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We consider the problem of determining the structure of clustered data, without prior knowledge of
the number of clusters or any other information about their composition. Data are represented by
a mixture model in which each component corresponds to a different cluster. Models with varying
geometric properties are obtained through Gaussian components with different parametrizations
and cross-cluster constraints. Noise and outliers can be modelled by adding a Poisson process
component. Partitions are determined by the expectation-maximization (EM) algorithm for
maximum likelihood, with initial values from agglomerative hierarchical clustering. Models are
compared using an approximation to the Bayes factor based on the Bayesian information criterion
(BIC); unlike significance tests, this allows comparison of more than two models at the same time,
and removes the restriction that the models compared be nested. The problems of determining the
number of clusters and the clustering method are solved simultaneously by choosing the best model.
Moreover, the EM result provides a measure of uncertainty about the associated classification of
each data point. Examples are given, showing that this approach can give performance that is much
better than standard procedures, which often fail to identify groups that are either overlapping or

of varying sizes and shapes.

1. INTRODUCTION

We consider the problem of determining the intrinsic
structure of clustered data when no information other than
the observed values is available. This problem is known
as cluster analysisand should be distinguished from the
related problem ofdiscriminant analysis, in which known
groupings of some observations are used to categorize others
and infer the structure of the data as a whole.

Probability models have been proposed for quite some
time as a basis for cluster analysis. In this approach, the
data are viewed as coming from a mixture of probability
distributions, each representing a different cluster. Recently,
methods of this type have shown promise in a number
of practical applications, including character recognition
(Murtagh and Raftery [1]), tissue segmentation (Banfield
and Raftery [2]), minefield and seismic fault detection
(Dasgupta and Raftery [3]), identification of textile flaws
from images (Campbellet al. [4]) and classification of
astronomical data (Celeux and Govaert [5], Mukerjee
et al. [6]).

Bayes factors, approximated by the Bayesian information
criterion (BIC), have been applied successfully to the
problem of determining the number of components in a
model [3, 6] and for deciding which among two or more
partitions most closely matches the data for a given model
[4]. We describe a clustering methodology based on
multivariate normal mixtures in which the BIC is used

for direct comparison of models that may differ not only
in the number of components in the mixture, but also
in the underlying densities of the various components.
Partitions are determined (as in [3]) by a combination of
hierarchical clustering and the expectation-maximization
(EM) algorithm (Dempster, Laird and Rubin [7]) for
maximum likelihood. This approach can give much better
performance than existing methods. Moreover, the EM
result also provides a measure of uncertainty about the
resulting classification. Figure 1 shows an example in which
model-based classification is able to match the clinical
classification of a biomedical data set much more closely
than single-link (nearest-neighbour) or standardk-means, in
the absence of any training data.

This paper is organized as follows. In Section 2,
we give the necessary background in multivariate cluster
analysis, including discussions of probability models, the
EM algorithm for clustering and approximate Bayes factors.
The basic model-based strategy and modifications for
handling noise are described in Sections 2.5 and 2.6,
respectively. A detailed analysis of the multivariate data
set shown in Figure 1 is given in Section 3.1, followed
by an example from minefield detection in the presence
of noise in Section 3.2. Information on available software
for the various procedures used in this approach is given
in Section 4. A final section summarizes and indicates
extensions to the method.
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FIGURE 1. A projection of the three-group classification of the diabetes data from Reaven and Miller [8] using single link or nearest
neighbour, standardk-means and the unconstrained model-based approach. Filled symbols represent misclassified observations.

2. MODEL-BASED CLUSTER ANALYSIS

2.1. Cluster analysis background

By cluster analysiswe mean the partitioning of data into
meaningful subgroups, when the number of subgroups and
other information about their composition may be unknown;
good introductions include Hartigan [9], Gordon [10],
Murtagh [11], McLachlan and Basford [12] and Kaufman
and Rousseeuw [13]. Clustering methods range from those
that are largely heuristic to more formal procedures based on
statistical models. They usually follow either a hierarchical
strategy or one in which observations are relocated among
tentative clusters.

