among all neighbours
within distance R is retained. Clearly this model would have a higher rate of points than type
I. Matérn also considered a third, dynamic variant, which Huber and Wolpert (2009) called
Type III, and which Matérn thought intractable. The retained points are called "seen", while
the removed points are "hidden". In the type III process the seen points are those for which
no seen point with lower time mark lies within distance R. So, for example, if we have three
points with increasing times, such that the first is within R of the second, and the second is
within R of the third, we have no points left in a type I process, only the first point left in the
type II process, but potentially two points left in the type III process (see Huber and Wolpert
(2009), Figure 1, for a graphical illustration).

In order to calculate the likelihood for a type III process, Huber and Wolpert used a
technique akin to that used by Adams et al. in the previous subsection. Specifically, they
suggested starting with n seen points and parameters λ and R, and then draw hidden points
from a Poisson process of rate λ, and draw time marks uniformly for both seen and hidden
points, until for all hidden points there is a seen point within distance R and with smaller
time mark. This has the drawback that it can take quite a long time if there is a large number
of seen points. Define the shadow of a seen point configuration as the union of balls of radius
R centred at each seen point cross the interval (ti, 1] containing the possible hidden points.
Let dΛ(x, t) be the joint intensity of a Poisson point at x with mark t. Then the density (with
respect to a Poisson process with uniform marks) of a seen point pattern x with marks t
becomes

1
(
ρ(x) > R)λn exp(|S|(1− λ)) exp(Λ(D(x, t))

)
(3)

where ρ(x) = mini 6=j(xi, xj) is the smallest interpoint distance and D(x, t) is the shadow of
(x, t). It is straightforward to verify that the acceptance-rejection approach outlined above
samples directly from the likelihood. A faster perfect simulation approach was also outlined,
and has been expanded upon in Møller et al. (2010).

The likelihood calculation can now form the basis for a Bayesian approach to estimating
parameter of a Matérn type III process. To our knowledge this has not yet been implemented
elsewhere in the literature.

Example 2.1. (Comparison of cluster processes for precipitation models)
Hobbs and Locatelli (1978) described mesoscale rainfall activity in cyclonic storms roughly

as follows. Synoptic scale weather fronts contain large mesoscale regions, rainfall bands,
where precipitation activity is possible. In turn, these bands contain moving rain cells, which
are the points of higher rainfall rates. Observing this from a fixed point in space (e.g., a rain
gauge), we see varying amounts of rainfall over time, with precipitation tending to come in
clusters. Mathematically, Le Cam (1960) was first to suggest modeling rainfall at a location
by a cluster point process, while Kavvas and Delleur (1981) proposed a Neyman-Scott Pois-
son cluster process, in which the primary process is a non-homogeneous Poisson process,
and were the first to fit it to observed data. In a sequence of papers in the 1980’s, a variety of
cluster process approaches were developed (a review is provided in Guttorp, 1996; Salim and
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Pawitan, 2003, discusses more recent work), usually made stationary by considering only a
short time period each year, such as a month.

In most versions of cluster point process analysis of precipitation, the primary process
is assumed unobserved. This may be reasonable if only rain gauge data is used. However,
one would often be able to assess the arrival of weather fronts using different types of data.
Guttorp (1988) used so-called event-based data from the MAP3S acid rain monitoring net-
work to assess features of the secondary process. This is the same data set that we will be
using for our analysis, see Figure 2. The MAP3S/PCN (Multistate Atmospheric Power Prod-
uct Pollution Study / Precipitation Chemistry Network) network of nine monitoring stations
in the northeastern United States was initiated in 1976. We will focus on station 1, located
on Whiteface Mountain in New York, at an altitude of 610 meters. The data were obtained
from the Battelle-Pacific Northwest Laboratories ADS (Acid Deposition System) data base.
They are described in Gentleman et al. (1985), and in MAP3S/RAINE Research Community
(1982). The data were collected on an event basis, using samplers that open during precipita-
tion, and close during dry periods. The definition of an event in the MAP3S network was left
to the operator of the station; the Whiteface operator made a meteorologically based decision
on what constitutes a new event.
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Figure 2: Fall (October through December) precipitation events observed at Whiteface Mountain, New
York, 1976-1982.

