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We consider the problem of determining the structure of clustered data, without prior knowledge of
the number of clusters or any other information about their composition. Data are represented by
a mixture model in which each component corresponds to a different cluster. Models with varying
geometric properties are obtained through Gaussian components with different parametrizations
and cross-cluster constraints. Noise and outliers can be modelled by adding a Poisson process
component. Partitions are determined by the expectation-maximization (EM) algorithm for
maximum likelihood, with initial values from agglomerative hierarchical clustering. Models are
compared using an approximation to the Bayes factor based on the Bayesian information criterion
(BIC); unlike significance tests, this allows comparison of more than two models at the same time,
and removes the restriction that the models compared be nested. The problems of determining the
number of clusters and the clustering method are solved simultaneously by choosing the best model.
Moreover, the EM result provides a measure of uncertainty about the associated classification of
each data point. Examples are given, showing that this approach can give performance that is much
better than standard procedures, which often fail to identify groups that are either overlapping or

of varying sizes and shapes.

1. INTRODUCTION for direct comparison of models that may differ not only

) o .. . in the number of components in the mixture, but also
We consider the problem of determining the intrinsic i he ynderlying densities of the various components.
structure of clustered data when no information other than Partitions are determined (as in [3]) by a combination of

the observed values is available. This problem is known pierarchical clustering and the expectation-maximization
as cluster analysisand should be distinguished from the (EM) algorithm (Dempster, Laird and Rubin [7]) for

related problem otliscriminant analysisin which known — a4imum likelihood. This approach can give much better
groupings of some observations are used to categorize Otherﬁerformance than existing methods. Moreover, the EM

and infer the structure of the data as a whole. _ result also provides a measure of uncertainty about the
_ Probability models have been proposed for quite SOMe g jting classification. Figure 1 shows an example in which
time as a basis for cluster analysis. In this approach, the y,qel.hased classification is able to match the clinical
data are viewed as coming from a mixture of probability ¢|assification of a biomedical data set much more closely

distributions, each representing a different cluster. Recently, 1,4 single-link (nearest-neighbour) or standerdeans, in
methods of this type have shown promise in a number o spsence of any training data. ’

of practical applications, including character recognition
(Murtagh and Raftery [1]), tissue segmentation (Banfield This paper is organized as follows. In Section 2,
and Raftery [2]), minefield and seismic fault detection we give the necessary background in multivariate cluster
(Dasgupta and Raftery [3]), identification of textile flaws analysis, including discussions of probability models, the
from images (Campbelet al [4]) and classification of  EM algorithm for clustering and approximate Bayes factors.
astronomical data (Celeux and Govaert [5], Mukerjee The basic model-based strategy and modifications for
et al. [6]). handling noise are described in Sections 2.5 and 2.6,
Bayes factors, approximated by the Bayesian information respectively. A detailed analysis of the multivariate data
criterion (BIC), have been applied successfully to the set shown in Figure 1 is given in Section 3.1, followed
problem of determining the number of components in a by an example from minefield detection in the presence
model [3, 6] and for deciding which among two or more of noise in Section 3.2. Information on available software
partitions most closely matches the data for a given model for the various procedures used in this approach is given
[4]. We describe a clustering methodology based on in Section 4. A final section summarizes and indicates
multivariate normal mixtures in which the BIC is used extensions to the method.
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FIGURE 1. A projection of the three-group classification of the diabetes data from Reaven and Miller [8] using single link or nearest
neighbour, standarktmeans and the unconstrained model-based approach. Filled symbols represent misclassified observations.

2. MODEL-BASED CLUSTER ANALYSIS In agglomerative hierarchical clustering, however, the
number of stages is bounded by the number of groups
in the initial partition. It is common practice to begin
By cluster analysisve mean the partitioning of data into  with each observation in a cluster by itself, although the
meaningful subgroups, when the number of subgroups andprocedure could be initialized from a coarser partition if
other information about their composition may be unknown; some groupings are known. A drawback of agglomerative
good introductions include Hartigan [9], Gordon [10], methods is that those that are practical in terms of time
Murtagh [11], McLachlan and Basford [12] and Kaufman efficiency require memory usage proportional to the square
and Rousseeuw [13]. Clustering methods range from thoseof the number of groups in the initial partition.
that are largely heuristic to more formal procedures based on At each stage of hierarchical clustering, the splitting or
statistical models. They usually follow either a hierarchical merging is chosen so as to optimize some criterion. Con-
strategy or one in which observations are relocated amongventional agglomerative hierarchical methods use heuristic
tentative clusters. criteria, such as single link (nearest neighbour), complete
Hierarchical methods proceed by stages producing alink (farthest neighbour) or sum of squares [13]. In model-
sequence of partitions, each corresponding to a differentbased methods, a maximum-likelihood criterion is used for
number of clusters. They can be either ‘agglomerative’, merging groups [1, 2].
meaning that groups are merged, or ‘divisive’, in which Relocation methods move observations iteratively from
one or more groups are split at each stage. Hierarchicalone group to another, starting from an initial partition.
procedures that use subdivision are not practical unless theThe number of groups has to be specified in advance
number of possible splittings can somehow be restricted. and typically does not change during the course of the