Hierarchical methods proceed by stages producing a
sequence of partitions, each corresponding to a different
number of clusters. They can be either ‘agglomerative’,
meaning that groups are merged, or ‘divisive’, in which
one or more groups are split at each stage. Hierarchical
procedures that use subdivision are not practical unless the
number of possible splittings can somehow be restricted.

In agglomerative hierarchical clustering, however, the
number of stages is bounded by the number of groups
in the initial partition. It is common practice to begin
with each observation in a cluster by itself, although the
procedure could be initialized from a coarser partition if
some groupings are known. A drawback of agglomerative
methods is that those that are practical in terms of time
efficiency require memory usage proportional to the square
of the number of groups in the initial partition.

At each stage of hierarchical clustering, the splitting or
merging is chosen so as to optimize some criterion. Con-
ventional agglomerative hierarchical methods use heuristic
criteria, such as single link (nearest neighbour), complete
link (farthest neighbour) or sum of squares [13]. In model-
based methods, a maximum-likelihood criterion is used for
merging groups [1, 2].

Relocation methods move observations iteratively from
one group to another, starting from an initial partition.
The number of groups has to be specified in advance
and typically does not change during the course of the
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iteration. The most common relocation method—k-means
(MacQueen [14], Hartigan and Wong [15])—reduces the
within-group sums of squares. For clustering via mixture
models, relocation techniques are usually based on the EM
algorithm [7] (see Section 2.3).

Neither hierarchical nor relocation methods directly
address the issue of determining the number of groups within
the data. Various strategies for simultaneous determination
of the number of clusters and cluster membership have been
proposed (e.g. Engelman and Hartigan [16], Bock [17],
Bozdogan [18]—for a survey see Bock [19]). An alternative
is described in this paper.

2.2. Probability models for cluster analysis

In model-based clustering, it is assumed that the data
are generated by a mixture of underlying probability
distributions in which each component represents a different
group or cluster. Given observationsx = (x1, . . . ,xn),
let fk(xi | θk) be the density of an observationxi from the
kth component, whereθk are the corresponding parameters,
and letG be the number of components in the mixture. The
model for the composite of the clusters is usually formulated
in one of two ways. Theclassification likelihoodapproach
maximizes

LC (θ1, . . . , θG; γ1, . . . , γn | x) =
n∏

i=1

fγi (xi | θγi ), (1)

whereγi are discrete values labelling the classification:γi =
k if xi belongs to thekth component. Themixture likelihood
approach maximizes

LM (θ1, . . . , θG; τ1, . . . , τG | x) =
n∏

i=1

G∑
k=1

τk fk(xi | θk),

(2)

whereτk is the probability that an observation belongs to the
kth component (τk ≥ 0;∑G

k=1 τk = 1).
We are mainly concerned with the case wherefk(xi | θk)

is multivariate normal (Gaussian), a model that has been
used with considerable success in a number of applications
[1, 2, 5, 3, 4, 6]. In this instance, the parametersθk consist
of a mean vectorµk and a covariance matrix6k , and the
density has the form

fk(xi | µk,6k)

= exp{−1
2(xi − µk)

T6−1
k (xi − µk)}

(2π)p/2|6k|1/2
. (3)

Clusters are ellipsoidal, centred at meansµk . The covari-
ances6k determine their other geometric characteristics.

Banfield and Raftery [2] developed a model-based
framework for clustering by parametrizing the covariance
matrix in terms of its eigenvalue decomposition in the form

6k = λk Dk Ak DT
k , (4)

where Dk is the orthogonal matrix of eigenvectors,Ak is
a diagonal matrix whose elements are proportional to the

eigenvalues of6k andλk is a scalar. The orientation of the
principal components of6k is determined byDk , while Ak

determines the shape of the density contours;λk specifies the
volume of the corresponding ellipsoid, which is proportional
to λ

p
k |Ak |.1 Characteristics (orientation, volume and shape)

of distributions are usually estimated from the data and can
be allowed to vary between clusters or constrained to be the
same for all clusters.