For either station, each event may contain several precipitation incidents, indicated by
separate lid openings. Since storm fronts do not arrive according to a Poisson process (since
the fronts are physically separate), we do not expect a Poisson cluster process to be an ade-
quate description of precipitation. We thus perform a comparison of a homogeneous Poisson
cluster model and the type III Matérn model described in the previous subsection. Here,
we view the data as seven independent realisations of fall precipitation events at Whiteface
Mountain.
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In a Bayesian framework, Bayes factors (Jeffreys, 1935) offer a natural way of scoring
models based on the evidence provided by the data. Specifically, suppose that p(x|θ,M) is
the density function of the observed point pattern x under model M given the model-specific
parameter vector θ. Let the prior density of θ (assumed to be proper) be given by π(θ). The
marginal likelihood of x under model M is given by

m(x|M) =

∫
p(x|θ,M)π(θ|M)dθ. (4)

Two models, M1 and M2 may then be compared by calculating the Bayes factor

B12(x) =
m(x|M1)

m(x|M2)
. (5)

For our data set, the Matérn Type III density in (3) becomes

p(x|λ,R,MMa) = 1
(
ρ(x) > R

)
λn exp(7T + λ(nR− 7T )),

where n = 127 is the total number of observed points, T = 92 is the number of days in the
observation period, and ρ(x) = 0.75 is the minimum interpoint distance over all the seven
realisations. Similarly, the density for the homogeneous Poisson process is given by,

p(x|λ,MPo) = λn exp(7T (1− λ)).

Here, we assume that λ,R > 0. We assign the parameter λ a conjugate prior density and set
it to be exponential with rate parameter ν = 2 in both models, while the parameter R in the
Matérn Type III density is assigned a uniform prior on (0, T ), see Figure 4. The Bayes factor
for equiprobable models then becomes

BMa,Po(x) =
(7T + ν)

Tn2

(( 7T + ν

7T + ν − nρ(x)

)n
− 1
)

= 273618, (6)

which strongly favours the Matérn Type III model which is consistent with our hypothesis.
As shown in Figure 3, the value of the Bayes factor is highly dependent on the value of the
minimum interpoint distance ρ(x).

Based on the results above, we continue with the analysis of the Matérn Type III model
only. The full conditional posterior distribution for λ is given by a Γ(n + 1, 7T + ν − nR)
distribution and

p(R|x, λ,MMa) = 1
(
0 < R < ρ(x)

) λn

exp(λnρ(x))− 1
exp(λnR).

Figure 4 shows the posterior distributions for R and λ which are obtained from 50000 sim-
ulations using a Gibbs sampler and the inverse transform. The posterior distributions are
much sharper than the prior distributions and the posterior means are very close to the max-
imum likelihood estimates. The maximum likelihood estimates are given by R̂ = 0.75 and
λ̂ = 0.23, while we obtain the posterior means R̃ = 0.74 and λ̃ = 0.23.
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Figure 3: The Bayes factor for comparing the Matérn Type III model and the homogeneous Poisson
model for the Whiteface Mountain precipitation data, as a function of the minimum interpoint distance,
ρ(x). The Bayes factors are plotted on a log-scale; values greater than zero favour the Matérn Type
III model.
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Figure 4: Posterior distributions for the parameters R (left) and λ (right) in the Matérn Type III model
for precipitation events at Whiteface Mountain. The respective prior distributions are denoted by solid
black lines.
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3 Doubly stochastic processes
The doubly stochastic Poisson process, introduced by Cox (1955) and so named by Bartlett
(1963) is obtained by letting the rate λ(t) of the Poisson process vary according to a positive
stochastic process, say Λ(t). There are instances of doubly stochastic Poisson processes that
are identical to cluster processes (for example, the shot noise process is a Neyman-Scott
Poisson cluster process, see Daley and Vere-Jones (2005, p. 171-172). It is worth noting here
that, except when the rate process is determined by the scientific situation, it is difficult to
analyse a doubly stochastic process without having repeated observations, since the model
is indistinguishable from a nonhomogeneous Poisson process based on a single path (see
Møller and Waagepetersen, 2004). Thus, how you view your analysis can be seen as a matter
of preference or convenience. We have not been able to find any Bayesian analyses of data
where repeated observations are available, so that one can tell apart the doubly stochastic
mechanism from the nonhomogenous Poisson process model.

Wolpert and Ickstadt (1998) modeled a spatial Poisson process with random intensity,
where the intensity measure is a kernel mixture with a gamma measure. An an example,
they analyse the density and spatial correlation of hickory trees. The same data were also
analysed in Chapter 10.4 of Møller and Waagepetersen (2004) in a Bayesian setting using
a nonhomogeneous Poisson process with a log-Gaussian prior process, where the Gaussian
process has constant mean β, variance σ2, and an exponential correlation function with range
parameter α. The hyperparameters β, σ2, κ = log(α) need prior distributions as well. They
used Jeffreys priors for the mean and variance, and a uniform prior between -2 and 4 for κ. As
discussed in section 2, a discrete approximation to the prior process was used. The analysis
was very sensitive to the prior on κ, and compared to a frequentist method of moment analysis
using the g-function, the Bayesian method indicates a substantially larger correlation range.
As pointed out above, this can also be viewed as a parametric Bayesian analysis of the doubly
stochastic Poisson process obtained using a log Gaussian rate function.