2.1. Cluster analysis background
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iteration. The most common relocation methoklweans
(MacQueen [14], Hartigan and Wong [15])—reduces the
within-group sums of squares. For clustering via mixture

eigenvalues ok andAk is a scalar. The orientation of the
principal components ofy is determined byDy, while Ag
determines the shape of the density contaurspecifies the

models, relocation techniques are usually based on the EMvolume of the corresponding ellipsoid, which is proportional

algorithm [7] (see Section 2.3).
Neither hierarchical nor relocation methods directly

to AE|AK|.1 Characteristics (orientation, volume and shape)
of distributions are usually estimated from the data and can

address the issue of determining the number of groups withinbe allowed to vary between clusters or constrained to be the
the data. Various strategies for simultaneous determinationsame for all clusters.
of the number of clusters and cluster membership have been This approach subsumes several earlier proposals based

proposed (e.g. Engelman and Hartigan [16], Bock [17],
Bozdogan [18]—for a survey see Bock [19]). An alternative
is described in this paper.

2.2. Probability models for cluster analysis

In model-based clustering, it is assumed that the dataand Symons [22]); andx

on Gaussian mixturesty = Al gives the sum of squares
criterion, long known as a heuristic (Ward [20]), in which
clusters are spherical and have equal volumgs= %=
ADADT, in which all clusters have the same shape, volume
and orientation (Friedman and Rubin [21]); unconstrained
Yk = AkDkAxD/, which is the most general model (Scott
ADkADk (Murtagh and

are generated by a mixture of underlying probability Raftery [1]), in which only the orientations of the clusters

distributions in which each component represents a different

group or cluster. Given observations = (x1,..., xp),
letfc(xj | 6k) be the density of an observatian from the

kth component, wher€ are the corresponding parameters,
and letG be the number of components in the mixture. The
model for the composite of the clusters is usually formulated
in one of two ways. Thelassification likelihoodapproach
maximizes

n
Le@ .. 06yl o) =]] @i 16,), (@)
i=1

wherey; are discrete values labelling the classificatign=
k if xj belongs to thé&th component. Thenixture likelihood
approach maximizes

G
D i | k),
k=1

(2

wherery is the probability that an observation belongs to the
kth componentdx > 0; Y°_ w = 1).
We are mainly concerned with the case whégéx; | 6k)

n
Lu®s,... 067,76 | x)=]]

i=1

may differ. Table 1 shows the geometric interpretation of the
various parametrizations discussed in [2]. A more extensive
set of models within the same framework is treated in [5].

The classification likelihood can be used as the basis for
agglomerative hierarchical clustering [1, 2]. At each stage,
a pair of clusters is merged so as to maximize the resulting
likelihood. Fraley [23] developed efficient algorithms for
hierarchical clustering with the various parametrizations (4)
of Gaussian mixture models.

2.3. EM algorithms for clustering

Iterative relocation methods for clustering via mixture
models are possible through EM and related techniques
[12]. The EM algorithm [7, 24] is a general approach to
maximum likelihood in the presence of incomplete data. In
EM for clustering, the ‘complete’ data are considered to be

Vi = (xi,zi), wherezi = (zi1, ..., zg) with
1 if xj belongsto grou
0 otherwise

is multivariate normal (Gaussian), a model that has been cOnstitutes the ‘missing’ data. The relevant assumptions
used with considerable success in a number of applications2re that the density of an observatiengiven z; is given

[1, 2, 5, 3, 4, 6]. In this instance, the paramet&rsonsist
of a mean vectok and a covariance matriXy, and the
density has the form

fe(xi | pk, k)

_ exp[—%(xi - uk)TE[l(xi )

(27)P/2| 5|12 )