This approach subsumes several earlier proposals based
on Gaussian mixtures:6k = λI gives the sum of squares
criterion, long known as a heuristic (Ward [20]), in which
clusters are spherical and have equal volumes;6k = 6 =
λD ADT, in which all clusters have the same shape, volume
and orientation (Friedman and Rubin [21]); unconstrained
6k = λk Dk Ak DT

k , which is the most general model (Scott
and Symons [22]); and6k = λDk ADk (Murtagh and
Raftery [1]), in which only the orientations of the clusters
may differ. Table 1 shows the geometric interpretation of the
various parametrizations discussed in [2]. A more extensive
set of models within the same framework is treated in [5].

The classification likelihood can be used as the basis for
agglomerative hierarchical clustering [1, 2]. At each stage,
a pair of clusters is merged so as to maximize the resulting
likelihood. Fraley [23] developed efficient algorithms for
hierarchical clustering with the various parametrizations (4)
of Gaussian mixture models.

2.3. EM algorithms for clustering

Iterative relocation methods for clustering via mixture
models are possible through EM and related techniques
[12]. The EM algorithm [7, 24] is a general approach to
maximum likelihood in the presence of incomplete data. In
EM for clustering, the ‘complete’ data are considered to be
yi = (xi , zi ), wherezi = (zi1, . . . , ziG ) with

zik =
{

1 if xi belongs to groupk

0 otherwise
(5)

constitutes the ‘missing’ data. The relevant assumptions
are that the density of an observationxi given zi is given
by

∏G
k=1 fk(xi | θk)

zik and that eachzi is independent
and identically distributed according to a multinomial
distribution of one draw onG categories with probabilities
τ1, . . . , τG . The resultingcomplete-data loglikelihoodis

l(θk, τk, zik | x) =
n∑

i=1

G∑
k=1

zik [logτk fk(xi | θk)]. (6)

The quantityẑik = E[zik |xi , θ1, . . . , θG ] for model (6) is
the conditional expectation ofzik given the observationxi

and parameter values. The valuez∗ik of ẑik at a maximum of
(2) is the conditional probability that observationi belongs
to groupk; the classification of an observationxi is taken to
be{ j | z∗i j = maxk z∗ik }.

1Conventions for normalizingλk and Ak include requiring|Ak | = 1
[5], so thatλk = |6k |1/p , or requiring max(Ak ) = 1 [2], so thatλk is the
largest eigenvalue of6k .
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TABLE 1. Parametrizations of the covariance matrix6k in the Gaussian model and their geometric interpretation. The models shown here
are those discussed in Banfield and Raftery [2].

6k Distribution Volume Shape Orientation Reference

λI Spherical Equal Equal NA 1, 2, 5, 20
λk I Spherical Variable Equal NA 2, 5
λD AD Ellipsoidal Equal Equal Equal 2, 5, 21, 22
λk Dk Ak Dk Ellipsoidal Variable Variable Variable 2, 5, 22
λDk ADk Ellipsoidal Equal Equal Variable 1, 2, 5
λk Dk ADk Ellipsoidal Variable Equal Variable 2, 5

initialize ẑik (this can be from a discrete classification (5) )

repeat

M-step: compute maximum-likelihood parameter estimates givenẑik

nk ← ∑n
i=1 ẑik

τ̂k ← nk

n

µ̂k ←
∑n

i=1 ẑikxi

nk

6̂k : depends on the model—see Celeux and Govaert [5]

E-step: computeẑik given the parameter estimates from the M-step

ẑik ← τ̂k fk(xi | µ̂k , 6̂k)∑G
j=1 τ̂ j f j (xi | µ̂ j , 6̂ j )

, where fk has the form (3)

until convergence criteria are satisfied

FIGURE 2. EM algorithm for clustering via Gaussian mixture models. The strategy described in this paper initializes the iteration with
indicator variables (5) corresponding to partitions from hierarchical clustering and terminates when the relative difference between successive
values of the mixture loglikelihood falls below a small threshold.