Gutiérrez-Peña and Nieto-Barajas (2003) considered a doubly stochastic Poisson process
with a gamma process (as in Lo, 1982) being its rate function Λ(t). This process has param-
eter functions α (the rate function measure) and β (the scale process). In the case of constant
scale β = b, the resulting process is what they call a negative binomial process of type 2. To
perform a Bayesian analysis, they assigned a gamma process prior to the rate function mea-
sure α, and computed a closed form expression for the posterior distribution of α given the
data. The authors did not view the distribution of the rate function Λ(t) as a prior distribution.

Rue et al. (2009), in their highly influential paper on integrated nested Laplace approx-
imations (INLA), illustrated how their numerical alternative to Markov chain Monte Carlo
methods can be applied to a doubly stochastic Poisson process where the intensity process
is log Gaussian, although the method would work for any positive function of a Gaussian
process such that the resulting doubly stochastic Poisson process is valid. The calculation
of over 20,000 marginal distributions, applied to the rainforest data set also analysed by
Waagepetersen (2007), took four hours of computing time. Again, the Gaussian process was
discretized to a fine grid. To get similar precision with MCMC methods would be prohibitive
computationally. It is possible within INLA to calculate Bayes factors, as noted in section
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6.2 of the paper. However, the prior distributions used for the underlying random field are
usually improper which means that the Bayes factor is only determined up to an unknown
ratio of constants.

4 Cluster processes
The general cluster process (Daley and Vere-Jones, 2005) consists of a parent point process
X to each point τi of which is associated a secondary point process Zi + τi. The structure of
the primary and secondary processes is a suitable source of classification. Thus we can for
example separate Poisson cluster processes (in which the primary process is Poisson) from
general cluster processes (with a general primary process). On the line the most common
secondary processes are of the Bartlett-Lewis type in which a random number of secondary
points are laid out according to a renewal process, and the Neyman-Scott type where the
secondary points are iid around the parent point (or cluster center). The named processes
that abound in the literature (Cox cluster process, Matérn cluster process, Thomas process
etc.) are simply special cases, and it does not seem useful to us to have a nomenclature
which separates the particular distributional assumption. For example, we would call the
Thomas process a Poisson cluster process of Neyman-Scott type using a Poisson cluster size
distribution and normally distributed dispersion. Most Poisson cluster processes are non-
Markovian; the exception being those with uniformly bounded cluster diameters (Baddeley
et al., 1996).

Lieshout and Baddeley (2002) developed likelihood expressions for cluster processes with
Poisson distributed offspring sizes, and developed Bayesian inference for processes where the
prior distribution of the parent process is a Markov inhibition process. Of course, one could
assign a Poisson process or a Matérn type III prior, and the results would be very similar. The
main tool is a Markov chain Monte Carlo algorithm that uses a birth and death process (or, in
a special case, coupling from the past), and the techniques are applied to a classical data set.

McKeague and Loizeaux (2002) considered Neyman-Scott processes in the plane, and
also used an inhibition process as prior on the parent process. They used perfect sampling,
and applied their tools to an example involving leukemia cases, where unobserved cluster
centers are estimated to lie close to some hazardous waste sites.

The idea of self-exciting processes is to have the rate depend on the development of the
model in the past. If this dependence can be written as a linear functional, there is an alter-
native representation of this process as a cluster process (see Daley and Vere-Jones (2005),
pp. 183-185). Gamerman (1992) used a variant where the intensity is piecewise constant,
but dependent on the events in the previous piece. One could of course also think of this as
a doubly stochastic model. Gamerman writes down equations for filtering and prediction as
well as for Bayesian estimation of the rates in each interval.

Waagepetersen and Schweder (2006) used a Neyman-Scott process with negative bino-
mial cluster size distribution and truncated bivariate normal dispersion to model minke whale
populations. The data are obtained from line transect samples, and are modelled as a random
thinning of the cluster process. The parameter of interest is the product of the rate of the clus-
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ter centers and the mean cluster size, called the whale intensity. It is estimated using Markov
chain Monte Carlo, even though the exact likelihoods are computable.