Clusters are ellipsoidal, centred at means The covari-
ancesxk determine their other geometric characteristics.
Banfield and Raftery [2] developed a model-based
framework for clustering by parametrizing the covariance
matrix in terms of its eigenvalue decomposition in the form

(4)

where Dy is the orthogonal matrix of eigenvector8y is

Yk = Ak Dk Ak DI,

by TTe_; fu(xi | 67k and that each; is independent
and identically distributed according to a multinomial
distribution of one draw o1t categories with probabilities

71, ..., Tg. The resultingcomplete-data loglikelihooi$
n G
|0k, T zik | x) = Y Y zikllog i f(xi | 6k)l.  (6)
i=1 k=1

The quantity2x = E[zk|xi, 01, ... ,0c] for model (6) is
the conditional expectation dfx given the observation;
and parameter values. The valzjg of Zk at a maximum of
(2) is the conditional probability that observatiobelongs
to groupk; the classification of an observationis taken to
be{j | zi*j = max z} }.

1conventions for normalizing.x and Ay include requiring| Ax| = 1
[5], so thatix = |Zk|YP, or requiring maxAy) = 1 [2], so thaty is the

a diagonal matrix whose elements are proportional to the largest eigenvalue dty.
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TABLE 1. Parametrizations of the covariance mafi in the Gaussian model and their geometric interpretation. The models shown here
are those discussed in Banfield and Raftery [2].

Tk Distribution Volume  Shape Orientation  Reference
Al Spherical Equal Equal NA 1,2,5,20
Akl Spherical Variable Equal NA 2,5

ADAD Ellipsoidal Equal Equal Equal 2,5,21,22
rkDkAkDk  Ellipsoidal Variable Variable Variable 2,5,22
ADgADyg Ellipsoidal Equal Equal Variable 1,2,5

Ak Dk ADg Ellipsoidal Variable Equal Variable 2,5

initialize 2jk (this can be from a discrete classification (5) )
repeat

M-step compute maximume-likelihood parameter estimates gign

N < YLz
N Nk
Tk F
i il 2ikxi
Nk
Sk depends on the model—see Celeux and Govaert [5]

E-step computezjk given the parameter estimates from the M-step

N B fic(xi | ik £k
e A

S , where f has the form (3)
D T fiGxi 1 g, )

until convergence criteria are satisfied

FIGURE 2. EM algorithm for clustering via Gaussian mixture models. The strategy described in this paper initializes the iteration with

indicator variables (5) corresponding to partitions from hierarchical clustering and terminates when the relative difference between successive

values of the mixture loglikelihood falls below a small threshold.

The EM algorithm iterates between an E-step in which This does not appear to be a problem in practice for well-
values ofzjx are computed from the data with the current separated mixtures when started with reasonable values.
parameter estimates and an M-step in which the complete-Second, the number of conditional probabilities associated
data loglikelihood (6), with eaclkk replaced by its current  with each observation is equal to the number of components
conditional expectationZjk, is maximized with respect to  in the mixture, so that the EM algorithm for clustering
the parameters (see Figure 2). Celeux and Govaert [5]may not be practical for models with very large numbers of
detail both the E- and M-steps for the case of multivariate components. Finally, EM breaks down when the covariance
normal mixture models parametrized via the eigenvalue matrix corresponding to one or more components becomes
decomposition in (4). Under certain conditions (McLachlan ill-conditioned (singular or nearly singular). In general it
and Krishnan [24], Boyles [25], Wu [26]), the method cannot proceed if clusters contain only a few observations
can be shown to converge to a local maximum of the or if the observations they contain are very nearly collinear.
mixture likelihood (2). Although the conditions under If EM for a model having a certain number of components
which convergence has been proven do not always hold inis applied to a mixture in which there are actually fewer
practice, the method is widely used in the mixture modelling groups, then it may fail due to ill-conditioning.
context with good results. Moreover, for each observaitjon A number of variants of the EM algorithm for clustering
(1 — max z}) is a measure of uncertainty in the associated presented here have been studied. These include the
classification (Bensmadt al. [27]). stochastic EMor SEM algorithm (Broniatowski, Celeux

The EM algorithm for clustering has a number of
limitations. First, the rate of convergence can be very slow.

and Diebolt [28], Celeux and Diebolt [29]), in whichk
are simulated rather than estimated in the E-step, and the
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classification EMor CEM algorithm (Celeux and Govaert theoretical and practical support for its use in this context
[30]), which convertszjx from the E-step to a discrete [3, 4, 6, 34, 35].

classification before performing the M-step. The standard A standard convention for calibrating BIC differences
k-means algorithm can be shown to be a version of the CEM is that differences of less than two correspond to weak
algorithm corresponding to the uniform spherical Gaussian evidence, differences between two and six to positive

modelZx = Al [30]. evidence, differences between six and ten to strong evidence,
and differences greater than ten to very strong evidence
2.4. Bayesian model selection in clustering (Kass and Raftery [31], Jeffreys [36]).