The EM algorithm iterates between an E-step in which
values ofẑik are computed from the data with the current
parameter estimates and an M-step in which the complete-
data loglikelihood (6), with eachzik replaced by its current
conditional expectation̂zik , is maximized with respect to
the parameters (see Figure 2). Celeux and Govaert [5]
detail both the E- and M-steps for the case of multivariate
normal mixture models parametrized via the eigenvalue
decomposition in (4). Under certain conditions (McLachlan
and Krishnan [24], Boyles [25], Wu [26]), the method
can be shown to converge to a local maximum of the
mixture likelihood (2). Although the conditions under
which convergence has been proven do not always hold in
practice, the method is widely used in the mixture modelling
context with good results. Moreover, for each observationi ,
(1−maxk z∗ik ) is a measure of uncertainty in the associated
classification (Bensmailet al. [27]).

The EM algorithm for clustering has a number of
limitations. First, the rate of convergence can be very slow.

This does not appear to be a problem in practice for well-
separated mixtures when started with reasonable values.
Second, the number of conditional probabilities associated
with each observation is equal to the number of components
in the mixture, so that the EM algorithm for clustering
may not be practical for models with very large numbers of
components. Finally, EM breaks down when the covariance
matrix corresponding to one or more components becomes
ill-conditioned (singular or nearly singular). In general it
cannot proceed if clusters contain only a few observations
or if the observations they contain are very nearly collinear.
If EM for a model having a certain number of components
is applied to a mixture in which there are actually fewer
groups, then it may fail due to ill-conditioning.

A number of variants of the EM algorithm for clustering
presented here have been studied. These include the
stochastic EMor SEM algorithm (Broniatowski, Celeux
and Diebolt [28], Celeux and Diebolt [29]), in whicĥzik

are simulated rather than estimated in the E-step, and the
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classification EMor CEM algorithm (Celeux and Govaert
[30]), which convertsẑik from the E-step to a discrete
classification before performing the M-step. The standard
k-means algorithm can be shown to be a version of the CEM
algorithm corresponding to the uniform spherical Gaussian
model6k = λI [30].

2.4. Bayesian model selection in clustering

One advantage of the mixture-model approach to clustering
is that it allows the use of approximate Bayes factors to
compare models. This gives a systematic means of selecting
not only the parametrization of the model (and hence the
clustering method), but also the number of clusters. For a
recent review of Bayes factors emphasizing the underlying
concepts and scientific applications, see Kass and Raftery
[31].

The Bayes factor is the posterior odds for one model
against the other assuming neither is favoureda priori.
Banfield and Raftery [2] used a heuristically derived
approximation to twice the log Bayes factor, called the
‘AWE’, to determine the number of clusters in hierarchical
clustering based on the classification likelihood. When EM
is used to find the maximum mixture likelihood, a more
reliable approximation to twice the log Bayes factor called
the BIC (Schwarz [32]) is applicable:

2 log p(x |M)+ constant

≈ 2lM(x, θ̂)− mM log(n) ≡ BIC,

where p(x |M) is the (integrated) likelihood of the data
for the modelM, lM(x, θ̂ ) is the maximized mixture
loglikelihood for the model andmM is the number of
independent parameters to be estimated in the model.
The number of clusters is not considered an independent
parameter for the purposes of computing the BIC. If each
model is equally likelya priori, thenp(x |M) is proportional
to the posterior probability that the data conform to the
modelM. Accordingly, the larger the value of the BIC, the
stronger the evidence for the model.2

The fit of a mixture model to a given data set can only
improve (and the likelihood can only increase) as more terms
are added to the model. Hence likelihood cannot be used
directly in assessment of models for cluster analysis. In
the BIC, a term is added to the loglikelihood penalizing the
complexity of the model, so that it may be maximized for
more parsimonious parametrizations and smaller numbers
of groups than the loglikelihood. The BIC can be used to
compare models with differing parametrizations, differing
numbers of components, or both. Bayesian criteria other
than the BIC have been used in cluster analysis (e.g. Bock
[17], Binder [33]). Although regularity conditions for the
BIC do not hold for mixture models, there is considerable

2Kass and Raftery [31] and other authors define the BIC to have opposite
sign to that given here, in which case the smaller (more negative) the BIC,
the stronger the evidence for the model. We have chosen to reverse this
convention in order to make it easier to interpret the plots of BIC values
that we present later.

theoretical and practical support for its use in this context
[3, 4, 6, 34, 35].

