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SUMMARY

We introduce the weighted likelihood bootstrap (WLB) as a way to simulate approximately
from a posterior distribution. This method is often easy to implement, requiring only an
algorithm for calculating the maximum likelihood estimator, such as iteratively reweighted
least squares. In the generic weighting scheme, the WLB is first order correct under quite
general conditions. Inaccuracies can be removed by using the WLB as a source of samples
in the sampling-importance resampling (SIR) algorithm, which also allows incorporation
of particular prior information. The SIR-adjusted WLB can be a competitive alternative
to other integration methods in certain models. Asymptotic expansions elucidate the second-
order properties of the WLB, which is a generalization of Rubin’s Bayesian bootstrap. The
calculation of approximate Bayes factors for model comparison is also considered. We note
that, given a sample simulated from the posterior distribution, the required marginal
likelihood may be simulation consistently estimated by the harmonic mean of the associated
likelihood values; a modification of this estimator that avoids instability is also noted. These
methods provide simple ways of calculating approximate Bayes factors and posterior model
probabilities for a very wide class of models.

Keywords: BAYES FACTOR; BAYESIAN INFERENCE; DIRICHLET WEIGHTS; MONTE CARLO METHODS

1. INTRODUCTION

This paper investigates the extent to which a new bootstrap procedure—the weighted
likelihood bootstrap (WLB)—can be used by applied Bayesian statisticians to
approximate posterior distributions. This is a direct extension of the Bayesian bootstrap
(Rubin, 1981) from nonparametric models to parametric and semiparametric models.
It is a Monte Carlo method which is particularly simple to apply in models where
maximum likelihood estimation is feasible, as in many regression models and
generalized linear models, for example. Unlike Markov chain simulation algorithms
(Gelfand and Smith (1990) and Tierney (1991), for example), the WLB used in isolation
is not simulation consistent, i.e. it does not produce exact answers as the amount
of computing resources increases without bound. Rather, it provides an approximation
which improves as more data become available. The WLB produces a random sample
of parameter values from a distribution on the parameter space which approximates
a Bayesian posterior. When used in conjunction with other methods, like sampling—
importance resampling (SIR) (Rubin, 1987, 1988), the WLB output can be modified
to produce a sample from the posterior of interest, and so the adjusted WLB is
simulation consistent. The WLB may also form a good starting point for the adaptive
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4 NEWTON AND RAFTERY [No. 1,

importance sampling algorithm (West, 1992) when the normal and #-approximations
are poor.

The paper is organized as follows. Section 2 contains a description of the method
for independent data, and an application to a non-linear regression problem. Exact
properties of the WLB are studied in Section 3, and asymptotic properties in
Section 4. The ease of implementation of the WLB is investigated in Section 5, where
three other examples are worked out. An extension to dependent data models and
to partial likelihood is presented in Section 6. In Section 7, we study a method for
approximating marginal likelihoods by using samples from a posterior distribution.
This method can be used to compute Bayes factors from the output of the WLB or
any other posterior simulation device.

2. THE METHOD

Initially, consider modelling data x,, x,, . . ., X, as independent, each x; having
probability density function f;(x;; ) with respect to some o-finite measure on the
sample space. Bayesian inference ultimately requires some knowledge of the likelihood
function for the parameter 6,

LO) =TT/ 0),

i=1

having started with a prior =(0). In lieu of analytical expressions for various integrals
of the posterior density proportional to L(f) w(f), approximate inference proceeds
by considering empirical averages taken with respect to a sample drawn from some
appropriate distribution on the parameter space. Monte Carlo methods, including
the WLB, are based on this premise.

In the WLB method, a sample is produced by maximizing a weighted likelihood
function

LO):=T1f,(x; 6)", (1)
i=1

where the weight vector w,=(w, , . . ., w,,) has some probability distribution
determined by the statistician. The function L is not a likelihood in the usual
sensg; it is merely a device for generating a sample on the parameter space. We denote
by § any parameter value satisfying L@)=L(®) for all 6 in the parameter space.
(Without some constraints, § is not guaranteed to be unique.) Whereas the likelihood
function L (and the maximum likelihood estimate ) are fixed after the data are
observed, the weighted likelihood L (and its maximizer §) have randomness induced
by the distribution of the weights. Our thesis is that, for certain weight distributions,
the conditional distribution of § given the data can provide a good approximation
to a posterior distribution of §. Although this conditional distribution is usually difficult
to find exactly, it is straightforward to simulate when maximization of L is feasible.
The simulation amounts to repeatedly sampling weight vectors and max1m121ng L.
Motivated by inference for multinomial data, a natural weight distribution is the
uniform Dirichlet distribution. Such weights are simulated by generating # independent
exponentials Y; and forming w, ;=Y;/Y where Y is the sample mean of the Y;.
When combining the WLB with importance sampling, it is computationally convenient
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to form weights w, ;o< Y¥ for some power a#1. If a>1, the weight distribution is
overdispersed relative to the Dirichlet distribution, in the same sense as used by Gelman
and Rubin (1992), although in a different context. Indeed, many weight distributions
could be postulated, and the quality of the approximation certainly depends on the
choice. We investigate several choices in this paper.

The following example illustrates the power and simplicity of the WLB method.
A non-linear regression model, considered by Marske (1967), and studied in detail
by Bates and Watts (1988), relates biochemical oxygen demand x of prepared water
samples to incubation time ¢ by the equation

xi=61{l—exp(—621,-)}+e,- l=1, 2, A (B

The errors ¢; are assumed to be independent normal errors with constant variance
0%, on which we assign an improper prior w(62)cco ~2. The generic parameter 6
incorporates both the regression parameter vector 8 and the scale parameter ¢. As
described in Bates and Watts (1988), a transformation invariant, design-dependent
prior for 8=(8;, ;) is w(B)e<| VT V|2 where V is the nx 2 matrix having (i, j)th
element dE4(x;)/98;. Contours of this prior are shown in Fig. 1(a). Given the small
data set of Marske ({(#;, x;)}={(1, 8.3), (2, 10.3), (3, 19), (4, 16), (5, 15.6), (7, 19.8)},
with units (days, mgl~!)), we can quite directly obtain maximum likelihood
estimates for this model by using routines for non-linear optimization. We use the
S function ‘nls’ (Bates and Chambers, 1992); built-in functions in other languages
could also be used. Bayesian inference is not simple here because marginal posteriors
pose difficult integration problems.

The WLB takes advantage of the available estimation technology to carry out the
integration. As described more precisely in Section 5, max1mlzmg L for any
particular set of weights is done by simply including a weight vector in the estimation
routine. This weight vector needs to be known only up to a multiplicative constant,
and so the unnormalized weights Y can be used. A raw sample of WLB parameter
values is produced by repeatedly generating a random weight vector and applying the
estimation code to the appropriately weighted cases. This sample provides a first-order
correct approximation (at least) to the true posterior distribution in an asymptotic sense
(as n— o0, and o~ 1; see Section 4). The WLB samples do not come from the joint
posterior exactly, because, for one thing, no prior information was used in the simula-
tion. However, a 51mple adjustment based on 1mportance sampling can correct this.

The basic idea is that g, the joint density of 3, is a good approximation to the
marginal posterior density of 8 and hence is a good choice for an importance sampling
density. Although g is generally unavailable, it can be simulation consistently estimated
by a kernel dens1ty estimate g using the sample of WLB parameter values. Such a
density estimate is shown in Fig. 1(d) for 5000 Bs simulated from a weight
distribution with o= 1.6. The kernel is normal, and its covariance matrix is determined
by using Terrell’s (1990) method of maximal smoothing, i.e. a particular scale multiple
of the inverse Hessian of the log-likelihood at its maximum. For comparison, contours
of the exact marginal likelihood (having integrated out ¢2) and marginal posterior
for 3 are shown in Figs 1(b) and 1(c). The WLB sample has captured the structure
of this highly non-elliptical posterior distribution. To finish the analysis, each 8 in
the raw WLB sample must be assigned an importance weight

u;ocr(87) = w(B’) L,,(8))/&(B))



6 NEWTON AND RAFTERY [No. 1,

30 A 30
-3
25 1 25 A
20 A 20 A
15 J 15 A
-1

1.0 A 1.0 A
05 A 05 A
00 A 0.0 A

10 15 20 25 30 35 40 10 15 20 25 30 35 40

prior likelihood
(a) (b)
3.0 30 A
25 A 25 A 5
20 1 5 20
1.5 A 3 15 A
1.0 A 1.0
05 A 05 A
N

0.0 A 00 A

10 15 20 25 30 35 40 10 15 20 25 30 35 40

posterior WLB density

) (d)

Fig. 1. Inference for the non-linear regression of Section 2: (a)-(c) contours of the prior, likelihood
and posterior respectively (in integer units from the maximum on the log-scale) for the regression
parameter 3; (d) contours of the kernel density estimate produced by the WLB with 5000 draws (units
are mgl~! for 6, and days~! for 6,)

such that the weights sum to 1. (Since o2 has been integrated out, the likelihood L
is replaced by a marginal likelihood L,, above.) To obtain a final sample, we might
try rejection sampling based on these importance weights, but then a bound is needed
on r(B). Instead, we sample from the discrete distribution determined by these weights.
This is precisely the SIR algorithm of Rubin (1988) (see also Gelfand and Smith (1992)).
The final sample, an SIR-adjusted WLB sample, represents a simulation consistent
estimate of the true posterior distribution of interest.

It is well known that, if an approximating density is not sufficiently close to the
density of interest, then the importance weights can be dominated by a very small
minority. Ritter et al. (1991) have studied this for the same non-linear regression
example, showing that, in a z-approximation to the likelihood, 10 of 10000 weights
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carry 60% of the weight. In contrast, the importance weights produced in our analysis
are very stable, with the largest 40% carrying only half the weight.

Markov chain simulation methods, although almost always applicable in principle,
are more difficult to apply than the SIR-adjusted WLB in this example. The entire
analysis above, including generation of random weights, repeated maximization of
L, density estimation, construction of importance weights and resampling to form
the final posterior sample, was implemented in about 60 lines of S code, using built-
in functions. The full conditionals required to run a Gibbs sampler, in contrast, do
not have a simple form. Generally, for non-linear regressions, these conditionals are
not log-concave, and so adaptive rejection sampling (Gilks and Wild, 1992) can fail.
A ‘griddy’ Gibbs sampler can be run (Ritter and Tanner, 1992); indeed, a variety
of approximations could be tried. By contrast, the WLB and the SIR-adjusted WLB
are routine calculations in models like the non-linear regression above. In our
experience with various regression models, it can take many hours to program a Gibbs
sampler successfully.

3. ORIGINS OF WEIGHTED LIKELIHOOD BOOTSTRAP:
MULTINOMIAL SAMPLING

The WLB with uniform Dirichlet weights simulates the posterior from an identifiable
prior for the unconstrained multinomial model. Let {x;} be independent random
variables, each taking one of k distinct values with probabilities = (6,, . . ., 0,).
The likelihood and weighted likelihood functions collapse to become

k - k
LO)=TI62, LO)=TI 6™
j=1 j=1

where y; counts the number of x; equal to the jth distinct value, and similarly nv;
is the sum of the weights w, ; of data points x; equal to the jth distinct value. From

properties of Dirichlet random vectors, the vector y=(y,, . . ., v4) has a Dirichlet
distribution with parameters y;, . . ., Y, i.e. it has probability density
k
Pyl v~ '11y;>0]. (2)

Jj=1

When there are no modelling constraints on 6, = v, and so the WLB using uniform
Dirichlet weights simulates the posterior of # under the improper prior HjGJTI.
Alternative Dirichlet distributions for the w, ; can produce posteriors under any
conjugate prior. The Bayesian bootstrap (Rubin, 1981) follows from the above
considerations under the nonparametric assumption that the unknown distribution
of the data supports only observed values.

Models constrain probabilities, in particular the multinomial probabilities discussed
in this section. A simple trinomial example from linkage analysis has probabilities
(p1, P2, p3) constrained by a parameter € (0, 1):

240 1-6 6
=222 7 2. 3
(p1> P2, D3) ( 1 3 4> 3)

Observed cell counts in this much-studied example (Rao, 1973; Dempster et al., 1977,
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Fig. 2. Weight distribution: contours are at integer units of log-density from the maximum for the
density function of equation (2); the four parts correspond to the four data sets of Table 1, and the

line of negative slope in each part indicates the probability vectors satisfying the model constraints
(equation (3))

TABLE 1
Four examples of linkage data, one per
row

B2 Y2 Y3 n=xy,
125 38 34 197

13 4 3 20

14 1 5 20

3 4 3 10

Tanner and Wong, 1987) are shown in the top row of Table 1. The following three
rows give particular subsets analysed by Tanner and Wong.

Fig. 2 shows contours of density (2) of the collapsed weight vector (v, v2, v3)»
which is the posterior density of (p;, p,, p;) under an improper prior and when no
model constraints are active. In terms of the collapsed weights ~;, the maximizer of
L for this model is

— 2= 2vi+ D+ (2= 271+ 1)* + 8y3)

which corresponds to a probability vector p=(p;, pP,, D) in the model given by
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p=(0,0,1)

p=(1,0,0) p=(0,1,0)

Fig. 3. The line of negative slope is the linkage model, the set of trinomial probability vectors satisfying
certain constraints: in a WLB simulation, points are sampled from the simplex and then projected down
into the model; the broken lines show how this projection happens (all the points on the same broken
line are projected onto the same point in the model)

equation (3). Maximization of L for a given vector v=(v1> Y2, v3) is equivalent to
a projection of v into the model. This projection, shown in Fig. 3, is defined by the
vector p in the model which minimizes

3
distance(p, v)= — 2, v;logp;.
Jj=1
Roughly, the posterior distribution of the parameter 6 is induced by the conditional
posterior of the unconstrained vector p given that p is in the model. This is the premise
for the Dirichlet sampling process (Tanner and Wong, 1987). The WLB replaces
conditioning by projection, making sampling much more efficient, but introducing
errors into the method. .

In Fig. 4, a histogram from 5000 simulated s is compared with two posterior
distributions for each of the data sets in Table 1. In one case, the prior is flat. The
other is w(A)x{(2+6)(1 —0)0}~!, which is the restriction of the prior IT; 9 !'to vectors
in the model (i.e. p=p(#)). The approximation is reasonably good and improves with
increasing sample size. The case shown in Fig. 4(c) is rather interesting because the
sample is small and the data indicate that 6 is close to the boundary of the parameter
space; this is a case where inference is particularly sensitive to the prior distribution.
The WLB with uniform weights provides a close approximation to the posterior under
the prior w(f) and is somewhat different from the likelihood function.