One advantage of the mixture-model approach to clustering

is that it allows the use of approximate Bayes factors to 2.5. Model-based strategy for clustering

compare models. This gives a systematic means of selecting

not 0n|y the parametrization Of the mode| (and hence the In praCtice, agglomerative hiel’al’chica| Clustering based on
C|ustering method), but also the number of clusters. For athe classification likelihood (l) with Gaussian terms often

recent review of Bayes factors emphasizing the underlying 9ives good, but suboptimal partitions. The EM algorithm

concepts and scientific app"cationS, see Kass and Rafter)ﬁan refine partitions when started SUfﬁCiently close to the

[31]. optimal value. Dasgupta and Raftery [3] were able to obtain
The Bayes factor is the posterior odds for one model good results in a number of examples by using the partitions
against the other assuming neither is favoueegbriori. produced by model-based hierarchical agglomeration as

Banfield and Raftery [2] used a heuristically derived Starting values for an EM algorithm for constant-shape
approximation to twice the |0g Bayes factor, called the Gaussian models, together with the BIC to determine the
‘AWE’, to determine the number of clusters in hierarchical number of clusters. Their approach forms the basis for a
clustering based on the classification likelihood. When EM More general model-based strategy for clustering.

is used to find the maximum mixture likelihood, a more

reliable approximation to twice the log Bayes factor called Determine a maximum number of clusters to consider

the BIC (Schwarz [32]) is applicable: (M) and a set of candidate parametrizations of the
Gaussian model to consider. In genekhlshould be
2log p(x| M) + constant as small as possible.

e Do agglomerative hierarchical clustering for the uncon-
strained Gaussian mod&knd obtain the correspond-
ing classifications for up t&1 groups.

e Do EM for each parametrization and each number of

clusters 2. .., M, starting with the classification from

hierarchical clustering.

Compute the BIC for the one-cluster model for each

parametrization and for the mixture likelihood with the

optimal parameters from EM for,2.. , M clusters.

This gives a matrix of BIC values correspondingto each

possible combination of parametrization and number of

clusters.

e Plot the BIC values for each model. A decisive first
local maximum indicates strong evidence for a model
(parametrization + number of clusters).

~ 2 pm(x, 0) — mpy log(n) = BIC,

where p(x|M) is the (integrated) likelihood of the data
for the model M, IM(x,é) is the maximized mixture
loglikelihood for the model andnp, is the number of
independent parameters to be estimated in the model.
The number of clusters is not considered an independent ®
parameter for the purposes of computing the BIC. If each
modelis equally likelya priori, thenp(x| M) is proportional

to the posterior probability that the data conform to the
model M. Accordingly, the larger the value of the BIC, the
stronger the evidence for the model.

The fit of a mixture model to a given data set can only
improve (and the likelihood can only increase) as more terms
are added to the model. Hence likelihood cannot be used
directly in assessment of models for cluster analysis. In
the BIC, a term is added to the loglikelihood penalizing the  Itis important to avoid applying this procedure to a larger
complexity of the model, so that it may be maximized for number of components than necessary. One reason for this
more parsimonious parametrizations and smaller numbersis to minimize computational effort; other reasons have been
of groups than the |0g||ke||h00d The BIC can be used to discussed in Section 2.3. A heuristic that works well in
compare models with differing parametrizations, differing Practice is to select the number of clusters corresponding
numbers of components, or both. Bayesian criteria otherto the first decisive local maximum (if any) over all the
than the BIC have been used in cluster analysis (e.g. BockParametrizations considered. There may in some cases
[17], Binder [33]). Although regularity conditions for the be local maxima giving larger values of BIC due to ill-

BIC do not hold for mixture models, there is considerable conditioning rather than a genuine indication of a better
model (for further discussion, see Section 3.1).