A standard convention for calibrating BIC differences
is that differences of less than two correspond to weak
evidence, differences between two and six to positive
evidence, differences between six and ten to strong evidence,
and differences greater than ten to very strong evidence
(Kass and Raftery [31], Jeffreys [36]).

2.5. Model-based strategy for clustering

In practice, agglomerative hierarchical clustering based on
the classification likelihood (1) with Gaussian terms often
gives good, but suboptimal partitions. The EM algorithm
can refine partitions when started sufficiently close to the
optimal value. Dasgupta and Raftery [3] were able to obtain
good results in a number of examples by using the partitions
produced by model-based hierarchical agglomeration as
starting values for an EM algorithm for constant-shape
Gaussian models, together with the BIC to determine the
number of clusters. Their approach forms the basis for a
more general model-based strategy for clustering.

• Determine a maximum number of clusters to consider
(M) and a set of candidate parametrizations of the
Gaussian model to consider. In generalM should be
as small as possible.

• Do agglomerative hierarchical clustering for the uncon-
strained Gaussian model,3 and obtain the correspond-
ing classifications for up toM groups.

• Do EM for each parametrization and each number of
clusters 2, . . . , M, starting with the classification from
hierarchical clustering.

• Compute the BIC for the one-cluster model for each
parametrization and for the mixture likelihood with the
optimal parameters from EM for 2, . . . , M clusters.
This gives a matrix of BIC values corresponding to each
possible combination of parametrization and number of
clusters.

• Plot the BIC values for each model. A decisive first
local maximum indicates strong evidence for a model
(parametrization + number of clusters).

It is important to avoid applying this procedure to a larger
number of components than necessary. One reason for this
is to minimize computational effort; other reasons have been
discussed in Section 2.3. A heuristic that works well in
practice is to select the number of clusters corresponding
to the first decisive local maximum (if any) over all the
parametrizations considered. There may in some cases
be local maxima giving larger values of BIC due to ill-
conditioning rather than a genuine indication of a better
model (for further discussion, see Section 3.1).

3While there is a hierarchical clustering method corresponding to each
parametrization of the Gaussian model, it appears to be sufficient in practice
to use only the unconstrained model for initialization.
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2.6. Modelling noise and outliers

Although the model-based strategy for cluster analysis as
described in Section 2.5 is not directly applicable to noisy
data, the model can be modified so that EM works well
with a reasonably good initial identification of the noise
and clusters. Noise is modelled as a constant-rate Poisson
process, resulting in the mixture likelihood

L̃M (θ1, . . . , θG; τ0, τ1, . . . , τG | x)

=
n∏

i=1

[
τ0

V
+

G∑
k=1

τk fk(xi | θk)

]
,

(7)

whereV is the hypervolume of the data region,
∑G

k=0 τk = 1
and eachfk(xi | θk) is multivariate normal. An observation
contributes 1/V if it belongs to the noise; otherwise it
contributes a Gaussian term.

The basic model-based procedure for noisy data is as
follows. First, it is necessary to obtain an initial estimate
of the noise. Possible approaches to de-noising include the
nearest-neighbour method of Byers and Raftery [37] and
the method of Allard and Fraley [38], which uses Vorono¨ı
tessellations. Next, hierarchical clustering is applied to
the de-noised data. In a final step, EM based on the
augmented model (7) is applied to the entire data set with
the Gaussian components initialized with the hierarchical
clustering partitions and the noise component initialized
with the result of the de-noising procedure. The BIC is then
used to select the best model representing the data.

3. EXAMPLES

3.1. Diabetes diagnosis

In this section we illustrate the model-based approach
to clustering using a three-dimensional data set involving
145 observations used for diabetes diagnosis (Reaven and
Miller [8]). Figure 3 is a pairs plot showing the clinical
classification, which partitions the data into three groups.
The variables have the following meanings:

glucose —plasma glucose response to oral glucose,
insulin —plasma insulin response to oral glucose,
sspg —degree of insulin resistance.

