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Summary

We consider causal models involving three binary variables: a randomized

assignment Z, an exposure measure X, and a final response Y . We focus

particular attention on the situation in which there may be confounding of

X and Y , while at the same time measures of the e⇤ect of X on Y are of

primary interest. In the case where Z has no e⇤ect on Y , other than through

Z, this is the instrumental variable model. Many causal quantities of interest

are only partially identified. We first show via an example that the resulting

posteriors may be highly sensitive to the specification of the prior distribution

over compliance types. To address this, we present several novel “transparent”

re-parametrizations of the likelihood that separate the identified and non-

identified parts of the parameter. In addition, we develop parametrizations

that are robust to model mis-specification under the “intent-to-treat” null

hypothesis that Z and Y are independent.
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1. INTRODUCTION

The potential outcomes model for causal inference is a well-established framework
for formalizing causal assumptions and modelling causal e⇤ects; see Neyman (1923);
Rubin (1974). However, in many contexts, the causal estimands of interest are not
identified by the observed data. Even in the asymptotic limit, there may remain a
range of values for a parameter of interest that are logically possible, rather than a
single point. Such a parameter is partially identified, and is entirely non-identified
if, in the limit, the data impose no restriction at all.

It is often argued that identifiability is of secondary importance in a Bayesian
analysis provided that the prior and likelihood lead to a proper joint posterior for all
the parameters in the model. Following Leamer (1978), Gustafson (2005) and Green-
land (2005), we argue that partially identified models should be re-parameterized so
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that the complete parameter vector may be divided into point-identified and entirely
non-identified subvectors. Such an approach facilitates “transparency”, allowing a
reader to see clearly which parts of the analysis have been informed by the data. In
addition, it makes it simpler for someone to incorporate their own prior beliefs that
may di⇤er from those of the analyst.

In this paper, we first motivate the approach by considering a simple instru-
mental variable model for a randomized trial with non-compliance, in which the
“instrument” Z, the exposure measure X, and the final response Y are all binary.
We then extend this approach to the analysis of a randomized encouragement de-
sign, though still with binary treatment and response, under a variety of di⇤erent
assumptions.

In Section 5, we develop novel variation independent smooth parametrizations
that permit this approach to be applied in the context of continuous or discrete
baseline covariates. As the response Y is binary, these parametrizations are of
necessity complex and somewhat non-intuitive.

In Section 6, we consider a successfully randomized controlled trial in which the
following both hold: (i) the random assignment of Z and (ii) the exclusion restriction
that Z has no e⇤ect on Y except through its e⇤ect on X. The exclusion restriction
is guaranteed to hold in a placebo-controlled double-blind trial in which the active
treatment is which the active treatment is without side-e⇤ects and unavailable to
patients in the control arm. Under this model, the sharp null hypothesis of no causal
e⇤ect of X on Y implies the Intent-To-Treat (ITT) null hypothesis that Z and Y are
independent both marginally and conditional on the baseline covariates V . We pro-
vide a second transparent parametrization with the following important robustness
property: under the ITT null, a Bayes estimator of the conditional covariance of Z
and Y given V converges to zero, even when both the estimates of the distribution
p(x | y, z, v) and of p(y | z = 0, v) are inconsistent due to model mis-specification.
This is important because mis-specification is inevitable whenever V has continuous
components.

The paper is organized as follows: In Section 2, we introduce the notation and
the basic potential outcomes model that we consider throughout. In Section 3, we
motivate our approach via a simple example, and show how the method applies. In
Section 4, we describe eight causal models and explicitly characterize the induced
model for the joint distribution of the observed data implied by each model. In
Section 5, we extend the approach to incorporate baseline covariates. In Section 6,
we modify the approach presented in Section 5 to preserve consistency under the
ITT null.

2. BASIC CONCEPTS

Throughout this paper we consider potential outcomes models involving three binary
variables, X, Y and Z. Here:

Z is a treatment, presumed to be randomized, e.g., the assigned treatment;
X is an exposure subsequent to treatment assignment;
Y is the response.

For Z, we will use 1 to indicate assignment to drug, and 0 otherwise. For X, we
use 1 to indicate that the drug is received and 0 if not. For Y , we take 1 to indicate
a desirable outcome, such as survival.



Transparent Parametrizations of Models for Potential Outcomes 571

The potential outcome Xz is the treatment a patient would receive if assigned
to Z = z. We follow convention by referring to the four compliance types as shown
in Table 1. We will use tX to denote a generic compliance type, and DX the set of
such types.

Table 1: Compliance types describing the potential outcomes Xz ; see Imbens
and Rubin (1997).

Xz=0 Xz=1 Compliance Type

0 0 Never Taker NT

0 1 Complier CO

1 0 Defier DE

1 1 Always Taker AT

Similarly, we consider the four potential outcomes Yxz with x, z ⇣ {0, 1} for Y .
These describe the outcome for a given patient if they were to be assigned to Z = z,
and then were exposed to X = x. For a given individual, we will refer to the 4-vector
of values taken by the variables (Y00, Y01, Y10, Y11) as their response type, tY . We use
DY to indicate the set of such types, of which there are 24 = 16 in general, though
we will often consider models in which some of these are assumed to be identical.