2Kass and Raftery [31] and other authors define the BIC to have opposite
sign to that given here, in which case the smaller (more negative) the BIC,
the stronger the evidence for the model. We have chosen to reverse this Swhile there is a hierarchical clustering method corresponding to each
convention in order to make it easier to interpret the plots of BIC values parametrization of the Gaussian model, it appears to be sufficient in practice
that we present later. to use only the unconstrained model for initialization.
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2.6. Modelling noise and outliers k-means are non-trivial, two classes are confined to one of
the long thin extensions while the third class subsumes the
other extension as well as their conjunction. In the clinical
classification, each of the two long extensions roughly

data, the model can be modified so that EM works well . . .
. A e . represents a cluster, while the third cluster is concentrated
with a reasonably good initial identification of the noise - .
closer to the origin. Most clustering methods that are

and clusters. Noise is modelled as a constant-rate Poisson .
LT : S currently in common use work well when clusters are well
process, resulting in the mixture likelihood

separated, but many break down when clusters overlap or

Although the model-based strategy for cluster analysis as
described in Section 2.5 is not directly applicable to noisy

Lm(br, ... .06 70,11, ..., TG | X) intersect. o .
N G @ It is important, however, to distinguish between single-
_ l_[ [@ + ZTK i (xi |9k)} link clustering and nearest-neighbodiscrimination In
LV & discrimination, there is a ‘training set’ of data whose group

memberships are known in advance, while in clustering,
whereV is the hypervolume of the data regioﬁfzo =1 all group memberships are unknown. Nearest-neighbour
and eachf (xj | 6k) is multivariate normal. An observation discrimination assigns a data point to the same group as the
contributes 1V if it belongs to the noise; otherwise it point in the training set nearest to it. It often works very
contributes a Gaussian term. well (e.g. Ripley [39]), but its success depends entirely on

The basic model-based procedure for noisy data is asthe available training set.

follows. First, it is necessary to obtain an initial estimate  Figure 4 gives a plot of the BIC for six model-based
of the noise. Possible approaches to de-noising include themethods (spherical models with equal and varying volumes,
nearest-neighbour method of Byers and Raftery [37] and constant variance, unconstrained variance and constant
the method of Allard and Fraley [38], which uses Vorono™ shape models with equal and varying volumes). The first
tessellations. Next, hierarchical clustering is applied to local maximum (in this case also the global maximum)
the de-noised data. In a final step, EM based on the occurs for the unconstrained model with three clusters, for
augmented model (7) is applied to the entire data set with which the classification assignmentis shown in Figure 1. For
the Gaussian components initialized with the hierarchical initial values in EM, we used;k given by equation (5) for
clustering partitions and the noise component initialized the discrete classification from agglomerative hierarchical
with the result of the de-noising procedure. The BIC is then clustering for the unconstrained modek DkAkDI) in all

used to select the best model representing the data. cases, leaving the model selection to the EM phase.
Of note is that no values of the BIC are given in Figure 4
3. EXAMPLES for the spherical, varying-volume model for nine clusters

and for the unconstrained model for eight and nine clusters.
In these cases, the covariance matrix associated with one
In this section we illustrate the model-based approach or more of the mixture components is ill-conditioned,
to clustering using a three-dimensional data set involving so that the loglikelihood and hence the BIC cannot be
145 observations used for diabetes diagnosis (Reaven ang¢omputed. Hierarchical clustering for the spherical, varying-
Miller [8]). Figure 3 is a pairs plot showing the clinical volume model produces a nine-cluster solution in which
classification, which partitions the data into three groups. one cluster is a singleton, and for the unconstrained model
The variables have the following meanings: it produces eight- and nine-cluster solutions in which one
cluster contains three points. Because the data are three-
dimensional, a minimum of four points is required for the
estimate of the covariance matrix to be non-singular. The
algorithms used for EM and for computing the BIC monitor
The clusters are overlapping and are far from spherical in an estimate of the reciprocal condition number (smallest
shape. As a result, many clustering procedures would notto largest eigenvalue ratio) of the covariances. This latter
work well for this application. For example, Figure 3 shows quantity falls in the rangg0, 1] and values near zero imply
the (1, 3) projection of three-cluster classifications obtained ill-conditioning [40]. Computations are less reliable for ill-
by the single-link (nearest-neighbour) method, standard conditioned problems and as a result ill-conditioning may
means and the model-based method for an unconstrainedause anomalies before reaching the point of actual failure.
Gaussian mixture. Of the possible group assignments, thosdn our implementation, EM terminates with a warning if
shown were chosen so as to minimize the error rate in eachone or more estimated covariance matrices are judged to be
case. The assumption of three classes is artificial for singletoo close to singularity, and the BIC calculation produces a
link andk-means, while for the model-based method the BIC missing value under the same circumstances. Table 2 shows
was used to determine the number of groups (see later). reciprocal condition estimates for six different Gaussian

Neither standar#-means nor single link perform well in  mixture models for up to nine clusters. It should also be clear
this example. Two of the clusters identified by single link that EM started from partitions obtained by hierarchical
are singletons, so that nearly all the data are assigned toclustering should not be continued for higher numbers of
one class. While all three classes resulting from standardclusters once ill-conditioning is encountered.