The clusters are overlapping and are far from spherical in
shape. As a result, many clustering procedures would not
work well for this application. For example, Figure 3 shows
the(1, 3) projection of three-cluster classifications obtained
by the single-link (nearest-neighbour) method, standardk-
means and the model-based method for an unconstrained
Gaussian mixture. Of the possible group assignments, those
shown were chosen so as to minimize the error rate in each
case. The assumption of three classes is artificial for single
link andk-means, while for the model-based method the BIC
was used to determine the number of groups (see later).

Neither standardk-means nor single link perform well in
this example. Two of the clusters identified by single link
are singletons, so that nearly all the data are assigned to
one class. While all three classes resulting from standard

k-means are non-trivial, two classes are confined to one of
the long thin extensions while the third class subsumes the
other extension as well as their conjunction. In the clinical
classification, each of the two long extensions roughly
represents a cluster, while the third cluster is concentrated
closer to the origin. Most clustering methods that are
currently in common use work well when clusters are well
separated, but many break down when clusters overlap or
intersect.

It is important, however, to distinguish between single-
link clustering and nearest-neighbourdiscrimination. In
discrimination, there is a ‘training set’ of data whose group
memberships are known in advance, while in clustering,
all group memberships are unknown. Nearest-neighbour
discrimination assigns a data point to the same group as the
point in the training set nearest to it. It often works very
well (e.g. Ripley [39]), but its success depends entirely on
the available training set.

Figure 4 gives a plot of the BIC for six model-based
methods (spherical models with equal and varying volumes,
constant variance, unconstrained variance and constant
shape models with equal and varying volumes). The first
local maximum (in this case also the global maximum)
occurs for the unconstrained model with three clusters, for
which the classification assignment is shown in Figure 1. For
initial values in EM, we usedzik given by equation (5) for
the discrete classification from agglomerative hierarchical
clustering for the unconstrained model (λk Dk Ak DT

k ) in all
cases, leaving the model selection to the EM phase.

Of note is that no values of the BIC are given in Figure 4
for the spherical, varying-volume model for nine clusters
and for the unconstrained model for eight and nine clusters.
In these cases, the covariance matrix associated with one
or more of the mixture components is ill-conditioned,
so that the loglikelihood and hence the BIC cannot be
computed. Hierarchical clustering for the spherical, varying-
volume model produces a nine-cluster solution in which
one cluster is a singleton, and for the unconstrained model
it produces eight- and nine-cluster solutions in which one
cluster contains three points. Because the data are three-
dimensional, a minimum of four points is required for the
estimate of the covariance matrix to be non-singular. The
algorithms used for EM and for computing the BIC monitor
an estimate of the reciprocal condition number (smallest
to largest eigenvalue ratio) of the covariances. This latter
quantity falls in the range[0, 1] and values near zero imply
ill-conditioning [40]. Computations are less reliable for ill-
conditioned problems and as a result ill-conditioning may
cause anomalies before reaching the point of actual failure.
In our implementation, EM terminates with a warning if
one or more estimated covariance matrices are judged to be
too close to singularity, and the BIC calculation produces a
missing value under the same circumstances. Table 2 shows
reciprocal condition estimates for six different Gaussian
mixture models for up to nine clusters. It should also be clear
that EM started from partitions obtained by hierarchical
clustering should not be continued for higher numbers of
clusters once ill-conditioning is encountered.
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FIGURE 3. Pairs plot showing the clinical classification of the diabetes data. The symbols have the following interpretation: triangles—
normal; circles—chemical diabetes; squares—overt diabetes.
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TABLE 2. Minimum reciprocal condition estimates for covariances in model-based methods applied to the diabetes data. Rows correspond
to models and columns to numbers of components. Values near zero are cases in which there is either a very small cluster or one whose
points are very nearly collinear.