Fig. 5 shows the effect of changing the weight distribution in this simple linkage
example. The particular change gives the collapsed weight vector v a den51ty
proportional to IT~ (compare with equatlon (2)). The induced distribution of 4 is
quite close to the posterlor of 6 under a flat prior. It is instructive to view the density
of f as a product of the likelihood L and some function ., which we call the
effective prior. This function is not a prior in the usual sense, as it may depend on
the data. Ideally, a weight distribution can be found so that =, is close to the prior
of interest w. Lacking this, retrospective adjustment of WLB samples by SIR is often
successful.
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6 6
() (d)

Fig. 4. Histograms (based on 5000 draws) from the WLB simulation compared with two posterior
distributions for each of the four data sets in Table 1: , likelihood functions; +-+----- , posteriors
under the prior w(6)e<1/6(2+6)(1—6)

4. ASYMPTOTIC ACCURACY

When the model satisfies sufficient regularity conditions (for details, see Newton
(1991)), the asymptotic conditional distribution of 8, can be studied and compared
with known asymptotic properties of posterior dlstrlbutlons First-order correctness
of the WLB (with uniform Dirichlet weights) is embodied in the following two results,
which assume independent and identically distributed data x;, x,, . . ., from some
unknown member f; of the model. Throughout this section, we are con51der1ng the
distribution of an unadJusted WLB sample, i.e. before correction by SIR.

Let 0, be the maximum likelihood estimate (in R¥), and let I, (0,,>) be the observed
1nformat10n matrix, namely the k X & matrix of negative second partials of the log-
likelihood times 1/n.

Theorem 1. For each ¢>0, as n—> oo,
P(Ign'—én|>6|xl, X2s 0oy xn)_’o

along almost every sample path x;, x,, . . . .
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Fig.5. Plot similar to Fig. 4, except that modified weights are used in the WLB simulation: modifying the
weights makes the resulting histograms closer to the likelihood functions, i.e. it flattens the effective prior

Theorem 2. As n— o, and for every Borel set A C R,
P(in1,0,))0,-0,)€A|x\, X2, . . ., X,)> P(ZEA)

along almost every sample path x;, Xx,, . . . . Here, Z is a normal random vector
with mean 0 and identity covariance matrix.

For both of these results, the probabilities refer to the distribution of §, induced
by the random weights w, ;. It is well known (Johnson, 1967, 1970) that the
posterior distribution of J{n 1,(8,)}(6 — 6,) is also asymptotically standard normal,
and so the WLB is said to be first order correct. In performing the WLB, knowledge
of the information matrix is not required.

In general, higher order approximations to the posterior involve the prior. Since
the WLB with uniform Dirichlet weights does not use information from the prior,
it is doubtful that the procedure will have good higher order properties. It is
informative, however, to study higher order expansions, and we do this in the one-
dimensional case. A Taylor series expansion gives

Zn:=\/{n1n(§n)}(§n A _Ji Ajv_l wn,i¢n,i(én)+Rn (4)
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where

Uni(0) = 1,(0) 2 2108/ 5]

’ a6
and R, is an error term. The Edgeworth expansions of Haeusler et al. (1991) for
weighted bootstraps can be applied to the dominant term in Z,, under moment
conditions on derivatives of the log-density. Therefore, if the error R, is sufficiently
small, the distribution function F),(¢) of Z, can be expressed as

¢(t){h(00) . } (L)
F(t)= 2O+ T L7007 *-1){+o )

where ¢ and ® are the standard normal density and distribution function respectively
and

o) zE{"’{bgﬁ(X”r, 16~ - E{az{logfe(X)}}
26 o0°

The errors R, are sufficiently small if, for a sequence of positive numbers
8,=0(1/n), P(IR |>6,|x1, . . oy Xp)= o(l/Jn) for almost every data sequence. This
condition can fail, as it does for example with exponential data parameterized by
=1/E(x;).
From Johnson (1970), the posterior distribution function F,,(¢) of J{n I,(8,)}(6 — 6,
can be expanded, for almost every data sequence, as

o) ( 800 6 #(60) } <L)
Ro=e0+ {0 s -+ o+l

where
_ 63{logfa(X)}}
g0 =F { 20° ,

and = is the prior of interest with derivative 7.

The n~"2-terms in these two expansions are not always equal, in part because the
expansion of the posterior involves the prior. However, there is a class of models
for which the n~"2terms in both expansions are equal when a particular prior = is
being considered. To determine this class, recall a result from Bartlett (1953) that
h6)= 6 1(0) + 4 g(6), where I is the derivative of the Fisher information. Equating
coefficients of 72, we see that a necessary condition for the n~!/?-terms to be equal
is that g(6)= — 21(). This constraint holds in several models, including those where
0 is the location parameter of a symmetric distribution, and in exponential families
where log f;(x) = a(6)x + c() + d(x) and 6 = E(X). We have found no model where

8(6) # —21(0) and where 0§ = E(X), and so perhaps the class is reasonably large. After
equating constant terms, we have that FE,0)=F,(O)+ o(1/]n) if both g(0)= — 21()
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and w(f)oc1(0), the square of the Jeffreys prior. So, if this prior is used in a model
where g= —21, the WLB beats the normal approximation.

The prior of interest may not be the square of the Jeffreys prior, even if the model
satisfies the necessary technical constraints, and so the practical use of this expansion
is unclear. Again, our recommendation is retrospectively to adjust the WLB output
by using a density estimate and the SIR algorithm to produce a simulation consistent
estimate of the posterior density. Another approach would be to modify the weight
distribution to incorporate model and prior information. No general recipe yet exists,
but this idea may be workable given some results for frequentist bootstraps (Haeusler
et al., 1991).

As a practical matter, the quality of the WLB approximation is readily assessed
by studying the stability of the importance sampling weights used in the SIR algorithm.
If a small fraction of these weights dominates the others, then the density being
simulated is not particularly close to the posterior of interest. By this method of
assessment, we see that the WLB is quite satisfactory in the non-linear regression
model studied in the first example, even though asymptotic expansions in this case
have not been characterized.

The expansions of F,(¢) and F,(f) provide insight into the structure of the effective
prior introduced at the end of Section 3. The conditional density of 8, given the
data, is proportional to the likelihood L times some function =, , which we call the
effective prior. This function is not a prior in the usual sense, since it may depend
on the data, but technically it plays the role of a prior by modifying the likelihood.
Indeed 7. , may not equal the prior of interest «, although if the two are close then
the WLB prov1des a good first approximation to the posterlor If the sequence of
effective priors has a limit 7. with derivative ., then in models where g= — 21 this
limit must be proportional to 1(6).

Equation (4) can also be used to study the effect of the overdispersion parameter
« on the distribution of §. Suppose that weights w, ; are proportional to Y for some
a =1, where Y; are exponential. The uniform Dirichlet weights obtain for a=1, but
the weights are more variable for larger «. Ignoring the error term in equation_ (4)
and applying the delta method, we see that the conditional variance.of 6 is
proportlonal to o, as an asymptotic approximation. One benefit of overdispersion
is that attenuated regions of posterior mass are more adequately sampled. However,
if « is too large, then a significant fraction of s have small likelihood, causing a
minority of points to dominate the importance weights. Our experience suggests that
we should choose « rather close to 1. Importance weights can be compared from
simulation under different o, and an empirical choice of « can be made.

5. IMPLEMENTATION AND EXAMPLES

5.1. Iteratively Reweighted Least Squares

Standard methods for computing maximum likelihood estimates can often be used
to maximize a weighted likelihood function. The upshot of this in practice is that
computer code for maximizing a likelihood can be invoked to perform the WLB
simulation. One such method is iteratively reweighted least squares (IRLS) (Green,
1984).

Consider a weighted likelihood function L (or its logarithm /) which is maximized
by solving the (vector) weighted likelihood equation
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ol
—(@=0 5
ao( ) (5)

for € Rk, There is a close connection between a solution 8 of equation (5) and the
IRLS solution 6 of the likelihood equation

3l
2 6)=0,
30()

where / is the logarithm of the likelihood function.

Following the general formulation described in Green (1984), I is viewed as a
function of an n-vector of predictors n= (9, 72, . . ., 1,)". These predictors, in turn,
are viewed as functions of the parameter 0; thus n=7(f). Letting u be the n-vector
(31/37) and D the n X k matrix (95/90), the weighted likelihood equation (5) becomes
simply

D™Wu=0,

where W is an nx n diagonal matrix with weights w, ; on its diagonal. The model
densities are assumed to have the form f;(x;; 6) = ¢;(y;, x;) where, for each i, y; is
a fixed, known, function determined by the model.

The iterative Newton-Raphson solution to the weighted likelihood equation is first
to evaluate u, D and the second derivatives of / at an initial guess 6,. Then an
updated guess 6, is computed by solving the linear system

021

~ a7 @,-6,)=D"Wu. (6)

Iteration continues until convergence. In the standard Fisher scoring or IRLS solution,
however, the matrix (—98%//0067) in equation (6) is replaced by an approximation
DTWAD where A is the expectation (under the current parameter value) of the nx n
matrix (—0%//dyyT). This approximation is derived from the expansion

27 2 n 2
al:DTWal 3w ol &
266" oy’ i=1 617, 060T

and the fact that E(d//dn,)=0. With this approximation, the Newton-Raphson
algorithm involves evaluating u, D and A at an initial value 6, and then solving the
linear system

D*"WAD@,—0,)=D"Wu (7

for 6,. Again, iteration continues until convergence. We must assume that D is of
full rank k and A is positive definite to ensure a unique solution at each iteration.
By noting that equation (7) defines the normal equations for a regression problem,
we can compute 8, by regressing A~ 'y + D@, on D with weight matrix WA, i.e.

6,=(DTWAD) 'D"WA(A~'u+ Df,).



1994] APPROXIMATE BAYESIAN INFERENCE 15

The WLB simulation involves repeatedly generating weight matrices W and then
performing the IRLS algorithm described above. By comparison, if W is the identity
matrix, we have the standard algorithm to solve the likelihood equations. Also, the
form of the estimating equations indicates that the diagonal entries of W need to
be known only up to a constant of proportionality, so that unnormalized exponentials
(or powered exponentials) may appear on the diagonal. By the addition of a random
weight vector into a standard optimization routine, the WLB is readily implemented.

5.2. Non-linear Regression

The non-linear regression model discussed in Section 2 is illustrative because with
two regression parameters the contours of the WLB density estimate are easily
visualized. That the WLB works in a two-parameter model is not enough, however,
to convince many statisticians of its general utility. In this section, we study a second
non-linear regression model, this one having four regression parameters. Again,
inference is quite straightforward with the SIR-adjusted WLB.

Abdollah (1986) and later Bates and Watts (1988) consider the following model
for a problem from biochemistry:

B2

S pwy ey R T

& i=1,2,... n

The problem is concerned with the amount x; of one chemical that binds to the
surface of particular cells in the presence of a certain amount ¢; of another chemical.
We study this model by using data from the second tissue sample in Table A4.2 of
Bates and Watts (1988). There are 16 observations, and four regression parameters,
each with meaningful interpretations on the given scale. A scale parameter o of the
independent normal errors augments the regression parameters to give five unknown
parameters in 6.

Bayesian inference for this problem starts with a prior. As with the example in
Section 2, we put m(0?)x¢ =% and w(B8) < |V V|/2, The prior on 3 is locally uniform
and transformation invariant. In all that follows, ¢ has been integrated out analytically.
Using the prescription laid out in Section 2, we ran the WLB by generating 5000 vectors
of exponential random variables and then applied an optimization routine with each
to determine that many Gs. In this example, the expone tials are powered up by
a=1.1to spread out the weights. For 147 of these vectors, no solution to the weighted
likelihood equation was found, owing to ill conditioning of some kind. A normal-
kernel density estimate was fitted to the remaining 4853, taking as its covariance matrix
a scaled-down version of the inverse Hessian computed at the maximum likelihood
estimate. We computed the scale factor in accordance with the principle of maximal
smoothing (Terrell, 1990). Next, importance weights were computed by comparing
the density estimate at each 8 with the true posterior density (up to a constant) which
is given by the known marginal likelihood and the given prior. These weights, when
normalized to be a probability vector, are shown in Fig. 6(a). To obtain this plot,
we sort the weights and plot their cumulative value against their rank. Perfectly uniform
weights would fall on a straight line between the end points, and so we see that the
weights in this case are quite stable. The heaviest 23% carry half the weight. By
contras}z SIR weights based on the best fitting normal are such that 8% of the heaviest
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Fig. 6. Non-linear regression of Section 5.2: (a) importance weights (+++-++-+ , perfectly uniform weights;

the nearer curve gives the cumulative importance weights based on the WLB density estimate; the second,
and much steeper, curve gives the cumulative weights based on a normal approximation to the posterior);
(b) estimates of the marginal posterior for 3, ( , density estimate based on 10 000 resamples in
an SIR-adjusted WLB; «-«---- , similar estimate after two iterations of adaptive importance sampling
have been applied to the initial kernel density estimate)

weights carry half the total, and this has been observed in several other non-linear
regression models.

Marginal posterior inference for a parameter of interest follows immediately by
treating the importance weights and the sampled (Bs as a discrete probability
distribution. Fig. 6(b) shows an estimate of the marginal posterior distribution of
the rate parameter 8,, produced by forming a density estimate from 10000 draws
of the discrete distribution mentioned above. The true marginal is quite difficult to
compute, and it is not shown in Fig. 6. However, by applying two iterations of adaptive
importance sampling (West, 1992) to our estimate, we produce a better estimate of
the true marginal. This second estimate, shown as a dotted line in Fig. 6(b), differs
slightly from the SIR-adjusted WLB estimate in the mass that it assigns to the left-
hand shoulder of the marginal.

The implementation of this entire analysis was done with a relatively small amount
of S code. No special programs are required except estimation routines that already
exist. The result is a simulation consistent estimate of the marginal posterior density
of interest.
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Fig. 7. (a) Normalized likelihood function for 6 given the data (O) when the model is normal with
mean 0 and variance 62; (b) histogram from 1000 WLB draws

5.3. Bimodal Posterior
The asymptotic justification of the WLB method hinges on the approximate
normality of the likelihood function. However, the two non-linear regression examples
show that the WLB can capture more than just the approximating quadratic structure
of this function. Fig. 7 shows another instance of this, where the WLB is applied
to a model for constant coefficient of variation (Hinkley (1977), for example). The
bimodal posterior is well approximated by the raw WLB sample.