Example 4.1. (Modelling activation in the human brain)
Functional magnetic resonance imaging (fMRI) is a technique for non-invasive in vivo

recording of brain activation. It is based on the different magnetic properties of oxygenated
and deoxygenated haemoglobin; images obtained with the method show changing blood flow
in the brain associated with neural activation. Figure 5 shows such data set, where the subject
was not exposed to stimuli during the recording of the data. Despite the lack of specific
stimuli, changes in the signal appear over time, some of which show covariation in different
regions of the brain.

−100

0

100

Figure 1: Development of the MR signal activity over time in a single slice through
the human brain. From left to right and top to bottom: the activity at time t =
12, 30, 48, . . . , 210 seconds.

constitute a major challenge because of a high level of noise and no prior knowledge of
time points of activation. Another complication is possible aliasing with respiratory
and cardiac cycles. The difficulties faced in such non-stimulus experiments are
much more serious than those met in more traditional experimental designs of fMRI
experiments with known periods of stimuli (‘on periods’) between periods of rest
(‘off periods’). Recently, experiments with a more continuous but known type of
stimulus has also been tried out, cf. [1, 2]. A good statistical review on design of
fMRI experiments may be found in [10].

The aim of this paper is to show how spatio-temporal point process models
for functional magnetic resonance imaging (fMRI) data can be used in the study
of resting state networks in the human brain. A more detailed account will be
published elsewhere [19].

2 Correlation analysis

The data from an fMRI experiment constitute a collection of time series

Ztx, t = t1, . . . , tm,

x ∈ X . Here, Ztx is the MR signal intensity at time t and voxel x. The time points
t1, . . . , tm are usually equidistant and belong to the interval [0, T ], where T is the
length of the experiment. The set X is a finite subset of R2 or R3 with N elements,
called voxels, representing a two dimensional slice or a three dimensional volume of
the brain.

In [8], the functional connectivity in the resting brain is studied by a simple
correlation analysis. A seed region X0 ⊂ X is selected and the correlation between
the average time series for this region

Z̄tX0 =
1

|X0|
∑

x∈X0

Ztx, t = t1, . . . , tm

2

Figure 5: Development of the magnetic resonance (MR) signal activity over time in a single
slice through the human brain. From left to right and top to bottom: the activity at time t =
12, 30, 48, . . . , 210 seconds. Note that the images shown here have been preprocessed to correct for
movement related artefacts and the signal changes have been enhanced so that they can be observed
with the naked eye. From Thorarinsdottir and Jensen (2006).

In Thorarinsdottir and Jensen (2006) and Jensen and Thorarinsdottir (2007), a Bayesian
spatio-temporal point process model for such data was proposed. Purely spatial processes
for this type of data have also been proposed in Taskinen (2001) and Hartvig (2002). The
activation is described by a marked point process Φ, where the point process is latent and
corresponds to the unobserved neural activation while the marks are observed and describe
the associated observed MR signal changes due to changes in the blood oxygenation level.
It is thus the latent point process, Ψ, and the associated intensity function that are of main
interest for the statistical analysis.

Assume that we have observed data {Ztx}, where t ∈ [0, T ] denotes time and x ∈ X
denotes a spatial location, or a voxel, in the brain region X which is a bounded subset of R2

or R3. Here, X is a single slice through the brain, X ⊂ R2. To account for edge effects in the
time domain, we assume that Ψ is a process on [T−, T ] × X , where T− < 0 is chosen such
that it is very unlikely that a neural activation starting before time T− will affect an observed
MR signal on [0, T ]. The marked process is denoted by Φ = {[ti, xi;mi]} with (ti, xi) ∈ Ψ
and marks mi ∈ Rd.
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The resulting model for the observed MR signal intensity at time t and voxel x becomes

Ztx = µx +
∑

i

ftx(ti, xi;mi) + σεtx, (7)

where µx is the baseline signal at voxel x and εtx is an error term with mean 0 and variance 1.
The function ftx describes the contribution to the observed signal intensity at voxel x and time
t caused by a neuronal activation at (ti, xi) ∈ Ψ. This function is assumed to be separable in
space and time with ftx(ti, xi;mi) = g(t−ti;mi)h(x−xi;mi) andmi = (θ1i, θ2i, θ3i) ∈ R3

+,
where

h(y;m) = θ1 exp
(
− ‖y‖

2

2θ2

)

and

g(u;m) =

∫ θ3

0

1√
2π3

exp
(
− (u− v − 6)2

18

)
dv.

Here, ‖ · ‖ donotes the Euklidian norm. The mark parameters thus have the following in-
terpretation: θ1i describes the magnitude of the signal change due to neural activation i, θ2i

describes the spatial extend of this change, and θ3i its temporal duration.
For simplicity, assume that the marks mi and the variance σ2 are fixed. The aim of the

statistical analysis is then to recover the latent point process Ψ and its intensity function based
on the observations {Ztx} under the model described by (7). Further, we may replace Ztx in
(7) by Ztx − Z̄·x and ftx by ftx − f̄·x. The new data have µx = 0 and the same correlation
structure as the original data if the number of observed images is sufficiently large.