1 2 3 4 5 6 7 8 9

λI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λk I 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0
6 0.33 0.062 0.10 0.047 0.053 0.053 0.053 0.027 0.031
6k 0.33 0.020 0.0060 0.0064 0.0067 10−7 10−7 10−32 10−32

λDk ADT
k 0.0025 0.0048 0.0044 0.0049 0.0072 0.0070 0.0070 0.0017 0.0024

λk Dk ADT
k 0.0025 0.0035 0.0070 0.0065 0.0065 0.0063 0.0046 0.0039 0.0027
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Model-based Classification

FIGURE 5. Model-based classification of a simulated minefield with noise. Hierarchical clustering was first applied to data after five nearest
neighbour de-noising. EM was then applied to the full data set with the noise term included in the model.

3.2. Minefield detection in the presence of noise

Figure 5 shows the results of the model-based strategy for
noise (Section 2.6) on simulated minefield data (Muise and
Smith [41], see also [3]). The data arise from the processing
of a series of images taken by a reconnaissance aircraft in
which a large number of points are identified as representing

possible mines, but many of these are in fact false positives
(noise). The assumption is that the imaged area does not lie
completely within a minefield and that if there is a minefield
it will occur in an area where there is a higher density
of identified points. The goals are to determine whether
the image contains one or more minefields and to give the
location of any minefields that may be present.

THE COMPUTER JOURNAL, Vol. 41, No. 8, 1998
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The initial de-noising for Figure 5 was carried out using
the NNclean procedure for nearest-neighbour de-noising
[37]. The BIC is clearly maximized at a value of three (two
clusters plus noise) and favours the uniform-shape, equal-
volume model. The two clusters together give an accurate
reconstruction of the actual minefield.

It should be noted that the method is sensitive to the value
of V , the assumed volume of the data region. Here it is clear
that V is the area of the image; Banfield and Raftery [2]
and Dasgupta and Raftery [3] similarly used the volume of
the smallest hyperrectangle with sides parallel to the axes
that contains all the data points. However, this value could
overestimateV in many cases. Another possibility is to take
V to be the smallest hyperrectangle with sides parallel to the
principal components of the data that contains all the data
points. Our implementation uses the smaller of these two
alternatives as a default, but also allows specification ofV by
the user. A better solution might be to use the volume of the
convex hull of the data, although this may not be practical to
compute in higher dimensions.

4. SOFTWARE

Software implementing state-of-the-art algorithms for
hierarchical clustering [23] and EM based on the
various parametrizations of Gaussian clustering mod-
els is available through the internet—for details see
http://www.stat.washington.edu/fraley/
mclust soft.shtml . Included are functions that
incorporate hierarchical clustering, EM and BIC in the
model-based cluster analysis strategy described in this
paper. This software is designed to interface with the com-
mercial interactive software S-PLUS.4 An earlier version
of the model-based hierarchical clustering software is in-
cluded in the S-PLUS package as the functionmclust .
Subscription information for a mailing list for occasional
announcements such as software updates can also be found
on the same web page.

An S-PLUS function NNclean implementing the
nearest-neighbour de-noising method [37] is available at
http://lib.stat.cmu.edu/S/nnclean .

5. DISCUSSION

We have described a clustering methodology based on
multivariate normal mixture models and shown that it
can give much better performance than existing methods.
This approach uses model-based agglomerative hierarchical
clustering to initialize the EM algorithm for a variety
of models and applies Bayesian model selection methods
to determine the best clustering method along with the
number of clusters. The uncertainty associated with the
final classification can be assessed through the conditional
probabilities from EM.

This approach has some limitations, however. The first
is that computational methods for hierarchical clustering

4MathSoft Inc., Seattle, WA USA—http://www.mathsoft.
com/splus

have storage and time requirements that grow at a faster
than linear rate relative to the size of the initial partition,
so that they cannot be directly applied to large data sets.
One way around this is to determine the structure of some
subset of the data according to the strategy given here and
either use the resulting parameters as initial values for EM
with all of the data or classify the remaining observations
via supervised classification or discriminant analysis [2].
Bensmail and Celeux [42] have developed a method for
regularized discriminant analysis based on the full range of
parametrizations of Gaussian mixtures (4). Alternatively,
fast methods for determining an initial rough partition can
be used to reduce computational requirements. Posse [43]
suggested a method based on the minimum spanning tree
for this purpose and has shown that it works well in practice.