5.4. Generalized Linear Model
Chambers and Hastie (1992) illustrate the S language by using data from an
experiment to study mounting of electronic components to printed circuit boards (the
solder.balance data set). A response is measured for each of 720 experimental
conditions. This response Xx; is a count, and a Poisson regression model is considered
by Chambers and Hastie to explain structure in \;=E(x;):

log )\,‘ = Z?o,

where z; indicates the experimental conditions leading to x;. With five factors, the
main effects model has 18 regression coefficients. Bayesian inference under a flat prior
was done with the WLB. Our analysis simply illustrates that the WLB has potential
in moderately high dimensional problems. We do not address the scientific questions.

Several choices of dispersion parameter were considered, and, surprisingly, a value
of a=0.7 proved most successful. These underdispersed weights projected the rather
small sample of 2000 fs into the heart of the posterior mass. As in the other
regression examples, a kernel density estimate combined with the likelihood produced
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Fig. 8. Importance weights plotted against one dimension of the -vector: this coefficient represents
the effect of solder thickness (a two-level factor) on the response (maximum likelihood estimate, —0.78;
importance weights scaled to have mean 1); highly weighted points tend to correspond to the centre
of this marginal distribution and not to the tails, indicating that the WLB has not missed the tails of
this 18-dimensional distribution

importance weights. Fig. 8 is a plot of these weights against one of the model
coefficients. The largest 11% of the weights carry half the total mass, but we see
from Fig. 8 (and other marginal plots not shown) that these large weights tend to
be in the centre of the §s. The WLB has not missed the ‘tails’ of this 18-dimensional
distribution.

6. EXTENSIONS OF WEIGHTED LIKELIHOOD BOOTSTRAP

6.1. Dependent Data
The definition of weighted likelihood (1) can be extended to models for dependent
data as

~ n .
L, 0):=TT folxi|xi~')"ne, (8)
i=1
where x{ 1= (x;, x,, . . . X;i_1), and the factors in the product are the conditional

densities of x; given x!~'. Different orderings of the data yield different weighted
likelihood functions, although for time series there is the natural time ordering which
we use below in two examples. .

By analogy with the multinomial model of Section 3, maximization of L in
equation (8) simulates the posterior distribution of a transition probability matrix
when x;, . . ., x, form a Markov chain on k states. In particular, this posterior
comes from the square of the Jeffreys prior when there are no modelling constraints
on the transition probabilities.

As a second example, consider simulating the predictive distribution of the future
of a time series. Generally, such a distribution is a mixture of parameterized densities
with respect to the posterior distribution of a parameter. This simulation is a two-
step process. First, a parameter is simulated from its posterior distribution, and
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Fig. 9. Prediction intervals for a US economic time series: annual change in log(money stock) from
1947 to 1970 with two sets of 95% prediction intervals ( , produced by the WLB; «+«+--++ , based
on Box-Jenkins methodology); in performing the WLB, we first simulate AR(1) parameters by weighted
regression; error variances are subsequently sampled from their posterior, and then finally future data
sequences are sampled (the full curves represent upper and lower quantiles of 1000 simulated futures
at each of seven time points; estimated AR parameter, 0.65; estimated prediction variance, 0.00035);
diagnostics, including a check of the prediction residuals and a Portmanteau test (Box and Pierce, 1970)
suggest that the AR(1) model is adequate; for the seven-period-ahead prediction, the predictive variance
from the WLB analysis is about 70% greater than that from the standard Box-Jenkins method

then a future is simulated from its predictive distribution given the parameter. The
WLB provides a simple approximation to the first step of this process. A typical
economic time series modelled by Box-Jenkins methods is shown in Fig. 9 (from
Nelson and Plosser (1982)). The data are yearly averages after World War II and
consequently form fairly short series. Comparison with the standard non-Bayesian
prediction intervals shows that there is considerable uncertainty about the
autoregressive AR(1) parameters. Here, the WLB amounts to repeated weighted
autoregressions.

The WLB applied to AR(p) models is essentially a special case of Kiinsch’s (1989)
blockwise bootstrap, and it inherits first-order correctness from Kiinsch’s results. (Refer
to section 5.2 of his paper, and use second-stage block size /(n)=1.) The WLB is
based on Dirichlet weights, whereas the blockwise bootstrap involves multinomial
weights. As noted by Rubin (1981), these two weight distributions have similar first-
and second-moment properties, and so the resulting bootstraps will share first-order
asymptotics. Of course, Kiinsch’s method, by allowing a changing second-stage block
size /(n), does not rely on the correctness of the AR(p) model.

6.2. Weighted Partial Likelihood
For certain complex models, Cox (1975) introduced a factorization of the likelihood
function into two parts. One part provides little information about the parameter
0 of interest whereas the other part, the partial likelihood, does not depend on the
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nuisance parameter and so is used in inference about . The WLB has a natural
analogue for partial likelihood.
To construct a partial likelihood, Cox (1975) transforms data x into a sequence

(uI, Uy, Uy, 021 o e ey Uy, Un)

and then forms a particular partition of the full likelihood function:
L@, ¥)= Hfo Ji U™t oY) T fo(uil uy, oY),
i=1

the second product being the partial likelihood for 6 based on (v;) in the sequence
(u;, v;). A randomly weighted full likelihood leads to a randomly weighted partial
likelihood

Ep(e) =11 fo(Uiluia vy )ni

i=1

and thus to a procedure for sampling values in the parameter space. In Newton (1991),
this new bootstrap method is studied for Cox’s proportional hazards model of survival
analysis. It is shown that the conditional distribution of g, is asymptotically normal
with the same variance as the partial likelihood estimator, at least in a simple case
of this model. Because risk sets in each factor of this weighted partial likelihood never
change, this WLB procedure is very different from Efron’s (1979) nonparametric
bootstrap.

7. USING SAMPLES FROM POSTERIOR TO EVALUATE
THE MARGINAL LIKELIHOOD

Suppose that we wish to compare two models M, and M, (not necessarily nested)
by using the Bayes factor, or ratio of posterior to prior odds,

p (x| Mp)
_p&IMo) 9
o= M) @
In equation (9),
PG| M))= Sp(xle,-, M) p(6,|M))ds;, (10)

where 0; is the (possibly vector) parameter of model M; and p(0; | M) is the prior
density of 6, under model M; (j=0, 1). We call p(x|M; ) the margmal likelihood of
the data under model M;. The integral in equatlon (10) is difficult to evaluate in
general, especially when the dimension of 0 is large. Exact or approximate analy’ucal
results are available for some specific models with particular classes of priors, such
as linear models (Spiegelhalter and Smith (1982), and references therein), models arising
in multivariate analysis (Smith and Spiegelhalter, 1980), log-linear models (Raftery,
1986), generalized linear models (Raftery, 1988a), general Poisson processes (Akman
and Raftery, 1986), changepoint problems (Raftery and Akman, 1986) and software
reliability models (Raftery, 1987, 1988D).
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If one is interested in several models {Af;: j=0, 1, . . ., J}, then Bayesian inference,
prediction and decision-making all involve their posterior probabilities
J
P10 =p&| M) p(M) | 3 p(x| M) p (L),
k=0

where p(M;) is the prior probability of the model M;. Again, the marginal
likelihoods p(x|M ) are the crucial components.
Dropping the notational dependence on M;, equation (10) becomes

p@=| P10 ) . (1
The Monte Carlo method for evaluating integrals of the form I'= | g(6) p(6) df is to
generate a sample {§¥): /=1, . . ., m} from a density p*(f). Under quite general
conditions, a simulation con51stent estimate of 7 is
=3 wig0™] % w, (12)
i=1 i=1

where w;=p(8©)/p*(?); the function p*(0) is known as the importance sampling
function.

The WLB gives us a sample approximately drawn from the posterior density
p¥O)=p@|x)=p(x|0) p(0)/ p(x). For most functions g() this would be a poor
importance sampling function, but here we have g(f) = p(x|6), and the importance
sampling function p*(0) = p(0| x) is well suited for this case. Substituting into equation
(12) yields, as an estimate for p(x),

-1

hW= = % plen) | (13)
i=1

the harmonic mean of the likelihood values. Thus, the marginal likelihood may be
estimated by the harmonic mean of the likelihoods of a sample from the posterior
distribution. This is true whether the posterior samples come from an SIR-adjusted
WLB or any other sampling scheme, like the Markov chain Monte Carlo method.
It is readily verified that p,(x) converges almost surely to the correct value p(x)
as m—o. However, p,(x) does not, in general, satisfy a Gaussian central limit
theorem. This manifests itself by the occasional occurrence of a value of %) with
a small likelihood and hence a large effect on the final result; it happens because
p(x|6)~! is often not square integrable with respect to the posterior distribution.
An alternative to equation (13) is

Po=1 Z p(x|69), (14)
where {§¥): i=1, . . ., m}is a sample from the prior distribution rather than the
posterior. This possibility was mentioned by Raftery and Banfield (1990) and was
investigated in detail in particular cases by McCulloch and Rossi (1991). A major
difficulty with p,(x) is that most of the 8 will have small likelihood values if the
posterior is concentrated relative to the prior, so that the simulation process will be



22 NEWTON AND RAFTERY [No. 1,

quite inefficient. Thus the estimate will be dominated by a few large values of the
likelihood, and so the variance of p,(x) may be large and its convergence to a
Gaussian distribution slow. These problems were apparent in the examples studied
in detail by McCulloch and Rossi (1991); they are precisely the opposite of the
difficulties with p, (x).

These considerations suggest that we use as importance sampling function a mixture
of the prior and posterior densities, p*(0) =8 p(6) + (1 —8) p(6|x), where § is small.
This yields a new estimate j;(x), defined by the equation

3 p(x|09)/18 5509+ (1 -9) p(x|09))

p =" . (15)
2 {850+ (1 -8 p(x|6D))!
i=1

The estimator p,;(x) is appealing because it retains the efficiency of p;(x), due to
being based mostly on high likelihood values of 8, but avoids its unpleasant instability.
It is readily verified that p;(x) does satisfy a Gaussian central limit theorem, unlike
P (x). However, p;(x) has the irksome aspect that we must simulate from the prior
as well as the posterior.

Simulation from the prior as well as the posterior may be avoided, without sacrificing
the appealing aspects of p;(x), by instead simulating all m values from the posterior
distribution and imagining that a further 6,,/(1 — 6) values of 6 are drawn from the
prior, all with likelihoods p(x|6?) equal to their expected value p(x). This yields an
approximation to p;(x), namely

om/(1—8)+ 3 p(x|69)/(854(9)+(1 - 8) p(x|89))

Pa()= — : (16)
8m/(1-8) Pa(¥) + 3, (854 + (1 —8)p(x]|§)}!

i=1

The estimator p,(x) may be evaluated by using a simple and obvious iterative
scheme; in our limited experience to date, this converges fast, often in a single step.
In some small-scale numerical experiments, p,(x) performed well for é as small as
0.01 and did not display any of the instability of j,(x).

The harmonic mean estimator p,(x) is slightly reminiscent of Good’s (1958)
proposal for combining tests by taking the harmonic mean of the corresponding P-
values; his argument was based on an analogy with Bayes factors. Also, the arithmetic
mean of the likelihoods of a sample from the posterior is an unbiased estimator of
the posterior mean of the likelihood function, | p(x|6) p(6|x) dé, that underlies the
‘posterior Bayes factors’ of Aitkin (1991); it will typically be larger than p(x). We
share the misgivings of many discussants of Aitkin’s paper about the interpretation
of the posterior Bayes factors, but it is at least worth noting that they can be readily
evaluated by using the WLB or Markov chain simulation methods.

8. DISCUSSION

We have introduced a bootstrap-like procedure for simulating approximately from
a posterior distribution. For the generic weighting scheme (uniform Dirichlet weights)
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the WLB is first order correct, and thus consistently estimates the mean and covariance
structure of the posterior distribution. Higher order correctness is generally not
available for these simple weights, although expansions elucidate the nature of the
error. In practice, inaccuracies in the WLB simulation can be removed by combining
the method with SIR and density estimation. This allows posterior simulation under
particular priors of interest, and, as shown in a non-linear regression example, it is
quite straightforward to implement. The WLB might be profitably combined with
other importance sampling schemes, like the adaptive approximation method described
in West (1992). Here, the WLB sample could provide a first approximation in cases
where the normal or ¢ first approximations are poor or unavailable. This is precisely
how the dotted line approximation is produced in Fig. 6(b).

The WLB is similar to nonparametric bootstrapping of the maximum like-
lihood estimate, which is equivalent to applying the WLB with weights m, =
(my,, my,, ..., m,,)rrepresenting cell counts after classifying n objects randomly
into n equally likely cells. As noted by Rubin (1981), these multinomial weights have
similar first- and second-moment properties to the Dirichlet weights, and hence the
simulated maximizers have distributions which are both first order correct. As shown
in Weng (1989), second-order properties of the two weighting schemes are different.
Here we are trying to simulate a posterior distribution, rather than a sampling
distribution. The Dirichlet weights form the natural basis of a Bayesian simulation
method because of their properties for multinomial data. However, except for
unconstrained multinomials and Markov chains, and the class of models described
in Section 4, the uniform Dirichlet weighting scheme is not second order correct. The
Dirichlet weights are somewhat more convenient computationally, as they never equal
0, and often only require the generation of unnormalized exponential random variables.
We are currently studying the possibility of having a simple recipe for specifying a
good distribution for the weights which uses information in the prior and model
structure. Many weighting schemes ensure first-order correctness (see Mason and
Newton (1992)).

Other researchers have studied the use of bootstrapping for Bayesian inference.
Boos and Monahan (1986) have studied the use of Efron’s bootstrap to approximate
a posterior through the sampling distribution of a pivot, and this line of research
was developed more fully in Hall (1987). Zheng and Tu (1988) and references therein
have also studied the use of weighted bootstraps to simulate pivotal distributions.
Laird and Louis (1987) used a bootstrap sampling distribution to approximate a
posterior in an empirical Bayes setting. More recently, Davison ef al. (1992) have
constructed a completely nonparametric likelihood based on bootstrapping. The WLB
is somewhat different from this work, primarily because it is designed to solve a
parametric problem approximately, but in its extension to semiparametric models
there may be some deeper connections with other bootstrap methods.