The prior distribution of Ψ is chosen as Poisson with intensity λ. There is thus no in-
teraction between points in the prior distribution and any interactions found in the posterior
distribution derive from interactions observed in the likelihood. The intensity function λ is
assumed to be of the following form

λ(t, x) =
K∑

k=1

λk1
(
x ∈ Xk

)
, (8)

where the sets Xk ⊆ X are disjoint. Their union may be the whole observed brain region X
but need not be. The sets Xk should be specified by the experimenter while the parameters
λk are unknown. The intensity function can be written as λ(t, x) = cλ2(x), where c > 0 and∫
X λ2(x)dx = 1. If follows from (8), that λ2 can be written as

λ2(x) =
K∑

k=1

πk
1
(
x ∈ Xk

)

|Xk|
,

where | · | denotes area and πk > 0 with
∑K

k=1 πk = 1. The parameters c, π = (π1, . . . , πK)
are assigned non-informative prior distributions.

The posterior density is of the form

p(c, π, ψ|z) ∝ p(z|ψ)p(ψ|c, π)p(c)p(π),

12



where the likelihood is given by

p(z|ψ) = [2πσ2]−n(z)/2 exp
(
− 1

2σ2

∑

t,x

[
ztx −

∑

(ti,xi)∈ψ
ftx(ti, xi;m)

]2)
.

A fixed scan Metropolis within Gibbs algorithm is used to simulate from the posterior density
where in each scan c, π, and ψ are updated in turn. The full conditional distributions for c and
π are given by a Gamma and a Dirichlet distribution, respectively, while the full conditional
distribution for ψ is

p(ψ|c, π, z) ∝ cn(ψ)

K∏

k=1

π
nk(ψ)
k exp

(
− 1

2σ2

∑

t,x

[
ztx −

∑

(ti,xi)∈ψ
ftx(ti, xi;m)

]2)
, (9)

where nk(ψ) denotes the number of points in ψ that fall within Xk. Note that the full con-
ditional distribution for ψ is in fact a pairwise interaction density. The point process ψ is
simulated from the density in (9) using a Birth-Death-Move algorithm as described in Møller
and Waagepetersen (2004).

1000

2000

3000

4000

5000

6000

Figure 6: The posterior spatial activation pattern in the three regions of interest cumulated over time.
The three regions are the left and right motor cortex and a middle region. From Jensen and Thorarins-
dottir (2007).

Based on an earlier analysis of the same data set by Beckmann et al. (2005), the prior
intensity in (8) was set to be positive in three sub-regions of interest, the left and right motor
cortex and a middle region. The resulting posterior spatial intensity pattern for ψ when cumu-
lated over time is shown in Figure 6. The posterior spatial intensity is clearly inhomogeneous
in contrast to the homogeneous prior intensity with strong indications for clustering in the
spatial domain.

5 Model selection
Model selection for point process models is commonly carried out by investigating the sum-
mary statistics of the point pattern prior to the model fitting. Formal Monte Carlo tests of
goodness-of-fit to the homogeneous Poisson process or comparison of the nearest-neighbour

13



distance distribution function and the spherical contact distribution function can provide the
modeller with evidence for regularity or clustering in the point pattern as compared to com-
plete randomness (Illian et al., 2008; Baddeley, 2010). Such comparisons can produce im-
portant guidance for choosing the correct class of models, yet these model classes are very
broad, rendering the information less valuable.

Statistical inference for point process models is usually very computationally intensive,
and it is often not feasible to perform inference for a single data set under many different
models. For this reason, scientific understanding of the data, combined with expert knowl-
edge of the model class, is often combined to a priori select a single model for a given data
set, once the appropriate class of models has been established. However, if the scientific
question of interest relates to specific details in the modelling, such as particularities in the
clustering mechanism of the point pattern, a more formal procedure for model comparison is
called for.

The Akaike information criterion (AIC), which is given by

AIC = −2 logL+ 2k, (10)

where L is the maximum likelihood value and k is the number of parameters in the model,
is by far the most popular model comparison criterion used in the point process literature.
The AIC has the advantage that it can be applied to any likelihood based inference method.
However, it has been noted that it tends to favour more complicated models for larger data sets
(Ogata, 1999). This is a clear disadvantage in a setting where the modelling easily becomes
computationally intractable. We discuss this issue further in Example 5.1.