Second, although experience to date suggests that models
based on multivariate normal distribution are sufficiently
flexible to accommodate many practical situations, the
underlying assumption is that groups are concentrated
locally about linear subspaces, so that other models or
methods may be more suitable in some instances. In
Section 3.2, we obtained good results on noisy data by
combining the model-based methodology with a separate
de-noising procedure. This example also suggests that
nonlinear features can in some instances be well represented
in the present framework as piecewise linear features,
using several groups. There are alternative models in
which classes are characterized by different geometries such
as linear manifolds (e.g. Bock [17], Diday [44], Sp¨ath
[45]). When features are strongly curvilinear, curves
about which groups are centred can be modelled by using
principal curves(Hastie and Stuetzle [46]). Clustering about
principal curves has been successfully applied to automatic
identification of ice-floe contours [47, 48], tracking of
ice floes [49] and modelling ice-floe leads [50]. Initial
estimation of ice-floe outlines is accomplished by means
of mathematical morphology (e.g. [51]). Principal curve
clustering in the presence of noise using BIC is discussed
in Stanford and Raftery [52].

In situations where the BIC is not definitive, more
computationally intensive Bayesian analysis may provide a
solution. Bensmailet al. [27] showed that exact Bayesian
inference via Gibbs sampling, with calculations of Bayes
factors using the Laplace–Metropolis estimator, works well
in several real and simulated examples.

Approaches to clustering based on the classification
likelihood (1) are also known asclassification maximum
likelihood methods (e.g. McLachlan [53], Bryant and
Williamson [54]) orfixed-classificationmethods (e.g. Bock
[19, 55, 56]). There are alternatives to the classification
and mixture likelihoods given in Section 2.2, such as the
classification likelihood of Symons [57]:

LC(θ1, . . . , θG; τ1, . . . , τG; γ1, . . . , γn | x)

=
n∏

i=1

τγi fγi (xi | θγi ),
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and the posterior likelihood of Anderson [58]:

LP(θ1, . . . , θG; τ1, . . . , τG; z11, z12, . . . , znn | x)

=
G∏

k=1

n∏
i=1

τ
zik
k f (xi | θk)

zik .

The former is the complete data likelihood for the EM
algorithm whenzik are restricted to be indicator variables
(5), while the latter has the same form as the complete
data likelihood for the EM algorithm, but includeszik

as parameters to be estimated. Fuzzy clustering methods
(Bezdek [59]), which are not model-based, also provide
degrees of membership for observations.

The k-means algorithm has been applied not only to the
classical sum-of-squares criterion but also to other model-
based clustering criteria (e.g. Bock [17, 19, 56], Diday
and Govaert [60], Diday [44], Sp¨ath [45], Celeux and
Govaert [5]). Other model-based clustering methodologies
include Cheeseman and Stutz [61, 62], implemented in the
AutoClass software, and McLachlanet al. [12, 63, 64],
implemented in theEMMIX (formerly MIXFIT ) software.
AutoClass handles both discrete data and continuous
data, as well as data that has both discrete and continuous
variables. BothAutoClass for continuous data and
EMMIXrely on the EM algorithm for the multivariate normal
distribution; EMMIX allows the choice of either equal,
unconstrained or diagonal covariance matrices, while in
Autoclass the covariances are assumed to be diagonal.
As in our approach,AutoClass uses approximate Bayes
factors to choose the number of clusters (see also Chickering
and Heckerman [65]), although their approximation differs
from the BIC. EMMIXdetermines the number of clusters
by resampling, and has the option of modelling outliers by
fitting mixtures of multivariatet-distributions (McLachlan
and Peel [66]). In Autoclass , EM is initialized
using random starting values, the number of trials being
determined through specification of a limit on the running
time. Options for initializing EM inEMMIXinclude the most
common heuristic hierarchical clustering methods, as well
as k-means, whereas we use the model-based hierarchical
clustering solution as an initial value.
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