STAT 311: Lecture 2

Summarizing Data:

- Types of Variables
 - Categorical/ordinal; Quantitative/continuous.
- Graphical summaries of categorical data
 - Pie charts, barplots.
- Graphical summaries of discrete data
 - Dot plots, stem-and-leaf
- The 5-number summary of quantitative data
- Graphical summaries of quantitative data
 - Histograms, Box plots
- Two example graphics with strong visual impact.

Where we are at:

- Canvas: A web course page temporary alternative:
 - Go <u>www.stat.washington.edu/thompson/Stat311</u>
 - It will take you to a page with some links to lecture slides and lab files for Lab1 etc. at bottom of the page.
 - Canvas syllabus page is now public through UW MyPlan.
- Aplia: as of 10:30 p.m. yesterday (Tuesday)
 - 153 people signed up to the course successfully
 - A few people already started on the practice ("Graded:excluded") assignment, and on the graded homeworks!
- Add codes: a few more will be sent out

If emailing about add codes, PLEASE USE or GIVE UW Id.

Section changes -- not unless you cannot register without, and not if a new lecture add code needed –the few add codes must be saved for genuine adds.

View forward for the week

- Wednesday Graphical summaries of data. (U/H 2.1-2.4)
- Thurs/ Friday -- Aplia practice and more practice, Also R.
 - "Graded" (but not counting) Math prep assignment "due" Friday
- Friday Numerical summaries of data (U/H 2.5-2.7)
 - more material needed to complete Hwk 1 and lab 1
- Monday relationships between two variables (3.1, 3.3)
- Monday 11:00 p.m.: first actually graded homework is due
 - Two parts 1a: relating to U/H Chapter 1,
 - -- 1b: relates to U/H Chapter 2 (mostly 2.1-2.4)
 - Aplia scores separately, but it will count as single homework grade. (and policy is drop lowest weekly score).
- Tuesday -- quiz section -- more R towards lab 1
- Tues 11:00 p.m.: Lab 1 is due.
- Wednesday: Linear regression (U/H 3.2)
- Thursday -- Quiz section, starting towards Lab 2

Types of Variables

• Categorical: (U/H Chapter 4)

No logical ordering to the possible values.

Examples: eye color, nationality, types of investments.

- Ordinal: Categorical variables for which there is an ordering. Examples: No/Yes (workdays lost to flu)
 Year in college (Fr, Soph, Jun, Sen), T-shirt size (S,M,L,XL)
- Quantitative: (U/H Chapter 3)

Numerical values for each observation.

- Discrete: Take only a few (?) possible values.
 Example: Number of cousins, Number of accidents.
- Continuous: Can, in principle, take any value in a range. Examples: Body temperature, rainfall amount.
 Note the accuracy with which we measure a variable may be limited (e.g. rainfall in 0.01").

Categorical variables

- The measurement on a case (Observational unit) is a color, or other descriptive type.
- Data are counts or proportions in each category.
- Example: Types of investments in a retirement portfolio:

Asset type	My portfolio	Joe's portfolio
Money market/Cash	7%	5%
Certificates (flex CDs)	15%	8%
Mutual funds (Bonds)	24%	17%
Annuities (Flex Return)	40%	30%
Securities (Stocks)	5%	25%
Other (Comm.Futures)	9%	15%

PIE CHARTS

• The easiest way to represent these data is with a

pie chart.

The AREA represents the proportion in each category.

- I have more annuities (as a proportion)
- Joe has more stocks
- But so what?

Ordinal data: The Bar plot

- The investment types are ordered by risk.
- Ordering the categories in a bar plot makes sense.
 MINE JOE's

- Now we see Joe's portfolio is riskier than mine.
- But also that I am not ultra-risk-averse (not all Cash/CD)
- Or we can color my/Joe's bars and place alongside see example 2.4 in U/H textbook.

U/H Ex 2.4: Nightlights and nearsightedness

- Survey of n=479 children
- Response: degree of myopia
 - 3 categories represented by colors.
- Explanatory variable: amount of sleeptime lighting as babies
 - 3 categories across the x-axis.

Discrete quantitative data

- Data with only a few values can be represented as a dot • plot or stem-and-leaf diagram.
- Example: right hand-spans of 103 female students (2.5 in U/H)

(here cm)

- Values (cm) are on x-axis
- Every observation gets a dot.
- Pile-up the dots for repeated values.