Bayes factors (see Example 2.1) were first used in a point process context by Akman
and Raftery (1986), who compared parametric intensity models for nonhomogenous Pois-
son processes on the line. The focus of this work was to develop conditions for which the
Bayes factor could be determined under vague prior information. In this context, Akman and
Raftery call the Bayes factor B(n)

12 (x, T ) operational if for Un(T ) = {u = (u1, . . . , un) : 0 ≤
u1 ≤ . . . ≤ un ≤ T}, there exists a positive integer n such that

sup
T>0

sup
u∈Un(T )

B(n)
12 (u, T ) <∞.

Then, m, the smallest such integer, is the smallest number of observed events needed for a
comparison of M1 and M2. Furthermore, if B(n)

12 (u, T ) is a bounded function of u for each
fixed n and T , and invariant to scale changes in the time variable,

B(n)
12 (u, T ) = B(n)

12 (au, aT ) ∀a > 0,

for all n, u, T , then the Bayes factor is operational. It is thus, under fairly general conditions,
sufficient to define the prior distributions such that the Bayes factor becomes time-invariant
for it to be well defined. Akman and Raftery demonstrated this explicitely for log-polynomial
intensity models.

Walsh and Raftery (2005) used partial Bayes factors for hypothesis testing to classify
a point pattern as either a homogeneous Poisson pattern or a mixture of a homogeneous

14



Poisson pattern and a hard-core Strauss process. Here, the term partial Bayes factor refers
to calculating the Bayes factor in (5) using a summary statistic y rather than the full data x,
as the marginal likelihood is intractable for the mixture model considered in the study. The
partial Bayes factor is equivalent to (5) if and only if y is a sufficient statistic for x under both
M1 and M2.

To our knowledge, the work by Akman and Raftery (1986) and Walsh and Raftery (2005),
are the only applications of Bayesian model selection criteria reported in the literature in the
context of point process models as those, discussed in this paper. In Example 2.1, we showed
how Bayes factors may be calculated directly for simple models. In the following example,
we consider using a reversible jump algorithm for Bayesian model selection when direct
calculation of the Bayes factor is not feasible.

Example 5.1. (Model selection for point processes of Neyman-Scott type)
Here, we compare using AIC and Bayes factors for model selection within the class

of Neyman-Scott cluster processes. More precisely, we compare two different models of
Neyman-Scott type which differ in the dispersion process for the secondary points. Model
M1 has a homogeneous Poisson cluster process, a Poisson cluster size distribution, and the
dispersion distribution is given by a normal distribution. Model M2, on the other hand, can
be seen as a mixture of two such processes, where the dispersion variance differs for the
two components of the mixture. Palm likelihood inference for M1 and M2 was considered
in Tanaka et al. (2007), where the two models are called the Thomas model and generalized
Thomas model of type B, respectively. Prokešová and Jensen (2010) showed that the Palm
likelihood estimator for these models is consistent and asymptotically normally distributed.

Model M1 has a latent cluster centre process and three unknown parameters: the intensity
of the cluster process, κ, the mean cluster size, α, and the dispersion variance, ω2. We
generate ten samples from this model on B = [0, 1]× [0, 1] for (κ, α, ω) = (50, 30, 0.03) and
perform Palm likelihood inference and Bayesian inference for each sample under both model
M1 and M2. The procedure is then repeated with data samples generated from model M2.
Model M2 has two latent cluster centre processes and five unknown parameters. We set the
true parameters as (κ1, κ2, α, ω1, ω2) = (25, 25, 30, 0.02, 0.04), where κi is the intensity and
ω2
i is the dispersion variance for cluster process i = 1, 2. Examples of such point patterns are

shown in Figure 7.
Bayesian inference for similar processes is discussed in e.g. Møller and Waagepetersen

(2004), Møller and Waagepetersen (2007), and Waagepetersen and Schweder (2006). Con-
trary to the models considered in Example 2.1, we cannot calculate the marginal likelihood
(4) of a dataset x under the models M1 and M2 directly. Instead, we define a reversible jump
algorithm (Green, 1995) where we jump between the models M1 and M2. The Bayes factor
can then be obtained directly from the MCMC sample by comparing the time spent in M1

and the time spent M2.
The random intensity function of M2 is given by

αZ(ξ|Ψ, ω) = α
[ 1

2πω2
1

∑

c∈Ψ1

exp
(
− ‖c− ξ‖

2

2ω2
1

)
+

1

2πω2
2

∑

c∈Ψ2

exp
(
− ‖c− ξ‖

2

2ω2
2

)]
,
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Figure 7: Examples of simulated point patterns of Neyman-Scott type in the plane. Left: Poisson clus-
ter centre process with Poisson number of offsprings and normal dispersion process. Right: mixture of
two such processes which differ in the dispersion variance. The observed point patterns are indicated
with gray dots, while the black squares and circles indicate the latent cluster centre processes.