On other connections—if the likelihood (of a distribution function) is defined
nonparametrically as the joint probability assigned to the observed data under that
distribution, then the WLB with uniform Dirichlet weights is exactly the same as the
Bayesian bootstrap mentioned earlier. Weighting that same likelihood with multinomial
weights gives Efron’s (1979) nonparametric bootstrap. Thus randomly weighting the
components of a likelihood is a unifying idea.

The WLB is easy to program for particular applications by using existing built-in
functions in standard statistical languages and packages. However, as an example,
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we have made available S code to perform the calculations for the Poisson regression
model of Section 5.4; this can be used as a template and modified for other models.
It is available by electronic mail from Statlib at no cost. Send a message to
statlib@stat.cmu.edu containing the single line ‘send wlb from S’.
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DISCUSSION OF THE PAPER BY NEWTON AND RAFTERY

W. R. Gilks (Medical Research Council Biostatistics Unit, Cambridge): The authors propose the
weighted likelihood bootstrap (WLB) for sampling from posterior distributions. This involves the
following steps:

(a) sample weight vectors {w} of length n from the uniform Dirichlet distribution; optionally power
up the weights;

(b) for each w obtain § maximizing the weighted likelihood in equation (1);

(c) calculate a kernel density estimate £(f) at each 6; _ .

(d) resample the {0} using importance weights w(6) L(6)/£(6),

where 7( ) denotes the prior and L( ) denotes the likelihood. (The uniform Dirichlet distribution is given
by equation (2) with y;=1 for all j.) Steps (c) and (d) can be iterated (adaptive importance sampling).
The first two steps are a generalization of Rubin’s (1981) Bayesian bootstrap. In a special case (see
Section 3) steps (a) and (b) produce samples from the required posterior, but in general they produce
samples from a posterior which corresponds to a data-dependent prior (the ‘effective’ prior), i.e. to
no prior at all. The sampling-importance resampling (SIR) embodied in steps (c) and (d) is needed to
rescue the method.
I would like to make the following comments.

Importance weights

SIR is a fragile method: if importance weights are very variable then an enormous initial sample will
be needed for adequate richness in the resampled sample. Thus, if the WLB is to be useful, steps (a)
and (b) must provide a reasonably accurate approximation to the posterior. Some reassurance is provided
through the asymptotic arguments in Section 4, and examples with extremely non-quadratic likelihoods
demonstrate surprisingly well-behaved importance weight distributions. However, it is clear that general
reassurance cannot be given since steps (a) and (b) take no account of the prior. In the absence of clear
guidelines about when the WLB is likely to behave well, one can only be advised to try it and see.

Model complexity
The authors provide asymptotic results for the following class of models (in the notation of Section 2):

LO)=1I f(x;]6). an
i=1

This class is large, and the extension to dependent data (8) enlarges this class still further. However,
having grown accustomed to the scope offered by Markov chain Monte Carlo (MCMC) methodology,
many Bayesians would find equation (17) uncomfortably restrictive. For example, in modelling
longitudinal data, each individual is usually assigned a (set of ) random effect(s). In a trivial sense, random
effects models are included in equation (17) since the vector of random effects can be included in 6.
However, the asymptotic results will then no longer hold because the length of 8 will depend on n. In
some situations it might be possible to remove the random effects by integrating them out analytically,
as in restricted maximum likelihood estimation (Laird and Ware, 1982), but in most situations this will
not be possible. If the number of individuals (#) and the numbers of observations on each individual
(m;) are all large, then it should be possible to provide some asymptotic justification for a WLB based
on the following weighted likelihood function:

Lo, 8)=1I {h(ﬁ,-lo)"wf I f(xi,»lﬁ,-)'"fva} (18)
i=1 Jj=1

where the n+ 1 weight vectors w={w;} and v;={v;} are independently uniform Dirichlet distributed.
Here §; denotes a (vector of) random effects for individual #; A( ) denotes the population distribution
of the random effects and {x;;; j=1, . . ., m;} denotes the observations on individual i. Models of still
greater generality are often required (graphical models) and can often be fitted by using MCMC methods
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(Gilks et al., 1993). It is not clear whether the WLB (perhaps further generalized along the lines of
equation (18)) would be able to handle such situations.

Number of parameters

As model complexity increases, so too will the number of parameters. The authors have shown that
the WLB can perform well with up to 20 parameters, but MCMC applications in which I am routinely
involved typically contain hundreds, even thousands, of parameters. Letting & denote the number of
parameters, obtaining adequate approximations to first and second moments of the posterior will involve
O(k?) sampled weight vectors in step (a) above, and calculation of the matrix of second derivatives
in step (b) and the kernel density in step (c) will involve O(k?) computations for each sampled weight
vector. Thus computations might be expected to increase with O(k*), but this ignores the impact of
k on importance weights. To gain some idea of the latter, suppose that we use the WLB to solve
simultaneously k independent univariate problems. Importance weights would then be related
geometrically to k. Thus increasing k could have a potentially devastating effect on importance weights.
This can be illustrated by using the solder.balance data set analysed in Section 5.4. The authors report
for the five-factor main effects model (containing 18 regression coefficients) that the largest 11% of
the importance weights carried half the total mass. I repeated the analysis for the all-two-factor interactions
model, which contains 113 regression coefficients, using S code supplied by the authors. In 300 WLB
samples, the largest 1% of importance weights carried 59% of the total mass.

Bounds

The authors do not give a prescription for dealing with bounds on the parameters. Maximizing the
weighted likelihood on a bounded domain in step (b) could produce poor kernel density estimates near
the bounds. A better approach would be to maximize without bounds, and to attach zero importance
weights in step (d) to points outside the bounds. However, this approach could be very inefficient if
the bounds exclude most of the probability mass. In contrast, the Gibbs sampler with adaptive rejection
sampling (Gelfand et al., 1992; Gilks and Wild, 1992) can handle bounded domains quite efficiently.

Model choice

Section 7, providing a method for choosing between models using posterior simulation, is important
and would be just as much at home in an MCMC paper. Many applied Bayesians will find this the
most useful section of the paper.

Summary

I have indicated several potential disadvantages of the WLB. The principal advantages are that it
can be rapidly deployed (requiring very little programming), it seems to work well for small but intricate
problems and it generates independent posterior samples. In the short term, the WLB may enjoy some
popularity until general purpose software for MCMC methods has been developed, but such software
(for Gibbs sampling) is already reaching maturity (Gilks ef al., 1994). In the longer term, the WLB
may find a niche in areas where the MCMC algorithm is prohibitively slow, such as in the optimal Bayesian
design of complex studies.

It gives me great pleasure to welcome the WLB to the Bayesian toolkit, to wish it well and to propose
the vote of thanks.

Gareth Roberts (University of Cambridge): In recent years, numerical techniques for Bayesian inference
have improved significantly with the arrival of Markov chain Monte Carlo techniques such as the
Hastings-Metropolis algorithm, the Gibbs sampler and their various hybrids and extensions. In fact
many examples of applications of these techniques have been published. Therefore, it is refreshing to
see that the authors do not consider Markov chain simulation to be the answer to all problems. They
propose a method that is free from the uncertainty of dependent samples and the diagnosis of Markov
chain convergence. Instead their method uses existing maximization routines to provide an approximate
sample from the posterior, adjusting using sampling-importance resampling to provide a sample from
the required distribution.

However, the performance of the weighted likelihood bootstrap must therefore be judged against
that of Markov chain Monte Carlo. The paper suggests that a natural home for the weighted likelihood
bootstrap is in low dimensional non-linear regression problems, where one-dimensional conditional
distributions are not readily available, and moreover log-concavity of these conditionals cannot be relied
on. Therefore application of the Gibbs sampler may not be straightforward. However, the simplest
possible Markov chain Monte Carlo technique, the independence sampler (Tierney, 1991) is unaffected
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by the unavailability of conditionals. It is a special case of the Hastings-Metropolis algorithm, where
the proposal merely produces a sequence of independent and identically distributed (IID) random
variables. I am indebted to Richard Gibbens, a colleague of mine at Cambridge, for helping me to establish
that the independence sampler with independent normal proposals is sufficient to tackle this problem.
Moreover, the routine is very easy to write and remarkably quick. Whereas independence sampling can
rarely be recommended in higher dimensional problems, more sophisticated Markov chain Monte Carlo
methods can. However, I share Dr Gilks’s concern about the performance of the weighted likelihood
bootstrap in higher dimensions.

Section 4 of the paper provides an asymptotic justification for the method. The most powerful result,
theorem 2, demonstrates asymptotic correctness of the variance-covariance matrix of the weighted
likelihood bootstrap under appropriate regularity conditions. Clearly these conditions will include essential
smoothness conditions on the likelihood, and I urge the authors to state this result more fully in their
reply, not only for mathematical correctness but also to give some idea of the sort of model for which
the weighted likelihood bootstrap is applicable. Clearly the method is nonsense, for instance, when the
model assumes IID observations from a uniform distribution on [0, 0].

To what extent does theorem 2 justify the weighted likelihood bootstrap? Certainly, in the examples
given in the paper, analytical expressions of the observed Fisher information are readily available, and
in general a simple numerical differentiation at the maximum likelihood estimate should be possible.
Therefore a Laplace approximation (see for example Tierney and Kadane (1986)), generating multivariate
normal observations with the prescribed variance-covariance matrix, will give the same level of asymptotic
accuracy. However, at least in some models such as the constant coefficient of variation model of Section
5.3, the weighted likelihood bootstrap seems to show a remarkable tolerance to multimodality, whereas
the Laplace approximation will not. The constant coefficient of proportionality model is intriguing
and provides an interesting test case for perhaps a more pertinent asymptotic analysis in this context.
No matter how many Taylor series expansion terms are in agreement, multimodality cannot be
characterized. In multimodal posteriors, although asymptotic posterior normality still holds, the
asymptotic behaviour of the minor modes is clearly of interest. Typically the minor modes will shrink
to 0 at a geometric rate. The theory of large deviations allows us to study the rate of convergence to
0 of the probability mass contained in these minor modes.

Recalling the model for the weighted likelihood bootstrap,

[X,lG]EN(o, 02)’ i=11 . v ey n:
consider decay to 0 of probability in the minor mode. For the weighted likelihood bootstrap,
0= +{(F3,+4S,)"2=%,)/2

where

n n
2 WX, = 2 WiXi,
1 1

2. w;S,,= Z WX}
1 1

and the positive solution is taken if and only if x,,>0.

The model produces a bimodal posterior distribution, no matter how large the data set. A typical
posterior is given in Fig. 7 of the paper. It is an extremely clean problem in that containment in either
mode is very naturally defined by 6 being greater than or less than 0. I have established the following
large deviations results.

(a) Large deviations approximation of true posterior: let p,(x) be the proportion of posterior mass
in the minor mode, given x,, . . ., X, (under perhaps a continuous positive everywhere prior)—

logp, )
n

for almost all x-sequences.
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(b) Large deviations approximation based on a Laplace approximation:

logp, ) 3
n 2

for almost all x-sequences.
(c) Large deviation approximation for the weighted likelihood bootstrap:

log p,(x) N
n

0

for almost all x-sequences.

In fact decay in minor mode will be subexponential for all powered weights greater than or equal to 1.

Therefore the weighted likelihood is systematically giving too much weight to the minor mode. This
suggests that a qualitative property of the weighted likelihood bootstrap in many problems will be to
overemphasize areas of small probability, a heuristic supported strongly by the generalized linear model
example in Section 5.4, as well as the non-linear regression of Section 2, as well as the theory and practice
of the above example. Of course this will generally be good for sampling-importance resampling as
the caption under Fig. 8 points out.

In conclusion, the authors propose an interesting new technique for numerical integration. However,
guidelines for the suitability of the weighted likelihood bootstrap to any particular problem and for
any particular prior are needed if the method is to become a reliable tool. It appears that the weighted
likelihood bootstrap has useful properties for non-Gaussian posteriors. Asymptotic investigations such
as the large deviations calculations above are needed to verify this. I have great pleasure in seconding
the vote of thanks to Michael Newton and Adrian Raftery.

The vote of thanks was passed by acclamation.

Trevor Sweeting (University of Surrey, Guildford): The weighted likelihood bootstrap (WLB) is in
general only first order correct as an approximation to the true posterior distribution and, in this sense,
is no better or worse than a local normal approximation. The examples given, however, suggest that
there is more to the method than just first-order correctness. I am interested in posterior approximations
that can cope with multimodality, so I found the example of Section 5.3 particularly intriguing.

To understand just how the WLB manages to pick up bimodality, I generated samples from a normal
mixture model with components N(, 1), N(@@+3, 1) and mixing probabilities 1 each. Taking a
uniform prior for 6, the posterior density of 6 is frequently bimodal for small to moderate sample sizes.
Fig. 10 shows the likelihood from a sample of six observations generated under § =0, whereas Fig. 11
shows a kernel density estimate obtained by using the WLB. The behaviour exhibited here is quite typical
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Fig. 10. Likelihood function for a sample of six observations from a normal mixture model
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Fig. 11. Kernel density estimate of the likelihood shown in Fig. 10 based on 1000 WLB draws

and there are two points to note. Firstly, regarding computation, there is a danger that a second mode
may be missed if local maximization is routinely used at each WLB draw. Secondly, although the WLB
suggests that there is an interesting feature near 0, an insufficient number of WLB simulations result
in the maximum located near 0 being the global maximum and the method gives a rather poor picture
of the actual posterior.

A WLB result like that of Fig. 11, however, does not mean that there is necessarily some interesting
posterior behaviour near 0. This can be seen by noting that, in this example, very similar WLB results
to Fig. 11 can be obtained even when the actual likelihood has almost normal shape! The WLB is picking
up the fact that there is a feature of the likelihood near 0 for some samples which were not actually
observed. Of course, a straight normal approximation will be almost exact in such a case.

It would seem that, in general, we have no way of telling whether or not various irregular features
of the WLB are spurious, in terms of the data observed. Perhaps this type of behaviour is less important
when the WLB approximation is used only as an input to some other fully simulation consistent method,
but I find this anti-Bayesian aspect of the method rather disquieting.

Douglas Bates (University of Wisconsin, Madison) and Christian Ritter (Université Catholique de
Louvain, Louvain-la-Neuve): We extend our congratulations to the authors on their innovative addition
to the arsenal of procedures for creating sample points from likelihoods, posteriors or approximations
thereof. We tested the method on the biochemical oxygen demand example where it took only two hours
to do the programming and to obtain 5000 sample points. The resulting sample (using the overdispersion
a=1.6) traces the important features of the likelihood. However, it contains additional structure that
is not contained in the likelihood. In particular, the cloud of sample points looks like a combination
of several clouds of different shapes. The reason might be that the data set is quite small and that the
overdispersion effectively suppresses observations at random and produces results similar to those from
the jackknife for small sample sizes. Although this should be researched further, it indicates to us that
the authors’ suggestion of a sampling-importance resampling adjustment after the initial weighted
likelihood bootstrap is recommended, at least in small samples.