3.1. Diabetes diagnosis

glucose —plasma glucose response to oral glucose,
insulin  —plasma insulin response to oral glucose,
sspg —degree of insulin resistance.
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FIGURE 3. Pairs plot showing the clinical classification of the diabetes data. The symbols have the following interpretation: triangles—
normal; circles—chemical diabetes; squares—overt diabetes.

BIC for the Diabetes Data Uncertainty in the Model-Based Classification
o
o
=3
hi
o o
o
o
Q4
n
] -y
o
2 5 -

=] -
31 St
' Se

1 spherical, equal volume S8 -0
S 2 thericaI, vgrying volume 84 °
© 3 constant variance S, »-ie0
w0 4 unconstrained Re. @ .

5 constant shape, equal volume -y d@ o =

6 constant shape, varying volume 17
] T
2
Ly

o
2 4 6 8 100 150 200 250 300 350
number of clusters glucose

FIGURE 4. The plot on the left shows the Bayesian information criterion (BIC) for model-based methods applied to the diabetes data. The

first local (also global) maximum occurs for the unconstrained model with three clusters. The plot on the right depicts the uncertainty of the

classification produced by the best model (unconstrained, three clusters) indicated by the BIC. The symbols have the following interpretation:
dots<0.1; open circles=0.1 and<0.2; filled circles>0.2.

THE COMPUTERJOURNAL, Vol.41, No.8, 1998




MODEL-BASED CLUSTERANALYSIS 585

TABLE 2. Minimum reciprocal condition estimates for covariances in model-based methods applied to the diabetes data. Rows correspond
to models and columns to numbers of components. Values near zero are cases in which there is either a very small cluster or one whose
points are very nearly collinear.

1 2 3 4 5 6 7 8 9

Al 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Akl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0

T 0.33 0.062  0.10 0.047 0.053 0.053 0.053 0.027 0.031
P 0.33 0.020 0.0060 0.0064 0.0067 1o 107 1032 10732

ADkADI 0.0025 0.0048 0.0044 0.0049 0.0072 0.0070 0.0070 0.0017 0.0024
AkaADI 0.0025 0.0035 0.0070 0.0065 0.0065 0.0063 0.0046 0.0039 0.0027
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FIGURE 5. Model-based classification of a simulated minefield with noise. Hierarchical clustering was first applied to data after five nearest
neighbour de-noising. EM was then applied to the full data set with the noise term included in the model.

3.2. Minefield detection in the presence of noise possible mines, but many of these are in fact false positives

(noise). The assumption is that the imaged area does not lie
Figure 5 shows the results of the model-based strategy forcompletely within a minefield and that if there is a minefield
noise (Section 2.6) on simulated minefield data (Muise and it will occur in an area where there is a higher density
Smith [41], see also [3]). The data arise from the processing of identified points. The goals are to determine whether
of a series of images taken by a reconnaissance aircraft inthe image contains one or more minefields and to give the
which a large number of points are identified as representinglocation of any minefields that may be present.
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The initial de-noising for Figure 5 was carried out using have storage and time requirements that grow at a faster
the NNclean procedure for nearest-neighbour de-noising than linear rate relative to the size of the initial partition,
[37]. The BIC is clearly maximized at a value of three (two so that they cannot be directly applied to large data sets.
clusters plus noise) and favours the uniform-shape, equal-One way around this is to determine the structure of some
volume model. The two clusters together give an accurate subset of the data according to the strategy given here and
reconstruction of the actual minefield. either use the resulting parameters as initial values for EM