where ω = (ω1, ω2), Ψ = (Ψ1,Ψ2) denotes the cluster centre processes, and ‖ · ‖ is the
Euklidian norm. To account for edge effects, we define the centre processes on the extended
windowBext = [−0.1, 1.1]×[−0.1, 1.1]. The density of a Poisson process onB with intensity
function κ with respect to a homogeneous Poisson process X1 with intensity λ is given by

p(x|κ) = exp
(
λ|B| −

∫

B

κ(ξ)dξ
)∏

ξ∈x
κ(ξ),

where | · | denotes area. As noted by Møller and Waagepetersen (2004, p. 151), the choice
of X1 is not important for maximum likelihood inference and for MCMC simulations from
a single model. However, when performing a reversible jump step between models with dif-
ferent number of latent processes, we need to choose λ with care in order to obtain balanced
proposals, see below.

The joint posterior distribution of the latent processes and the parameters in M2 is thus
given by

p(ψ, κ, α, ω|x) ∝ p(x|αZ(·|ψ, ω))p(ψ1|κ1)p(ψ2|κ2)p(κ)p(α)p(ω),

and the joint posterior distribution under M1 is an obvious simplification. Our MCMC simu-
lation algorithm consists of the following steps:

(a) updating the latent process ψ;
(b) updating the parameter κ;
(c) updating the parameter α;
(d) updating the parameter ω;
(e) proposing to jump between M1 and M2.
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Steps (a)-(d) are repeated 25 times under the same model between proposals to jump
between models. For step (a), we use the Birth-Death-Move algorithm described in Møller
and Waagepetersen (2004). If we are currently in model M2, we propose one change for each
of the latent processes ψ1 and ψ2. We assign conjugate priors to the parameters κ and αwhich
result in closed form full conditional distributions for these parameters. More precisely, we
set κ ∼ Γ(50, 1), κ1, κ2 ∼ Γ(12.5, 0.5) and α ∼ Γ(30, 1), where the gamma distributions are
parameterized in terms of shape and rate. The full conditional distributions are then

κ | ψ ∼ Γ(50 + n(ψ), 1 + |Bext|)
κi | ψi ∼ Γ(12.5 + n(ψi), 0.5 + |Bext|), for i = 1, 2

α | x, Z(·|ψ, ω) ∼ Γ
(

30 + n(x), 1 +

∫

B

Z(ξ|ψ, ω)dξ
)
.

A Metropolis-Hastings step is needed to update the dispersion parameter ω. We define
the prior distribution for ω in terms of the precision and set 1/ω2 ∼ Γ(1, 0.001). Under
model M2, we simulate initial values for ω1 and ω2 from the prior distribution until ω1 <
ω2. This is needed for identifiability, as M2 is otherwise invariant to permutations of the
labels i = 1, 2. The joint prior distribution of (ω1, ω2) is thus 2 times the product of the
individual prior components; this plays a role in the reversible jump step (e). To update the
dispersion parameter ω under M1, we generate a proposal 1/ω2∗ ∼ Γ(1/ω2, 1) and accept it
with probability

min
{p(x|αZ(·|ψ, ω∗)q(ω|ω∗)
p(x|αZ(·|ψ, ω)q(ω∗|ω)

, 1
}
,

where q(ω∗|ω) is the proposal density for ω∗ given the current state of the chain. Under
M2, the parameters ω1 and ω2 are updated in a similar way. However, a proposal is rejected
immediately if the condition ω1 < ω2 is violated by the proposal.

The reversible jump step (e) is similar to the reversible jump step for normal mixtures
described in Richardson and Green (1997). To move from M2 to M1 we need to merge the
two cluster processes into one process. This is proposed by setting

ψ∗ = ψ1 ∪ ψ2

κ∗ = κ1 + κ2

ω∗ =

√
κ1ω2

1 + κ2ω2
2

κ1 + κ2

.

The reversible split move from M1 to M2 is now largely determined. There are two degrees
of freedom involved in the split which we determine with a two-dimensional random vector
u given by

u1 ∼ Beta(2, 2), u2 ∼ Beta(2, 2).

Here, we set

κ∗ = (κ∗1, κ
∗
2) = (u1κ, (1− u1)κ), (11)

ω∗ = (ω∗1, ω
∗
2) =

(√u2

u1

ω,

√
1− u2

1− u1

ω
)
,
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and reject the proposal immediately if ω∗1 < ω∗2 does not hold. It still remains to allocate the
points in ψ to either ψ∗1 or ψ∗2 . This is performed by allocating each point in ψ at random to
either ψ∗1 with probability κ∗1/κ or to ψ∗2 with probability κ∗2/κ.