Moreover, if the weighted likelihood bootstrap is to be used with non-linear regression problems,
conventions need to be adopted on how to handle cases where the fitting algorithm does not converge
for some selections of weights and where parameters drift off to infinity.

But these are comparatively minor matters. The ease of implementation of this method combined
with our ever increasing computing power should make this a valuable addition to inference techniques
for non-linear models.

B. J. Worton (University of Essex, Colchester): I would like to consider the bootstrap likelihood
methods discussed in Section 8 in more detail and to give some recommendations on the accurate and
efficient application of these methods. In Davison et al. (1992), we constructed a bootstrap likelihood
by using data y,, . . ., ¥,, an estimator 7T for a parameter 6 and the following nested bootstrap
algorithm.
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(a) Use the bootstrap to generate populations &5, . . ., &}, with parameter values 97, . . ., 0}.

(b) For each population &}, use a second level of bootstrapping to generate 7**s for the parameter
value 6*.

(c) Smooth by kernel density estimation each set of 7**s and evaluate at ¢ the observed value of
the statistic for the data, to produce likelihood points at 6%, . . ., 85.

(d) Smooth the scatterplot of likelihood points to compute a likelihood curve.

Application of this widely applicable algorithm is obviously very time consuming and can be made
more efficient at both the first and the second levels of bootstrapping. At steps (b) and (c) of the algorithm,
avoid the use of Monte Carlo simulation and kernel density estimation if possible, and instead use
saddlepoint density approximations (see Davison and Hinkley (1988) and Daniels and Young (1991))
to compute the 7**-densities evaluated at . However, even with these accurate approximations,
considerable variation remains in the likelihood point estimates. This is not due to inaccuracies of the
saddlepoint approximations, but the inherent variability of the first-level bootstrap-generated

¥, . .., &% populations which are central to the method. Therefore, it is advisable not to use

¥, ..., Py directly, but to smooth them before use. This can be achieved for a target §%-value and

bandwidth e by using a kernel smoother
M

pr(6°, e 20 wi(@°—6)/elpy,  j=1,..., n,
i=1

where p,’; is the probability associated with point y; in population &} and p;* (6, ¢) is the corresponding
smoothed probability. The precise value of the parameter 6 for the smoothed population should then
be used for §*. A grid of target §%-values can be used to generate M populations at step (a). Whether
used in conjunction with Monte Carlo simulation and kernel density estimation methods or saddlepoint
methods, this approach works well, and for moderate levels of smoothing produces a smooth curve
at step (c).

The connection between these bootstrap likelihood methods and the weighted likelihood bootstrap
is unclear at present. However, could the authors elaborate on the extension of the weighted likelihood
bootstrap to semiparametric models and the deeper connections with other bootstrap likelihood methods?

G. A. Barnard (Colchester): The concatenation of ‘weighted’ with ‘bootstrap’ and ‘likelihood’ joins
three ideas, each good in itself, but puzzling in combination.

In the first two examples the likelihood functions could be easily calculated. If the data points for
the first had been given as they should have been, a likelihood resembling Fig. 1(b) would have been
obtained, suggesting strongly that the ratio and the product of the 8s might reasonably be estimated,
but attempting to estimate either parameter separately would be dangerous.

In the second example the analysis produces a posterior relative to a doubly improper prior with
singularities at 0 and 1. Psychological considerations would suggest a prior restricted to a closed proper
subset of [0, 1], but the authors’ prior does the exact opposite. Straightforward likelihood plotting
would correspond to a uniform prior, and posteriors relative to more appropriate priors could easily
be obtained from this.

We badly need to explore ways of exhibiting likelihood functions involving many parameters. The
technologies involved in ‘virtual reality’ could help in this.

But I share with Tukey the view that we are wise to feel that, if we cannot formulate our thoughts
by using five parameters or fewer, we had better think again before proceeding. Until then we should
engage in exploratory activities such as projection pursuit. An exception to this arises in those problems
where we can recognize the correct solution as soon as we see it; but I fail to see the use of the weighted
likelihood bootstrap here either.

The soldering example reminded me of when the Plackett-Burman experimental designs were invented
during the war. There was an urgent need to proceed with the manufacture of fuses which helped to
bring down some of the V1 weapons. Urgencies of that sort could render meaningful justifications such
as that the method uses only three lines of code. But in normal times the experiments generating our
data involve far more effort than do three lines of code.

I hope that the authors will be able to present the background and details of a realistic problem where
their proposed method has real advantages over other methods. Until that happens I remain unconvinced.

Richard Gibbens (University of Cambridge): I would like to make some brief remarks concerning
an experiment that Gareth Roberts and I were motivated to consider by this interesting paper on Bayesian
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Fig. 12. Kernel density estimate

methods. We decided to consider a simple form of Markov chain Monte Carlo technique for the non-
linear regression example of Section 2 of the paper. As Gareth Roberts has already mentioned we used
an independence sampler to construet a large sample from the posterior distribution for 3;, 3, and 2.
Fig. 12 shows this sample (of 15000 observations) together with contours describing a kernel density
estimate of the distribution. We found our results to be in broad agreement with those shown in
Fig. 1(c). (The choice of contours reflects those from Fig. 1 but they should be viewed with caution
given the clear lack of data in the tails of our sample.)

The authors describe some of the software engineering aspects of their work and this is an area of
particular interest to us. They found in one example that they could implement their approach in about
60 lines of S code together with built-in functions. In our experiment we had similar experiences in
that we used about 30-40 lines of S code to construct the various statistical quantities and then used
a short C routine (of four lines) called by means of the interface between S and C to implement the
independence sampler.

Bernard Silverman (University of Bath): It is interesting to see so much use of kernel density ‘estimation,
both in the paper and in the discussion. The maximal smoothing method of Terrell (1990), as used by
the authors in their Fig. 1(d), is of course constructed by reference to the accuracy of the density estimate
as a whole. Extreme contours of f are of most interest, and so it may be worth considering an adaptive
method such as that described in Silverman (1986). Even Terrell’s generally conservative method seems
to undersmooth in the tails. Richard Gibbens (previous contribution) is brave or foolhardy to show
both the original data and the contours of his density estimate, which indicate a need for less severe
smoothing perhaps linked with some adaptivity. Overall there are perhaps two points: firstly, in contrast
with most bootstrap applications, a somewhat larger bootstrap sample than 5000 may be useful if extreme
contours of a two-dimensional likelihood are of interest; secondly, some more thought about the most
appropriate way to estimate these extreme contours may be worthwhile.

A. C. Davison (University of Oxford): One feature that distinguishes this work from the host of other
recently proposed methods for approximate Bayesian inference is that, as the authors remark in Section
1, the raw weighted likelihood bootstrap is not an approximation to an exact Bayesian procedure. Put
more bluntly, it does not condition fully on the data. Instead Dirichlet weights are used to perturb
estimating equations that determine a suitable M-estimate of the parameter of interest. This lack of
full conditioning may worry some Bayesian statisticians, but it might be a positive advantage from a
frequentist point of view. However, just as it induces a prior on the parameter space, it induces a measure
on the observation space. Have the authors any comments on this aspect of their idea, particularly when
the data are dependent?
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For models where the log-likelihood for a parameter 3 given observations y; with prior weights w;
may be written

a(y;; B) (19)
= ey, Wi 9),

n
2 Wi
j=1

such as linear and non-linear regressions, generalized linear models, and so forth, the type of data
perturbation proposed by the authors, which amounts to jittering the w;, seems natural. It corresponds
to asking how the estimator 3 resulting from model (19) would have been different had the initial weights
been different. But this straightforward interpretation is not universal, and I have misgivings about
whether the method can always give sensible answers—particularly in problems where the contributions
to the estimating equations are non-independent, though the partial likelihood discussed in Section 6.2
suggests that my reservations may be unfounded.

The regression framework considered in Section 5 of the paper is very general, but here too I smell
a rat. Suppose that the unweighted estimating equations used in equation (5) corresponded to a quasi-
likelihood or a robust estimator. Then, although each estimating equation might be sensible in itself,
there would often be no unique objective function whose derivatives yielded the estimating equations.
To apply the weighted likelihood bootstrap would produce an approximate posterior distribution, but
for a likelihood that was not unique. The authors do not attempt this, but I find the possibility alarming,
and wonder whether the authors could comment.

The following contributions were received in writing after the meeting.

Mostafa Bacha and Gilles Celeux (Institut National de Recherche en Informatique et en Automatique,
Le Chesnay): We illustrate the behaviour of the weighted likelihood bootstrap (WLB) in a small sample
setting with highly censored data and provide a numerical illustration of the influence of the parameter
o when the WLB is combined with the sampling—importance resampling (SIR) algorithm. For this, we
ran the WLB-SIR method for a simple example. The results are very sensitive to . Small « can lead
to a very sharp weight distribution for which the SIR adjustment does not provide a satisfactory
approximation to the posterior distribution; large « will provide an overdispersed weight distribution.
The choice of a good «-value has to be done in a rather empirical manner by trying different values.

Our example is a commonly encountered situation in failure time analysis. We simulated a right-
censored sample of size 30 from a Weibull distribution with cumulative density function F(x)=
1—exp{— (x/1)®}. We consider the shape parameter 3=2 and the scale parameter 5=1000. The
censoring time was ¢ =700. The seven uncensored points were 185.3, 341.5, 388.4, 541.2, 580.8, 597.3
and 668.6. The maximum likelihood estimators were B,;=2.36 and 7, =1279. Their approximate
standard deviations from the observed information matrix were 0.81 and 187 respectively.

We used a gamma(\, u) prior for 8 with a shape parameter A =25 and a scale parameter =10 so
that the mass of the prior distribution is concentrated on [1, 4]. For 5, we used a prior «(n)e1/7 and
the parameters 3 and 5 are assumed to be independent. Using numerical integration, we computed the
true mean By and the standard deviation Sd (8g) of the posterior distribution of the shape parameter.
We obtained 85 =2.37 and Sd(8g)=0.42.

We ran the WLB-SIR algorithm with different values of « from 0.2 to 4.0, using 2000 draws from
the weight distribution. For brevity, we focus on the 8 posterior distribution. The results are summarized
in Table 2 for two significant values of o. The first value o= 0.4 is a value for which the WLB distribution

TABLE 2
Means and standard deviations of the Weibull parameters from the WLB-SIR
approximate posterior distribution for two values of o

o Shape Scale
Mean  Standard deviation Mean  Standard deviation

0.4 2.41 0.23 1273 70
1.4 2.34 0.37 1355 234
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Fig. 13. True posterior distribution ( ), WLB-SIR approximation (++---- ) and WLB approximation (—-—)

for (a) a=1.4 and (b) =0.4

is sharp and concentrated on [2.15, 2.64]. Consequently the WLB-SIR distribution approximates the
actual posterior distribution poorly. The second value o= 1.4 provides the best approximate posterior
distribution. This is quite satisfactory (see Fig. 13), especially in light of the very small amount of complete
data. From the examples of Newton and Raftery and this simple example, the problem of finding a
successful value of « is highly data dependent. Thus, a data-driven determination of o may be useful
to improve the performance of the WLB in Bayesian inference.

Bradley P. Carlin (University of Minnesota, Minneapolis): First, I congratulate Newton and Raftery
on a fine and intriguing paper in the rapidly developing area of computational methods for Bayesian
statistics. The weighted likelihood bootstrap’s (WLB’s) ability to make use of existing maximum likelihood
code is a key advantage over other such methods, and one that will increase its appeal among practitioners.
Also, the WLB appears to require less tuning than Markov chain Monte Carlo (MCMC) methods,
especially in the area of convergence diagnosis. Still, the WLB’s several levels of iteration (repeated
weight generation, maximization, density estimation and final sampling-importance resampling
adjustment) make me wonder about the differential time, both in human and computer terms, involved
in running WLB versus MCMC. Implementation of the WLB for high dimensional problems also seems
problematic.

In Section 6.1, the extension of the WLB to time series of dependent data is described. But notice
that in the further extension to series with missing dependent data (as in a series where only record
breaking events are observed), the likelihood itself involves a potentially high dimensional integral. In
such cases, Carlin and Gelfand (1993) show that an MCMC algorithm (sampling over the missing data)
is often the only feasible way to obtain maximum likelihood estimates of the unknown model parameters.
Fortunately, making the jump to a fully Bayesian analysis is straightforward simply by also including
the parameters in the sampling order.

The authors mention a connection of their work to that of Laird and Louis (1987); the WLB’s
substitution of maximizations for integrations indeed gives it an empirical Bayes (EB) flavour. Subsequent
work by Carlin and Gelfand (1990) shows an even stronger connection. Carlin and Gelfand point out
that the Laird and Louis bootstrap algorithm for widening ‘naive’ EB confidence intervals is essentially
a method for matching a fully Bayesian solution under an ‘effective hyperprior’ which is not necessarily
simple nor natural for the problem at hand. They then develop a generalized bootstrap which can often
be used in conjunction with importance sampling to match a given hyperprior Bayes solution, or
alternatively to correct the bias in using the naive intervals. Similar guidance for the WLB (in the form
of the general recipe for the weight distribution, mentioned by the authors in Section 8) would be welcome.

P. Clifford (Oxford University): Like Professor Barnard I feel a little uneasy about this paper. The
recent revival of interest in Bayesian methods arises not from a wholesale conversion among statisticians
to Bayesian ideology but from a need to deal with high dimensional parameter spaces in modern
applications such as image restoration and the analysis of extensive epidemiological databases. In these
applications, it is convenient to co-ordinate parameters by imposing probabilistic structures which are
analogous to those which would be introduced by Bayesian theory. The structures may involve relatively
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few hyperparameters which themselves, in principle, are amenable to estimation by classical methods.
The entrepreneurial atmosphere in which classical statistics has developed has produced many sharp-
edged tools. When only a few parameters are involved, statisticians feel confident in using these tools.
When the number of parameters goes into the thousands it is less obvious how to proceed and the clear
centralist dogma of Bayesianism becomes an attractive starting point. It is unfortunate that the authors’
examples do not fall into this class of problem: their first example has six observations and three
parameters. I suspect that the majority of statisticians would not hesitate to use classical methods of
inference for these data and would see no need to tamper with the likelihood by introducing prior
weighting.