It should be noted that the method is sensitive to the value with all of the data or classify the remaining observations
of V, the assumed volume of the data region. Here it is clear via supervised classification or discriminant analysis [2].
thatV is the area of the image; Banfield and Raftery [2] Bensmail and Celeux [42] have developed a method for
and Dasgupta and Raftery [3] similarly used the volume of regularized discriminant analysis based on the full range of
the smallest hyperrectangle with sides parallel to the axesparametrizations of Gaussian mixtures (4). Alternatively,
that contains all the data points. However, this value could fast methods for determining an initial rough partition can
overestimaté/ in many cases. Another possibility is to take be used to reduce computational requirements. Posse [43]
V to be the smallest hyperrectangle with sides parallel to the suggested a method based on the minimum spanning tree
principal components of the data that contains all the data for this purpose and has shown that it works well in practice.
points. Our implementation uses the smaller of these two  Second, although experience to date suggests that models
alternatives as a default, but also allows specification b§/ based on multivariate normal distribution are sufficiently
the user. A better solution might be to use the volume of the flexible to accommodate many practical situations, the
convex hull of the data, although this may not be practical to underlying assumption is that groups are concentrated

compute in higher dimensions. locally about linear subspaces, so that other models or
methods may be more suitable in some instances. In
4. SOFTWARE Section 3.2, we obtained good results on noisy data by

) ) _ combining the model-based methodology with a separate
Software implementing state-of-the-art algorithms  for ge_nojsing procedure. This example also suggests that
hierarchical clustering [23] and EM based on the ponjinearfeatures can in some instances be well represented
various parametrizations of Gaussian clustering mod- i, the present framework as piecewise linear features,
els is available thr_ough the internet—for details see using several groups. There are alternative models in
http://www.stat.washington.edu/fraley/ _ which classes are characterized by different geometries such
mclust _soft.shtml . Included are functions that 5q |inear manifolds (e.g. Bock [17], Diday [44], &b~
incorporate hierarchical clus_tering, EM and I_3IC in the_ [45]). When features are strongly curvilinear, curves
model—ba;ed cluster. analy3|s strat.egy descr!bed in thisgpout which groups are centred can be modelled by using
paper. This software is designed to interface with the com- yyincipal curvegHastie and Stuetzle [46]). Clustering about
mercial interactive software _S-PLU‘SAn_earher VErsion — principal curves has been successfully applied to automatic
of the model—based hierarchical clustering sqftware is in- jgentification of ice-floe contours [47, 48], tracking of
cluded in the S-PLUS package as the functroolust . ice floes [49] and modelling ice-floe leads [50]. Initial
Subscription information for a mailing list for occasional agtimation of ice-floe outlines is accomplished by means
announcements such as software updates can also be foungs mathematical morphology (e.g. [51]). Principal curve

on the same web page. _ . clustering in the presence of noise using BIC is discussed
An S-PLUS function NNclean implementing the in Stanford and Raftery [52].

nearest-neighbour de-noising method [37] is available at

> In situations where the BIC is not definitive, more
http://lib.stat.cmu.edu/S/nnclean

computationally intensive Bayesian analysis may provide a
solution. Bensmaiét al. [27] showed that exact Bayesian
5. DISCUSSION inference via Gibbs sampling, with calculations of Bayes

We have described a clustering methodology based or]factors using the Laplace—Metropolis estimator, works well

multivariate normal mixture models and shown that it " Zeveral rre]al and S|Imulat.ed egamp;les. he classificati
can give much better performance than existing methods. pproaches fo clustering based on the classification

This approach uses model-based agglomerative hierarchica?te:?ﬂoog (1) ﬁred also knoh\;lanas:ﬁssifics;ionBmaximumd
clustering to initialize the EM algorithm for a variety lkelihood methods (e.g. McLachlan [53], Bryant an

of models and applies Bayesian model selection methodsWiIIiamsorl [54]) orfixed-cIassificat_iomnethods (eg. B.OCk.
to determine the best clustering method along with the [19, 55.’ 56])'. There are_alter_natlves_ to the classification
number of clusters. The uncertainty associated with the and m_|xtu_re I|_keI|_hoods given in Section 2.2, such as the
final classification can be assessed through the conditionalCl"’lss'f'c"’ltlon likelihood of Symons [57]:
probabilities from EM.