- Do NOT over-interpret 18.8 is close to 19: the boundaries are arbitrary.
- 13 14 15 16 \bigcirc 17 005 18 00000005558 19 20 21 000000000000000055557 22 0000000555555 23 02

Example: 12 5 = 12.5

Figure 2.8 Stem-and-leaf plot of females' right handspans

The 5-number summary (or 6)

- How to summarize these data??
 - Most values are around 20 cm.
 - Two values are very low ("outliers")
 - Apart from these: range is 16 to 23 cm.
- More generally??
 - (1) The median: the "middle" of the set of values: ~50% are below, ~50% are above
 - The quartiles:
 - (2) Q1: Lower quartile: ~25% are below, ~75% are above
 - (3) Q3: Upper quartile: ~75% are below, ~25% are above
 - The extremes:
 - (4) Minimum: the smallest value
 - (5) Maximum: the largest value
- (6) The inter-quartile range: IQR = Q3-Q1
- In the female hand-span example: median=20cm, quartiles = 19cm, 21cm: min=12.5cm, max=23.25cm

<u>Histograms</u>

- Back to the example of female hand spans
- Above is the dot plot
- Below is the histogram.
- Which do you prefer?
- Note we bin the data: Each bin is width 1 cm, centered on the integer values
- Need to choose the widths and boundaries of bins

Counts or proportions?

- The only difference is what is on the vertical axis.
- Plotting density instead of frequency is useful when comparing samples of different size.

Thompson,Stat 311. WIN 2015

Basic rules for histograms

- Can be used for any quantitative data.
- Normally, the histogram bars should be equal width.
- Then, the height represents the count (frequency) or percentage or proportion (density).
- ALWAYS, the AREA represents the count/ percentage.
- For percentages: the total AREA is 100%.

The next page shows four histograms of miles driven per year in a sample of 1000 cars ("main" vehicle in 1000 households).

Four histograms of same data

How many histogram bins?

- Body temperatures (⁰F) of 100 students.
- Range is 96 to 99.4
- Which histogram do you prefer? And Why?
 - Sample vs population
 - Purpose of measuring the variation
- Does the choice depend on n? (Here n=100)
- It is the SHAPE that matters which choice gives best idea of shape of distribution in the population?

Histograms vs Barplots

- Barplots/dotplots (Ordinal/Discrete)
 - have a bar for every value in the data
 - Works for discrete variables with a small number of possible values
- Histograms (Quantitative)
 - Divide the data values into ``bins" (normally equal width)
 - Plots the frequency (count) or density (percentage) of data values in each bin
 - Works for both continuous and discrete data

U/H Ex 2.4: Nightlights and nearsightedness

- Survey of n=479 children
- Response: degree of myopia
 - 3 categories represented by colors.
- Explanatory variable: amount of sleeptime lighting
 - 3 categories across the x-axis.

- What is the difference between a bar chart and a histogram
 - Sometimes not much!!

18

Box plots: defining the box

 The box is defined by the median and lower and upper quartiles.

- The "whisker" extends to either the max/min, or to 1.5 times the IQR below quartile Q1 or above Q3.
- Points beyond 1.5 times the IQR above/below the relevant quartile are often called outliers.
- In the example: No low outliers – lower whisker extends to minimum. One high outlier, upper whisker extends to Q3 + 1.5 x IQR

Box plots: Example 2.5 of U/H

Figure 2.14 Boxplots for right handspans of men and women

- Right handspans of 190 college students: 103 female, 97 male.
- Females we have seen before: centered at 20cm, most in range 19 to 21cm, range (excluding 2 outliers) is 16cm to 23 cm
- Now we see, male distribution very similar, except 2.5 cm larger.
- With boxplots (as with density histograms) we can compare samples of different sizes.

Which for what variables?

	Pie chart	Barplot	Stem& Leaf or dotplot	Histogram or Boxplot
Categorical	YES	(yes)	NO	NO
Ordinal	(yes)	YES	NO	NO
Quantitative (few discrete values)		(yes) U/H says no	YES	(yes)
Quantitative (continuous)				YES

Graphic with impact: #1

Population living on less than \$10/day (2002 PPP)

3,499 million people

- Source: <u>http://www.worldmapper.org/textindex/text_Income.html</u>
- What do we need to know to interpret this graphic?
 - The normal visual world map
 - North America, West Africa
 - Population densities around the world
 - what about S. America, Nigeria?

Graphic with impact: #2

- Charles Joseph Minard's 1869
 map of Napoleon's 1812 Russia Campaign
- Source: Wainer, Visual Revelations, p.85
- See also:

http://www.datavis.co/gallery/re-minard.php