Putting these general remarks aside I would like to turn to the subject of Markov chain simulation.
The authors claim that such simulations are more difficult to apply than sampling-importance resampling
adjusted weighted likelihood bootstrap. This assertion is based on a comparison with the Gibbs sampler.
The authors do not seem to have considered using the Metropolis sampler which despite its venerability
is almost invariably trivial to apply. Apart from a few special cases there seems to be no good reason
for ever using the Gibbs sampler in preference to the Metropolis sampler. In its simplest form, the
Metropolis sampler produces a Markov chain with equilibrium density =(9;, . . ., 8,) by cycling through
the parameter indices, successively altering parameters in a manner similar to the Gibbs sampler. When
parameter 0, is selected a proposal 8, is generated by adding to 6, an independent random variable
uniformly distributed on the interval (— Ay, Ay). If 70, . . ., 04, .. ., 0,)/7(O0y, .. ., 05 ..., 0,)>U,
where U is independently uniformly distributed on (0, 1), then the proposal is accepted; otherwise the
parameter is unchanged. If the proposal falls outside the support of the density it is automatically rejected.
Traditionally, in the physics community, the vector A=(4, . . ., A,) is adjusted dynamically until
proposals are ultimately being accepted about 50% of the time. Coding this procedure in Basic for the
first example requires only one line of code (with 12 colons).

Lu Cui, Michael Sherman and Martin A. Tanner (University of Rochester): We have found it useful
to rethink the authors’ approach in terms of the method of composition and importance sampling (Tanner,
1991). Let

L@|IN=1I £:B; x), L,BIY)=II £,8; x)",
i=1 i=1

where w is the vector (w,;, w,, . . ., w,) with density g(w). Sampling w from the Dirichlet(1, 1, . . ., 1)
distribution simplifies the following algorithms. Note that
L@|Y)
1819 = | ==L ) L8] 1) 800 dw,
cw) L,(B|Y) v

where c(w) is equal to the reciprocal of {L,(3|Y)dB for a given value of w. This identity suggests
the following ideal weighted likelihood bootstrap (WLB) algorithm:

(a) draw a w*-vector from g(w);
(b) sample a B*-vector from c(w*) L,,.(3| Y);
(c) assign mass L(5*|Y)/c(w*) L,.(8*| Y) to B*.

By repeating steps (a)-(c) we have a sample from the likelihood of interest. The method of composition
is used in steps (a) and (b), whereas importance sampling is used in step (c). If the distribution of these
masses is skewed, then as noted by the authors (see also Tanner and Wong (1987)) one will need to
use an iterative algorithm (e.g. data augmentation) to correct the deficiency.

It will typically be difficult to sample directly a 8*-vector from L,,.(3| Y). One approach would be
to approximate L,.(3| Y) by a matching multivariate normal density function centred at the mode of
L,.(8|Y), i.e. B with variance-covariance matrix ¥ defined by the curvature of L,.(3|Y) at 8. We
refer to this distribution as ¢,,«( , 8, £). More complicated algorithms could be defined by using the
multivariate ¢- or the split ¢-distribution. The modified algorithm (the normal WLB algorithm) would
then be

(a') draw a w*-vector from g(w); _ _
(b") sample a B*-vector from ¢,.(, B, X);_
(c') assign mass w*=L(8*|Y)/¢,+(8*, B, L) to B*.
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Fig. 14. Posterior distribution of 38 (flat prior)

By repeating steps (a’)—(c’) we have a sample (8, wV), . . ., (8", w™), where w® is the mass assigned
to B9, from the likelihood of interest. This normal WLB algorithm assigns appropriate weights to the
Bs without the need to form a nonparametric density estimate. Also, on the basis of this algorithm,
a Rao-Blackwell estimate of L(3]|Y) is given by the w-weighted mixture of multivariate normals.

To illustrate these algorithms we consider the likelihood B°(1 —8). Because the true likelihood is
proportional to a 8-distribution, the ideal WLB algorithm can be easily implemented. w was generated
by drawing 10 independent unit exponentials and dividing each by the sum, following the authors. Sampled
deviates which fell outside [0, 1] were rejected. The acceptance rate was about 80% in this example.
Fig. 14 presents a histogram of the output from the ideal (chain curve) and normal (broken curve) WLB
algorithms, as well as the true (full) curve, where each density estimate is based on 20000 simulated
values. Both curves seem to track the true likelihood. Further work to examine the performance and
utility of these algorithms and the possibility of converting the normal WLB algorithm to an iterative
algorithm is needed.

Alan E. Gelfand and Bani K. Mallick (University of Connecticut, Storrs): The following example
is a special case of a class of doubly semiparametric proportional hazards models discussed in Mallick
and Gelfand (1993).

Let ¢, 4, . . ., t, be such'a set of uncensored survival times having covariates x; associated with
time #;. Let the integrated hazard for #; have the form H,(#;) g(xF8) where H, is strictly increasing
differentiable from R* to R* and g is strictly decreasing differentiable from R! to R*. H, and g are
assumed unknown and modelled as follows. H,(#)=J(#)/{1—-J(} where J(®)=wIB{J,(®); 1,
2}+ (1 —w) IB{Jy(D); 2, 1}, Jo()=t/(1+1), we [0, 1] where IB( ; ¢, d) denotes the incomplete beta
function associated with a Be(c, d) density. Hence specification of w determines H,,. If w is random,
say Be(a, o), then E Hy(f)=t, i.e. the base-line hazard is ‘centred’ on the exponential hazard.
g(m)=1/{1+K(n)} where K(n)=» IB{K,(); 1, 2}+(1—») IB{K,(n); 2, 1}, Ko(n)=expn/(1+exp),
v€ [0, 1]. Hence » determines g and, if » ~ Be(a, o), E g(n) =exp(—n), the usual covariate link. Taking
B, w and » as unknown results in the likelihood

LB, w, v)x [] Hg (1;) 8(xT B) exp{— H,(t,) g(xF B)},

i=1
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Fig. 15. Total mass assigned to the k largest weights versus k for (a) a flat prior for 8 and (b) Jeffreys’s prior for 8

evaluation of which requires 4n IB evaluations; maximization can be done via grid search or possibly
a derivative-based method since dL/d3;, dL/dw and dL/d» can be directly computed. The Bayesian
model is completed by taking independent uniform priors for w and » and, given w, a flat or Jeffreys
prior for G. .

We applied this model to a data set described in Aitkin et al. (1989) (n = 33). Allowing for interaction,
8 becomes four dimensional. Aitkin et al. (1989) fit, among other models, an exponential generalized
linear model which corresponds to our base-line model. We fit the six-dimensional Bayesian model in
two ways. We ran a weighted likelihood bootstrap (WLB) using 1000 weights drawn from Dir(«1) with
a=0.7 and o=1.6 thus obtaining 1000 samples approximately from the posterior under a flat prior.
We ran an adaptive Metropolis-within-Gibbs (MWG) algorithm for both a flat and a Jeffreys prior
following Miiller’s (1991) suggestions, stopping each of five strings after 500 iterations using the last
200 iterations from each again to obtain 1000 samples approximately from the posterior. Run times
for the WLB on an IBM 3094 computer were 220 min for each «: for the MWG 40 min. Using either
the WLB or the MWG samples we obtained the importance weights u; as defined by the authors.

In Fig. 15 we plot the total mass assigned to the k largest weights against k for the two WLBs and
the MWG. The MWG weights are dramatically better than the WLB weights even under a flat prior.
The latter has much more mass attached to far fewer points.

Andrew Gelman (University of California, Berkeley): As the authors point out, the weighted likelihood
bootstrap (WLB) can be used in place of the Gibbs sampler or Metropolis algorithm in a wide class
of problems for which it is a fairly close fit to the target posterior distribution (so that, after importance
resampling, the distribution will be almost exactly correct). One tricky point in application seems to
be determining whether the importance ratios are sufficiently close for the method to be accurate. As
with any approximate method that is based on overdispersion, the WLB has the potential for an even
wider range of practical applicability: for problems in which the WLB simulation distribution is not
a close fit, it may still be useful to use the sampling-importance resampling (SIR) samples as starting
points for a Markov chain simulation. For example, Section 4.2 of Gelman and Rubin (1992) illustrates
SIR samples (although not from the WLB) used successfully as a starting distribution for parallel runs
of a Gibbs sampler.
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Variation of importance ratios also seems like a potential difficulty in the estimates of the marginal
likelihood presented in Section 7. Meng and Wong (1993) present a similar method for estimating marginal
likelihoods and normalizing constants that uses samples from two distributions to achieve a lower variance
than the harmonic mean estimator.

Let p;(0), 0€6;, i=1, 2, be two densities, each of which is known up to a normalizing constant:
Dpi(6)=q;(0)/z;, i=1, 2. The following identity is fundamental to our approach:

4 _Ea,0)a0) @0)
22 Ei{q,(0) «(9)}

where E; denotes the expectation with respect to the p; (i=1, 2) and «(f) is an arbitrary function defined
on the common support, ©, N ©,, such that the two expectations are finite and non-zero. Given draws
from both densities and a choice of «, the numerator and denominator on the right-hand side of equation
(20) can be simulated easily.

The ‘harmonic mean’ (13) corresponds to choosing g,(8)=p(x|0) p(6), ¢,(0)=p(6) and «(f)=
{p(x|6) p(6)}~". Similarly, equation (14) corresponds to the same choice of g;, i=1, 2, with «(6) =p(0) .
For these choices of «, as the authors noted, the resulting simulation may be unstable because the
corresponding integrands are not necessarily square integrable. Furthermore, they provide legitimate
estimates only when the prior p(d) is proper. By suitable choices of « in equation (20), however, all
these problems can be avoided. For example, choosing o= 1/4/1 (¢:9,) leads to

AR AN CAOTAON , )

7 E [NV(a,0)/9,0))]

where both integrands are always square integrable with respect to the corresponding densities.
Implementing equation (20) with the optimal choice of « is also straightforward, as is detailed in Meng
and Wong (1993). Continuous extensions of these methods are presented in Gelman and Meng (1993).

A. P. Grieve (ZENECA Pharmaceuticals, Macclesfield): On the basis of their experiences the authors
suggest that the overdispersion parameter « should be chosen ‘rather close to 1’. How are we to interpret
this in the light of their use of values for a of 0.7 and 1.6? Is this effectively a recommendation to
use purely uniform Dirichlet weights?

To understand to what extent a blanket adoption of uniform Dirichlet weights is reasonable I have
applied the weighted likelihood bootstrap (WLB) to the family of distributions

{XG —b()

@) + (X, ¢)}

and have assumed

(a) that ¢ is known, which gives the exponential family with canonical parameter 6, and
(b) that interest centres on making inferences about the mean value parameter p=E(X)=>5'(0).

For data x; (i=1, . . ., n) and a given set of random uniform Dirichlet weights y; (i=1, . . ., n),
the WLB gives, as a random estimate of g,

n
B= 2 YiXi. (22)
i=1

Using standard properties of the uniform distribution on an n-dimensional simplex it is possible to
show that
o~ = -, n—1s?
E@)=x, var@)=——7—-
n+ln

There are two features of this result which are potentially disturbing, both of which arise because the
WLB does not use all available information. Firstly, irrespective of which member of the exponential
family I am interested in, the WLB simulates from the same data-based distribution, although the
posteriors are very different in shape. Secondly in the concrete example of a normal distribution with
known variance ¢ we would presumably be wanting to simulate from a distribution with mean X and
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variance o2/n. In practice s2/n will deviate from o2/n and the degree to which it does so will influence
the choice of overdispersion parameter o.

Arising from these observations I have further questions for the authors. Can they expand on their
comments concerning an empirical choice for o and provide guidelines for choosing one particular value?
Have they investigated any other weighting distributions, apart from the a-modified uniform Dirichlet?
If so how do they compare with the uniform Dirichlet weights and can one make an empirical choice
between them? For the exponential family we could presumably work with equation (22) to choose in
some sense an optimal weight distribution to give a random sample from the true posterior, but of course
in this case we know the true posterior and therefore do not need the WLB.

Hans R. Kiinsch (Eidgenossische Technische Hochschule, Ziirich): Trying to summarize this interesting
paper in one sentence, one could say (ignoring the difference between multinomial and Dirichlet weights)
that the bootstrap of the maximum likelihood estimator 8(x) gives a good approximation not only to
the sampling distribution .£(§—0|6) but also to the posterior .£(0|x). Since the bootstrap does not
involve a prior, such a result would counter a frequent argument against Bayesian methods, namely
the possibly crucial dependence of the conclusions on a subjective prior. However, extreme choices of
the prior do change the posterior substantially. So the main question seems to me to be, for which priors
is the weighted likelihood bootstrap (WLB) approximation sufficiently good? Here I liked the idea of
looking at how unequal the importance weights given to the bootstrap values are. Another concern
is the assumption that the model considered is correct. For example in the time series analysed in Fig. 9
the AR(1) model is chosen mainly for convenience. If some other model generated the data the WLB
will not approximate the sampling distribution. My main motivation for proposing the blockwise
resampling in Kiinsch (1989) was to retain the model-free nature of Efron’s original proposal also under
dependence. Note that when we choose the weights w, ,, . . ., w, , in the WLB to be dependent then
we obtain a procedure which behaves like blockwise resampling with increasing block size /(n); see formula
(2.12) in Kiinsch (1989).

Thomas Leonard (University of Wisconsin, Madison) and John S. J. Hsu (University of California,
Santa Barbara): The weighted likelihood function (1) provides a very interesting, eclectic, idea. Have
the authors taken this idea one stage further, and tried to incorporate the simulated value of this function
in the denominator of the importance sampling weight function? This modification would avoid the
need for the more complicated density estimates that they use, and it would be neat if it turned out
to converge more rapidly.

In many special cases, for example the non-linear regression model, on the third page, it is possible
instead to use conditional maximization techniques to obtain continuous approximations with saddlepoint
accuracy to marginal posterior densities or moments (e.g. Leonard (1982), Tierney and Kadane (1986),
Leonard ef al. (1989) and Tierney et al. (1989)). The conditional maximization can be completed with
standard packages, and a variety of adjustments to the profile posterior density included to ensure
convincing finite sample accuracy. Since the computing time is very small, and the approach is algorithmic,
are simulations always necessary?