This approach has some limitations, however. The first

. . ) : . Lc61,...,0G6;T1,...,TG; Y1y ---» x

is that computational methods for hierarchical clustering e N G G vnlx)
4MathSoft Inc., Seattle, WA USAhttp:/www.mathsoft. =[] fr i 1 6),

com/splus i=1
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and the posterior likelihood of Anderson [58]: [4] Campbell, J. G., Fraley, C., Murtagh, F. and Raftery, A. E.
Lo bc: T e 711, 7 Zon | %) (1997) Linear_ flaw detection in woven textiles using model-
P\, ..., 0G, T, -+ » 1G> £12, £12, - - -, £n based clustering?attern Recognition Lett18, 1539-1548.
G n 2z 2 [6] Celeux, G. and Govaert, G. (1995) Gaussian parsimonious
= H l_[ Tklk f(xi [ 607" clustering modelsPattern Recognition28, 781-793.
k=1i=1 [6] Mukerjee, S., Feigelson, E. D., Babu, G. J., Murtagh, F.,
The former is the complete data likelihood for the EM Fraley, C. and Raftery, A. (1998) Three types of gamma ray
algorithm whenzjk are restricted to be indicator variables bursts Astrophys. J.508 314-327.
(5), while the latter has the same form as the complete [7] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977)
data likelihood for the EM algorithm, but includesy Maximum likelihood for incomplete data via the EM

as parameters to be estimated. Fuzzy clustering methods  @lgorithm.J. R. Stat. So¢B, 39, 1-38.

(Bezdek [59]), which are not model-based, also provide [8] Reaven, G. M. and Miller, R. G. (1979) An attempt to define
degrees of membership for observations. the nature of chemical diabetes using a multidimensional

analysisDiabetologig 16, 17—-24.

Hartigan, J. A. (1975)Clustering Algorithms Wiley, New

York.

[10] Gordon, A. D. (1981)Classification: Methods for the
Exploratory Analysis of Multivariate Dat&Chapman & Hall,
London.

The k-means algorithm has been applied not only to the
classical sum-of-squares criterion but also to other model- []
based clustering criteria (e.g. Bock [17, 19, 56], Diday
and Govaert [60], Diday [44], $th [45], Celeux and
Govaert [5]). Other model-based clustering methodologies
include Cheeseman and Stutz [61, 62], implemented in the[ll] Murtagh, F. (1985) Multidimensional clustering algorithms.
AutoClass software, and McLachlaet al. [12, 63, 64], CompStat Lectureg. Physica Verlag, Mostbach.
implemented in the&eMMIX (formerly MIXFIT ) software. [12] McLachlan, G. J. and Basford, K. E. (1988jxture Models:
AutoClass handles both discrete data and continuous Inference and Applications to Clustering/larcel Dekker,
data, as well as data that has both discrete and continuous  New York.
variables. BothAutoClass for continuous data and  [13] Kaufman, L. and Rousseeuw, P. J. (1980)ding Groups in

EMMIXrely on the EM algorithm for the multivariate normal Data. Wiley, New York.

distribution; EMMIX allows the choice of either equal, [14] MacQueen, J. (1967) Some methods for classification and
unconstrained or diagonal covariance matrices, while in analysis of multivariate observations. In Cam, L. M. L. and
Autoclass  the covariances are assumed to be diagonal. Neyman, J. (edsRroc. 5th Berkeley Symp. on Mathematical
As in our approachAutoClass uses approximate Bayes Statistics and Probabilityvol. 1, pp. 281-297. University of

factors to choose the number of clusters (see also Chickering _ California Press. _

and Heckerman [65]), although their approximation differs [15] Hartigan, J. A.and Wong, M. A. (1978) Algorithm AS 136: a
from the BIC. EMMIX determines the number of clusters K-means clustering algorithrppl. Stai, 28, 100-108.

by resampling, and has the option of modelling outliers by [16] Engelman, L. and Hartigan, J. A. (1969) Percentage points of
fitting mixtures of multivariatet-distributions (McLachlan atestfor clustersl. Amer. Stat. Assqe4, 1647,

and Peel [66]). In Autoclass EM is initialized [17] Bock, H. H. (1974)Automatische Klassifikation (Clusteranal-
using random starting values, the number of trials being (18] éso? d\éagc:]en:o?:gg;;ugfg:;rf}tlrtlr?snﬁumber of component
determined through specification of a limit on the running gan, ™. 9 P

. - N - . clusters in the mixture model using a new informational
time. Options for initializing EM irEMMIXinclude the most complexity criterion of the inverse Fisher information matrix.

common heuristic hierarchical clustering methods, as well In Opitz, O., Lausen, B. and Klar, R. (ed&)formation and

ask-means, whereas we use the model-based hierarchical  cjassification pp. 40-54. Springer-Verlag, Berlin.

clustering solution as an initial value. [19] Bock, H. H. (1996) Probability models and hypothesis testing
in partitioning cluster analysis. In Arabie, P., Hubert, L. and
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