The acceptance probability for a split move is

min
{ p(ψ∗, κ∗, α, ω∗|x)

p(ψ, κ, α, ω|x)q(u)
|J |, 1

}
,

where q(u) is the density function of u and J is the Jacobian of the transformation described
in (11),

|J | = ωκ

2
√
u1(1− u1)

√
u2(1− u2)

.

As mentioned above, we need to choose the densities of the latent cluster processes carefully
in order to obtain balanced proposals. LetX , X1, andX2 be homogeneous Poisson processes
on Bext with intensities λ, λ1, and λ2, respectively, such that

λ =
n(ψ)

|Bext|
, λ1 =

n(ψ1)

|Bext|
, λ2 =

n(ψ2)

|Bext|
.

The log-ratio of the density of (Ψ∗1,Ψ
∗
2) with respect to (X1, X2) and the density of Ψ with

respect to X is then given by

log
(p(ψ∗1|κ∗1)p(ψ∗2|κ∗2)

p(ψ|κ)

)
= n(ψ∗1)

[
log

κ∗1
κ
− log

n(ψ∗1)

n(ψ)

]
+ n(ψ∗2)

[
log

κ∗2
κ
− log

n(ψ∗2)

n(ψ)

]
,

which penalizes for a lack of balance between the proposed intensites and the corresponding
point patterns. The acceptance probability for a merge move is calculated in a similar fashion.
The algorithm was implemented in R (R Development Core Team, 2009).

The Palm likelihood inference is performed as described in Tanaka et al. (2007), where
the maximization is repeated five times for each sample using different starting values each
time. We found that this was necessary, as different starting values would often give different
results. The AIC in (10) is then calculated for each sample based on the optimal result
obtained over the five runs. The MCMC chain is run for 300000 iterations over the steps
(a)-(d). We assessed the convergence by running several such chains for each data set which
give nearly identical results. The starting values for both inference methods are set as

κ ∼ Po(50), α ∼ Po(30),
1

ω2
∼ Γ(1, 0.001),

underM1 and similar underM2. For the Bayesian inference, the initial latent centre processes
are simulated from a Poisson model and the chain is started randomly in either M1 or M2.
The Palm likelihood inference takes about 30-40 minutes on a standard desktop computer for
a single data set. Running one MCMC chain takes about 1.5-2 hours on the same computer.

The results of the simulation study are reported in Table 1. In the Bayesian framework, all
the MCMC chains would initially jump back and forth between the two models and then settle
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Table 1: Model selection results for comparing M1 and M2 based on Akaike information criterion
(AIC) and Bayes factors (BF) for simulated data. The table reports the classification results for each
of the model selection criteria based on ten simulated data sets from each model.

AIC BF

Correct model M1 M2 M1 M2

M1 8 2 10 0
M2 3 7 0 10

in the correct model. Under M1, this initial burn-in period was very short, or only about 5000
iterations. However, the mixing was slower under M2, and about 100.000 iterations were
needed before all the chains would settle in M2. In the frequentist framework, a data set
would be classified as belonging to either M1 or M2 based on the minimum AIC obtained for
that data set. As Table 1 shows, 25% of the data sets were wrongly classified by this method.
We did, however, not find any indications of the AIC preferring either the simpler or the more
complicated model. Generally, though, we would obtain a much greater difference between
the two AIC scores when M2 was chosen as the correct model.

6 Summary
Statistical inference for point process models was initially performed in a frequentist manner,
with the earliest work on Bayesian inference being published about three decades ago. In
this paper, we have reviewed the Bayesian contributions for non-Markovian processes. Our
aim was not to provide a complete literature review; rather, we have chosen to focus on
those papers that we find especially important or interesting. In particular, we have tried to
emphasize the variety of applications to which non-Markovian point process models have
been applied to.

We have further emphasized the use of Bayesian methodology for model selection. We
show how Bayes factors can be used to determine model probabilities for simple models
without performing a full inference under each model. For more complicated models, this
is usually no longer the case. In an example, we show how a reversible jump algorithm can
be used to determine model probabilities when the marginal likelihoods for the competing
models cannot be computed directly. Traditionally, model selection methods for point pro-
cesses mainly aim at detecting repulsion or clustering in the point pattern and there seems
to be a lack of methods that apply beyond this initial distinction. The results presented here
suggest that Bayesian methodology might be applied to fill this gap, although further research
is needed.
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