If we do decide to simulate, then it is important to use a procedure which has reasonable asymptotic
properties, as the number of simulations M increases, with z fixed. In Section 4, the authors let 7 — o,
so that theorem 2 does not always help us. Suppose instead that to compute the expectation of a function
w(8) of 6, with respect to a fully specified posterior density =, (6), we perform importance sampling
by simulating from an approximation 7ry*(0) to the posterior density which has positive support on the
parameter space O. Then (e.g. Geweke (1989) and Leonard and Hsu (1992)), the simulated posterior
expectation w,, will converge almost surely to the exact posterior expectation @, as M — o, if & is finite.
Furthermore, whenever the quantity

v=| w@n0r/m@) -5
e
is finite, M2V ~12(w,,—w) converges in distribution to a standard normal random variate. The
importance function 7*(@) should be chosen to ensure that V is likely to be as small as possible, and

V can itself be calculated during the simulations. A small value for

w=| @@ do-1
[$)
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ensures good convergence for the expectation of any bounded function. Can the authors demonstrate
a similar result for their procedure? We believe that a requirement of asymptotic normality can be used
to clarify large subsections of the literature on Bayesian simulations. It can, for example, suggest situations
where the Gibbs sampler would converge within a practical time limit.

We congratulate the authors on some outstandingly novel ideas.

Jun S. Liu and Donald B. Rubin (Harvard University, Cambridge): Newton and Raftery’s examples
appear to provide striking evidence for the potential utility of the weighted likelihood bootstrap (WLB)
for simulating non-normal likelihoods or posterior distributions, but their arguments do not provide
explanations for this subasymptotic effect. Their implicit claim is that the WLB tracks the posited
likelihood of #, whereas it approximately tracks the posterior distribution of 6 under a discrete
approximation to the model that generated the data, irrespective of the posited model!

Consider two likelihoods, normal(f, 1) and exponential(), where 6 is the population mean, with fixed
data. For both posited likelihoods, the value of 6 being simulated is the weighted mean of the sample
values, where the weights are independent of the posited likelihood; hence, the WLB distribution of
9 is the same when the likelihood is normal as when it is exponential. Because the implied WLB
specification for the data is a discrete approximation to the model that generated the data, the WLB
distribution of 8 tends to follow the shape of the posited likelihood for 6 when the empirical distribution
of the data approximates the model underlying this likelihood. Thus, regardless of which likelihood
is posited, if the data look like a normal sample (or exponential sample), the WLB distribution of 0
will tend to look like the posterior distribution of 6 under a normal likelihood (or exponential likelihood)
with a diffuse prior on 8. For large n, both WLB distributions look normal but will only have the correct
scales if « — 1, thus implying that the Bayesian bootstrap (BB) specification is the only asymptotically
acceptable weight distribution. Because this large sample restriction on the WLB holds in general, in
the following general argument we assume a BB weight distribution.

When doing the WLB, a distribution function P with point masses on the observed data points is
generated by the BB, denoted P~ [ P|X, BB]. Let My=(f;: 6€ 6] denote the posited model and &
the space of all distributions. The maximization step in the WLB is equivalent to finding a § such that
the distance from f, to P is minimized. The model assumption M, affects the WLB only by inducing
a particular mapping from # to the parameter space O, i.e. 6=0(P). Conditional on a fixed data set,
and given a fixed function 6, the WLB distribution of 6 is the same for all posited models that induce
the same function 6. If the space Zis partitioned into different classes of models indexed by M, then

[6(P)|X, BB] = | [(P)|X, BB, M] [M|X, BB] am= | (6eP)|X, M1 [M]X, BB] dM,

because [6(P)|X, BB, M] = [0(P) | X, M for all M with positive support for the observed X. Thus,
the WLB draws 6§ from a posterior distribution that mixes over all possible models under a diffuse
prior. If models that are relatively well supported by the data under the BB specification, i.e. models
with relatively large values of [M|X, BB], yield posterior distributions [6(P) | X, M] similar to [6(P)|X,
M,], then the WLB distribution of 8 will be close to [6(P) | X, M, ], which is the targeted posterior
distribution of 6.

Albert Y. Lo (State University of New York, Buffalo): The paper demonstrates advantages of the
weighted likelihood bootstrap (WLB) for posterior inference in smooth parametric models. The choice
of non-Dirichlet weights, i.e. non-exponential Y;, affects the quality of the WLB approximations and
is particularly interesting. It turns out that the accuracy of the WLB depends on the weights only through
the coefficient of skewness of Y. (This is also found when using non-exponential weights in Rubin’s
(1981) Bayesian bootstrap; see Lo (1991, 1993).) In the WLB setting, the maximization of the weighted
likelihood amounts to finding the roots 8* of L Y;//()=0, where I/ (6)=(3/36)logf (X;|6) and
Y,, ..., Y, are independent and identically distributed non-negative random variables. A Taylor
argument gives

o(Y)'n2 L, 0)6* -8 =n"2T{Y;/a(Y)} ] B) + R,. 23)

Conditional on the data, the distribution of n=Y2L(Y,/o(Y)}; @){n~' T I/ (6)*}~'2, and hence of
o(Y,)"'n2I,(§)/2(6* — ), has an expansion
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F*(t|x)=®(t) + §n~V2(1—12) ¢(2) 7(Y}) E{I{ (8,)F 1(8) ¥+ o(n~ /%) (24)

where I(Y,) is the coefficient of skewness of Y;. (Assume that R, decreases to 0 sufficiently fast; see
the discussion in Section 4.) Dirichlet weights correspond to o(Y;)=1 and 7(Y;)=2; equation (24)
specializes to equation (4). Define a coefficient of asymptotic accuracy by

e, (B, F*)=lim, o {n'"?|F, (t|x) - @) |}/n'?| F, (t]x) - F*(t]x)], @5)

where F,(¢|x) is the expansion for the posterior distribution obtained by the authors. It follows then
that e, (®, F*)=|2—7(Y;)|~!. Hence, for 7(Y,;)€(1, 3), the WLB beats the normal approximation to
the authors’ posterior distributions. WLBs with 7=2 yield the ‘most accurate’ approximations with
o(n~12) errors (e.g. exponential Y;). WLBs with 7=1 or 7=3 tie with the normal approximation.
_ The WLB can also be used to approximate a sampling distribution of the maximum likelihood estimate
0, a property also enjoyed by the nonparametric bootstrap (Efron, 1982; Lo, 1987). In this regard, the
WLB is a relative of the ‘randomly weighted M-method’ of Rao and Zhao (1992). Let us look at the
accuracy problem. Use (1, 8, 6,) to play the role of (Y;, 6*, §) in the arguments leading to equations
(23) and (24). Hence, the sampling distribution of n'/2I,(8,)"/*(f — 6,) admits the expansion

F(t]x)=®(@0)+ gn~V2(1-12) $(2) EU{ (65)F 105) =2+ 0o(n=12)
=F*(t|x)+gn~ 2 (1= 12) d0)(1 = 7(Y)} E{{ 8p)F I(85) ~**+ 0(n~"72), (26)

where the last equality follows from equation (24). The coefficient of asymptotic accuracy is
e(®, F*)=lim, .. {n"2| F(t) - 2O}/ n"2| F(t|x) - F*(t|x)| = |1 - 7(Y)| - @7

For 7(Y,)€(0, 2), the WLB beats the normal approximation. WLBs with 7=1 are the most accurate
with o(n~1/2) errors (e.g. gamma(4; 8) Y;). WLBs with 7=0 or 7=2 tie with the normal approximation.

Thomas A. Louis (University of Minnesota School of Public Health, Minneapolis): I congratulate
Dr Newton and Professor Raftery for their intriguing paper on generalizing the Bayesian bootstrap.
Their weighted likelihood bootstrap (WLB) adds another method to our options for generating samples
that can be used to construct posterior distributions and Bayesian inferences. The WLB’s ability to
use standard weighted likelihood maximization routines is a potential benefit, but its success depends
strongly on an effective, possibly data-dependent, choice of «. Although Markov chain Monte Carlo
(MCMC) methods might be easier to implement and to ‘tune’ than the WLB, they are certainly no
panacea. Situations causing problems in maximizing the weighted likelihood are also likely to produce
slow or misdirected MCMC convergence.

I am principally concerned with what we have when the WLB has done its work. Achieving a first-
order correct approximation is hardly sufficient: the maximume-likelihood-based Gaussian approximation
accomplishes this. A prior-augmented approximation will do even better, to say nothing of more
sophisticated Laplace or saddlepoint approximations. It appears that, for most realistic applications,
on its own the WLB will do no more than to deliver a sample of parameter values that can be smoothed
and used to feed an importance sampling adjustment (ISA). As the authors note, if this sample is not
close to the posterior distribution, the ISA will be inefficient and possibly not worth all the work that
it took to obtain it.

So, I am left with questions for the authors. In what situations will the WLB approach save time
(both human and computer central processor unit) in achieving a desired accuracy of approximation?
More specifically, assuming that an ISA will be used, how does the WLB compare with generating samples
from the prior distribution, or from the prior-augmented likelihood, or from the mixture distribution
advocated by West (1992), etc.? Is the WLB an effective approach for obtaining good starting values
for an MCMC method? Until these and a host of other questions and issues are addressed, I view the
WLB as an interesting generalization of the Bayesian bootstrap that reveals quite fascinating structures
but awaits methodological and applied roles.

Radford M. Neal (University of Toronto): I shall comment on the estimators for the marginal likelihood
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in Section 7, describe an alternative method using an importance sampler and refer to past work on
this problem in physics.

Of the estimators for p(x) discussed, g, and p, are based solely on the likelihoods of values sampled
from the posterior. In many problems, the posterior is determined largely by the likelihood, the effect
of the prior being small. Even replacing the prior with an improper distribution will often have little
effect on what a typical sample drawn from the posterior looks like. The value of p(x) depends strongly
on the prior, however—with an improper prior, it is reduced to 0. In such situations, p, and p, cannot
work well. As the authors note, there are also problems with p,. I am not convinced that the hybrid
of p; avoids these difficulties.

Better results may be obtainable by using an importance sampler that approximates the posterior,
perhaps constructed using the weighted likelihood bootstrap as in Section 2. If g is the normalized
importance sampling density, p(x) may be estimated by

m

L 3% p0) pxla /00
i=1

where 0, . . ., 6@ are drawn freshly from £ (points used in constructing g should not be reused).
For complex distributions, constructing a good importance sampler becomes infeasible. Techniques
developed for the equivalent problem of estimating the ‘free energy’ of a simulated physical system
can be applied, however. Generally, a series of intermediate distributions that connect the posterior
to an analytically tractable reference distribution must be introduced (though see Voter (1985)). For
the acceptance ratio method (Bennett, 1976), successive distributions must overlap significantly. For
the thermodynamic integration (Bash et al., 1987) and interpolation (Bennett, 1976) methods, they need
not, but a smoothness assumption must be justified. With umbrella sampling (Torrie and Valleau, 1977),
the intermediate distributions are implicit; a single simulation run visits all intermediate regions.

Art B. Owen (Stanford University): To maximize equation (1) with respect to 6, assuming regularity,
we solve the estimating equations 0=X; w; V log f;(x;, ) where V denotes gradient with respect to 6.
The usual bootstrap repeatedly solves these equations with w=(w,, . . ., w,)’ drawn from a
multinomial distribution with parameters »n and (1/n, . . ., 1/n)'. The weighted likelihood bootstrap
substitutes a continuous distribution for the w;.

One advantage of continuously distributed weights is that they make certain Monte Carlo variance
reduction techniques possible. Graham et al. (1990) describe some balanced bootstrap sampling techniques.
Their example 4 illustrates a method based on Bose’s (1938) construction for mutually orthogonal Latin
squares (MOLS). The method may be applied to samples of size n=p” where p is a prime number and
r is a positive integer, but it cannot be used for general sample sizes. By using continuously distributed
weights, it is possible to obtain second- and higher order balance through sampling schemes based on
orthogonal arrays generated via MOLS and other techniques. Suppose that w;=Y;/X ; Y; where the Y;
are independent and identically distributed. We can further write Y;=g(U;) where U=(U,, .. ., U,)’
is uniform on [0, 1]”. For standard exponential Y, g(u) = —log u. Finally suppose that §| A(U) I, dU;
is of interest for some function 4. The mean, variance, skewness and cumulative density function of
functions of 6, may be written this way. Such an integral may be estimated by the mean of A over levels
taken from a randomized orthogonal array as described in Owen (1992a). Any set of n—2 MOLS can
be used, by mapping U, onto rows, U, onto columns and Us, . . ., U, onto the letters of the orthogonal
Latin squares. Bose’s (1938) construction provides p”— 1 MOLS of p’ levels (p prime) and can thus
be used for any n<p"+ 1. There is no need for the number of levels in the Latin squares to be a multiple
of n.

We can use a step function for g to obtain discretely distributed weights. This is not equivalent to
the approach taken in Graham ef al. (1990). In their orthogonal array the elements are indices and not
weights.

An expression for the Monte Carlo variance of means over randomized orthogonal array samples
is given by Owen (1992b). Some software for generating randomized orthogonal arrays may be obtained
from the directory /pub/oa on playfair.stanford.edu.

Another way to obtain first-order correct inferences from these estimating equations is to define a
nonparametric profile likelihood ratio function

%”(0)=sup[ﬂ nw;|0= 2 w;V log fi(x;, 0), 0Sw;<1=, w,-}.
i—1 i-1
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Owen (1990) showed how standard x2-asymptotics often apply to this likelihood ratio and connected
it to the posterior in Rubin’s (1981) Bayesian bootstrap when a non-informative prior is used and to
the nonparametric tilting bootstrap of Efron (1981).

Dongsheng Tu (Academia Sinica, Beijing): I congratulate the authors for this significant advance
in Bayesian bootstrap and random weighting methodology. My contribution will focus only on the second-
order properties of the proposed weighted likelihood bootstrap (WLB). For this I first review briefly
some related results for the frequentist weighted bootstrap. A more detailed review may be found in
Tu and Zheng (1991).

A random weighting scheme which is identical with Rubin’s Bayesian bootstrap was first proposed
by Zheng (1987) as an alternative to Efron’s bootstrap for approximating the sampling distribution
of pivotal quantities. Tu and Zheng (1987) showed that this approach is second order accurate if the
random weights are jointly distributed as Dirichlet(4, 4, . . ., 4) (Weng (1989) also obtained this result).
Later, Zheng and Tu (1988) generalized this scheme to linear models to approximate the sampling
distribution of least square estimators and also proved the second-order accuracy. In a further study,
however, Tu (1986) found that a natural generalization of this method to minimum contrast estimators,
which is similar to the approach proposed in this paper for the maximum likelihood estimator, fails
to be second order accurate, even though the weights are distributed as Dirichlet(4, 4, . . ., 4). Instead
of looking for new weights, a method of transformation was proposed to modify the random weighting
method so that it can achieve the second-order accuracy. An example can be found in Tu (1992) for
differentiable functional statistics, in which the transformation is estimated by the jackknife, another
resampling method.

Now let us return to the WLB proposed in this paper. In Section 4, the authors also found that the
WLB fails in general to be second order accurate. I believe that the above-mentioned idea involving
transformation can also be applied to improve the accuracy of the WLB, i.e. the posterior distribution
of VinI (9)}(6—8,) may be approximated by the conditional distribution of H [ Vin I,@, )}(0 -0)1,
where the transformatlon H depends on 6,, which can be estimated by 8,, and prior . The functional
form of H can be found by comparing the asymptotic expansions of F,(f) and F,(#). By this
adjustment we may be able to approximate the posterior distribution of 6 for any given prior 7 with
second-order accuracy. I hope that the explicit form of H can be worked out in the near future.

The authors replied later, in writing, as follows.

What are the advantages of the weighted likelihood bootstrap (WLB)? Or, as Louis puts it, when
will it save human and central processor unit (CPU) time relative to competitors, mainly Markov chain
Monte Carlo (MCMC) and analytical approximations? As summarized by Gilks, we made the case that

(a) the WLB can be rapidly deployed, requiring little programming (see the experience of Bates and
Ritter),

(b) it seems to work well for ‘small’ (i.e. up to at least 18 parameters) but intricate problems,

(c) it generates independent posterior samples and

(d) it is self-monitoring, in that a highly dispersed distribution of the importance weights indicates
that it is not working well.

The discussants have added two more, namely

(e) it will tend not to miss minor modes in low dimensional multimodal likelihoods (Roberts) and
(f) it is ‘more accurate’ than the normal approximation under quite general conditions (Lo).

Liu and Rubin suggest that the raw WLB output is informative by itself, as a robustified form of
parametric inference.

With respect to (€), Sweeting reports poor performance of the WLB for a multimodal likelihood based
on six observations. However, his use of the WLB is not what we recommend in practice. We reanalysed
Sweeting’s first example with « = 1.7 to spread out the weights and found a much better distribution
of fs between the two modes. On sampling—importance resampling (SIR) adjustment, we obtained a
very close approximation to the true posterior. Further, if the WLB puts mass where no real mode is,
then that mass will be downweighted on SIR adjustment.

Roberts suggests that the natural home for the WLB is in non-linear regression problems, presumably
including generalized linear models, robust regression, survival analysis and autoregressive models for
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time series. The list of examples so far treated suggests the scope to be somewhat wider than this,
and Gilks in his equation (18) makes a fascinating suggestion for extending the scope of the WLB
to hierarchical models with very many parameters. We look forward to further investigation of
this idea.

Barnard hopes that the method will be tested on a realistic problem, and so do we. Bacha and Celeux
have told us that their discussion is part of a larger project with Electricité de France on reliability in
nuclear power-stations; this may eventually provide such a major application. The first circulated version
of our paper (Newton and Raftery, 1991) gives several other examples that were removed because of
space constraints: logistic regression, Markov chains, normal mixtures, spectral analysis and calibration.
This is still available on request from us.

Leonard and Hsu and Louis mention analytical approximations: Laplace, saddlepoint and prior
augmented. These will usually use less CPU time than the WLB (or any other Monte Carlo method)
for the same accuracy, but they will often require much more human time than the WLB.

Comparison with Markov chain Monte Carlo methods

The WLB produces independent samples from the posterior, and so avoids the convergence issues
that are inherent in MCMC methods. The WLB is often easier to apply than the Gibbs sampler, although,
as Clifford points out, the larger class of Metropolis-Hastings algorithms has members that are faster
and easier to implement than the Gibbs sampler, and perhaps the Gibbs sampler itself should be avoided.
The WLB will not beat MCMC methods when optimization is difficult.

The WLB has only one user-specified control parameter, and thus may spare Auman time. Gibbens
and Roberts apply the MCMC independence sampler with normal proposals to our first example, which
has p=3 parameters. Their algorithm has nine (or more generally p(p + 3)/2) control parameters. The
independence sampler is closely related to importance sampling (Smith and Roberts (1993), section 3.3),
and so we would expect its performance to be sensitive to the control parameters. Thus choosing them
well is both important and potentially difficult, especially in higher dimensions (such as p = 18!). Similar
comments apply to the MCMC algorithms used by Clifford, and Gelfand and Mallick.

Gelfand and Mallick claim that their MCMC algorithm works better than the WLB in their example,
based on plots of importance weights. However, these plots are misleading because the WLB weights
are for the unadjusted WLB sample, whereas the MCMC weights are for the final sample, which is
claimed to be from the posterior. A fairer comparison would involve the importance weights for the
final SIR-adjusted sample from the WLB. Indeed, it is surprising that their weights were so far from
constant, casting some doubt on the quality of their approximation to the posterior.

Gelman points out an important possible synthesis of WLB and MCMC methods, namely that the
(unadjusted) WLB with o> 1 can provide an overdispersed distribution from which to generate starting
values for MCMC algorithms. Even if the WLB or its generalization in Gilks’s equation (18) does not
yield a good approximation to the posterior, it may provide a satisfactory and routinely available
overdispersed distribution of starting values.

Choice of o

As Grieve and Louis point out, the choice of « is crucial, and Bacha and Celeux’s example shows
how inefficient the WLB can be with a very bad choice of «. We have suggested looking at the cumulative
importance weight plots (e.g. Fig. 6(a)) for various values of «. This can be formalized by choosing
the value of « for which the area A between the constant and WLB cumulative importance weight curves
is smallest. This approach is not foolproof, although looking at the cumulative importance weight curves
is useful. This is because, for the SIR adjustment to work well, we need the initial WLB sample to
cover the entire posterior distribution, and so we should be more tolerant of non-constant cumulative
importance weight curves that are due to overdispersion than to underdispersion. In Bacha and Celeux’s
example, A is calculated for six values of o from 0.4 to 1.4 and is smallest for o =0.8. However, this
misses part of the posterior, leading to underestimated variances and so on; a higher value of « gave
a better performance even though A was slightly larger.

We would like to suggest a different approach to the choice of a. The idea is that the WLB sample
should cover the posterior fully; if so, then we expect the largest importance weights u; to be near the
middle of the WLB sample. This can be assessed by plotting the u; against the Mahalanobis distances
from the sample mean, d;. We have found the following 10-90% rule to work fairly well: choose the
smallest o such that the largest weights that sum to 10% are in the lower 90% of the distribution of
d;. We have also found it useful to calculate corr(y;, d;), restricted to values such that u ;>2/m. This
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Fig. 16. Importance weights u; plotted against Mahalanobis distances from the mean of the WLB sample, d;, for
(a) 2=0.4, (b) a=1.2 and (c) a=1.4, in Bacha and Celeux’s example: only weights greater than twice the average

weight (i.e. u;>2/m) are shown

should be negative, and in our experience good values of « correspond to corr(y;, d;)< — 1/</m*, where
m* = #{j: u;>2/m}. These rules of thumb need further investigation and refinement.

With the help of Mostafa Bacha, we applied these ideas to the two-parameter example of Bacha and
Celeux. Fig. 16 shows improvement as « increases. Table 3 shows that only « = 1.4 satisfies the 10-90%
rule. For these as we have corr(y;, d;)=0.15, —0.03, —0.10 with m* =160, so that again only a=1.4
satisfies corr(u;, d;)< — 1/ m*. It turns out that, empirically, «=1.4 is indeed a better choice.

Modifications

Silverman notes that the conservative kernel method we adopt may still undersmooth the tails, and
so an adaptive kernel smoother and a larger sample size are advised. Leonard and Hsu suggest that
we use the weighted likelihood function itself to form importance weights, thus avoiding time consuming
kernel density estimation, The importance of this idea can be seen through Cui, Sherman and Tanner’s
‘reinterpretation’. Our @8 is simply the mode of the §*-distribution. Further, the covariance of the
normal approximation for 8* is generally a by-product of the maximization routine to compute £,
making such a modified WLB potentially quite fast and accurate.

TABLE 3
Largest importance weights in Bacha and Celeux’s examplet
a=0.4 a=1.2 a=14

Weight  Distance Weight  Distance Weight  Distance

percentile percentile percentile
0.019 23 0.028 98 0.035 77
0.018 48 0.025 7 0.023 86
0.012 78 0.018 37 0.021 87
0.011 53 0.011 50 0.013 18
0.011 2 0.010 10 0.012 23
0.011 13 0.010 89
0.010 6
0.009 31

1The distance percentile is the percentile of the observation in the distribution of Mahalanobis
distances d; from the mean of the WLB sample. Small distance percentiles correspond to large
distances.
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We agree with Leonard and Hsu that some estimate of Monte Carlo error must accompany the WLB
output. Owen’s suggestions for balancing the weights may be an efficient way to reduce this error.

In the non-linear regression examples, a fraction of weight vectors produced no §-values owing to
ill conditioning of some kind. Bates and Ritter ask for guidance here, but all that we can suggest is
to ignore those cases. We can try to tune the optimization code to nurse convergence in some cases,
but this does not always work. Retrospective adjustment by SIR may alleviate problems.

Connections to other bootstraps .

Liu and Rubin suggest that the law of § (unadjusted) is a meaningful posterior distribution in its
own right. We tried to formulate this but decided instead to view the WLB as an approximation to
parametric inference. The WLB nonparametrically robustifies a parametric posterior by averaging over
all models which induce the same map 6. The fact that different models induce the same map is also
noticed by Davison and Grieve, and can be viewed as a positive feature. Liu and Rubin’s idea is compelling,
but care is needed, for example, to ensure that [6(P)|X, BB, M'] can be equated to [6(P)|X, M] without
regard to discreteness in the former. Kiinsch’s suggestion that model-independent inference can be assured
under a different weight construction implies that Liu and Rubin’s ideas may carry over to time series.

Suppose that the true law governing an independent and identically distributed sample is supported
on the observed sample points. A point P in this model is equivalent to a vector \ of n probabilities
summing to 1. The nonparametric likelihood of P is simply L(P)=1II7_, \;. A parameter 6 depends
on P by 0=t(P). Owen’s empirical likelihood of 8 results from profiling L(P) at each 6. The Bayesian
bootstrap is equivalent to integrating the posterior L(P) IT\; ! at each 6. The WLB basically provides
the transformation ¢.

Worton asks about the relationship to bootstrap likelihood, which is presented as an approximate
partial likelihood p{#(P)|0} where P is the observed estimator of P. Suppressed in the notation is the
fact that this probability depends on the true A which means that it is not actually a partial likelihood.
To overcome this, a rather odd assumption is made that a different true \ exists for each 6. The double
bootstrap is then invoked to estimate the resulting ‘true bootstrap likelihood’ at each 6. It seems more
natural to use the double bootstrap through prepivoting (Beran, 1988) to produce an approximate pivot
h,(x, 6) having density g and then to form the partial likelihood g{A,(x, 6)} for fixed x.

The connection between the WLB and Laird and Louis’s bootstrap is that they are both bootstrap
procedures applied in Bayesian inference. Carlin suggests that effective priors form another connection.
Perhaps any frequentist procedure is Bayesian under some effective prior, and so the notion may not
be particularly useful. A more cogent issue for future study is the formation of approximate pivots.
In fact the bias correction method of Carlin and Gelfand (1990) is an application of Beran’s prepivoting
(Newton, 1991). Whereas a classical pivot is a function of data and parameters having a known sampling
distribution, we can define a Bayesian pivot as a function of data and parameters having a posterior
distribution which is independent of the data.

Theory

In response to Roberts, theorem 1 is proved by using a generalization of the argument of Foutz (1977)
to establish consistency of the maximum likelihood estimator (MLE). Theorem 2 is proved by extending
the Cramér proof of normality of the MLE. Essentially the same smoothness conditions are required.
Lo generalizes our second-order expansion (providing an answer to Grieve). Tu observes the importance
of a proper scale for the parameter. The WLB works better on some scales than on others, so
transformation to approximate normality is advised.

Model choice

Since we circulated the first version of our paper (Newton and Raftery, 1991), considerable research
has been done on evaluating Bayes factors by simulating from the posterior; see Kass and Raftery (1993)
for a review. Rosenkrantz (1992) evaluated the estimators of the marginal likelihood, j; (x), §,(x), /5 (x)
and p,(x) from Section 7 of our paper, in the contexts of hierarchical Poisson models, outlier
identification and a multinomial model with latent variables. She found that analytical approximations
via the Laplace method give greater accuracy for much less computation gnd human time than the
posterior simulation estimators; the problem is that the Laplace method is not always applicable. Among
the posterior simulation estimators, she found that p;(x) with a large value of & (close to 1) had the
best performance. This differs from the earlier advice given in our paper where we recommended a
small value of 6.
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To respond to the discussants’ comments, we need some notation. Let | X],=m~ 'L X (§D), where
{0V} is a sample of size m from the density 4/ § h. Let L denote the likelihood, = the prior, ‘post’ the
posterior, g a positive function and f a normalized density. Then the general importance sampling
estimator of p(x), with importance sampling function g, is |L«/gl,/|7/gl,; when g is normalized, this
is just |L7/gl,, as Neal points out. When g =L this becomes p, (x) = |1/L|.},, whereas when g is the
prior we obtain f,(x)=|L]|,.

A simple modification of the harmonic mean estimator p, (x) is ps(x)= | f /L1r||p‘o§t; this is mentioned
by Gelfand and Dey (1993). It is unbiased and simulation consistent, and has a central limit theorem
if the tails of f are sufficiently thin, specifically if {{f2/Lw}< oo. If 8 is one dimensional, if the prior
and posterior distributions are both normal and if f is normal with mean equal to the posterior mean
and variance equal to x times the posterior variance, then the mean-squared error of ps(x) is minimized
when » =1. This suggests that high efficiency is most likely to result if f is roughly proportional to
the posterior density. In a small numerical study that we described at the meeting, ps(x) had very good
performance.

Meng and Wong (1993), via Gelman, propose the alternative pg(x)=|Lxgl,/|7gl,0x; we look
forward to further investigation of its properties. As a practical matter, it is somewhat awkward because
it involves simulation from the prior as well as the posterior.

We thank the discussants for their insightful comments and regret not addressing all the points raised.
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