Since we suppose the potential outcomes are well-defined, if Z = z, then X = Xz,
similarly if X = x and Z = z, then Y = Yxz. This is referred to as the “consistency
assumption” (or axiom).

2.1. Notation

Let �tX
⇧ p(tX) denote the marginal probability of a given compliance type tX ⇣

DX , and
�X ⇧ {�tX

| tX ⇣ DX}
denote a distribution on DX . Similarly, we use �tY |tX

⇧ p(tY | tX) to denote
the probability of a given response type within the sub-population of individuals
of compliance type tX , and �Y |X to indicate a specification of all these conditional
probabilities:

�Y |X ⇧ {�tY |tX
| tX ⇣ DX , tY ⇣ DY }.

We will use � to indicate a joint distribution p(tX , tY ) on DX ⇤ DY .

We use ⇤ij

tX
for the probability of recovery for a patient of a given compliance

type tX , under an intervention that sets X = i and Z = j:

⇤ij

tX
⇧ p(Yx=i,z=j = 1 | tX), for i, j ⇣ {0, 1} and tX ⇣ DX .

In places, we will make use of the following compact notation for probability distri-
butions:

p(yk|xj , zi) ⇧ p(Y = k | X = j, Z = i),

p(xj |zi) ⇧ p(X = j | Z = i),

p(yk, xj |zi) ⇧ p(Y = k, X = j | Z = i).

Finally, we use �k to indicate the simplex of dimension k.
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2.2. Randomization Assumption

We will make the randomization assumption that the distribution of types (tX , tY )
is the same in both the Z = 0 and Z = 1 arms:

Z ◆◆ {Xz=0, Xz=1, Yx=0,z=0, Yx=1,z=0, Yx=1,z=0, Yx=1,z=1}. (1)

A causal graph corresponding to the model given by (1) is shown in Figure 1.
4 T. S. Richardson, R. J. Evans & J. M. Robins
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Figure 1: Graphical representation of the model given by assumption (1). The

shaded nodes are observed. In this model tX takes 4 states, while tY takes 16.
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Figure 1: Graphical representation of the model given by assumption (1). The
shaded nodes are observed. In this model tX takes 4 states, while tY takes 16.

3. A SIMPLE MOTIVATING EXAMPLE

Pearl (2000) and Chickering and Pearl (2000) use potential outcomes to analyze
the data in Table 2, which arise from a double-blind placebo-controlled randomized
trial of Cholestyramine; see Efron and Feldman (1991). Compliance was originally
measured as a percentage of prescribed dosage consumed; this measure was then
dichotomized by Pearl. Similarly, the response was also dichotomized to indicate a
reduction in cholesterol of at least 28 units.

Table 2: Lipid/Cholestyramine data; originally considered by Efron and Free-
man (1991); dichotomized by Pearl. There are two structural zeros.

z x y count z x y count

0 0 0 158 1 0 0 52

0 0 1 14 1 0 1 12

0 1 0 0 1 1 0 23

0 1 1 0 1 1 1 78

172 165

Table 3: Response types under the exclusion restriction (2); see Heckerman and
Shachter (1995).

Yx=0· Yx=1· Response Type

0 0 Never Recover NR
0 1 Helped HE
1 0 Hurt HU
1 1 Always Recover AR

The potential outcomes analysis here is simplified since subjects in the control
arm had no access to treatment. Hence, Z = 0 implies X = 0, so there are only two
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compliance types (NT, CO). Since it is a double-blind randomized trial, Pearl also
assumes that Z has no e⇤ect on Y other than through X, or more formally:

Yxz = Yxz⇧ for all x, z, z⇧ ⇣ {0, 1}. (2)

In this case, there are only four response types tY ; see Table 3. Consequently, there
are eight combinations for (tX , tY ) ⇣ {NT, CO}⇤ {HE,HU,AR,NR}.

When equation (2) holds, we will use Yx· to refer to Yx,z=1 = Yx,z=0. Similarly,
we let ⇤i·

tX
⇧ P (Yx=i · = 1 | tX).6 T. S. Richardson, R. J. Evans & J. M. Robins
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Figure 2: Graphical representation of the IV model given by assumptions (2)

and (1). In this model tX takes 4 states, while tY takes 4.

A causal graph corresponding to the model given by (1) is shown in Figure 1.
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Figure 2: Graphical representation of the IV model given by assumptions (2)
and (1). In this model tX takes 4 states, while tY takes 4.

Pearl (2000) takes as his primary quantity of interest the (global) average causal
e⇤ect of X on Y :

ACE(X ↵ Y ) ⇧ E[Yx=1· � Yx=0·] = �(HE)� �(HU ).

Pearl proposes analyzing the model by placing a prior distribution over p(tX , tY )
and then using Gibbs sampling to sample from the resulting posterior distribution
for ACE(X ↵ Y ). He notes that the resulting posterior appears sensitive to the
prior distribution and suggests that a sensitivity analysis be used.
8 T. S. Richardson, R. J. Evans & J. M. Robins
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Figure 3: Prior to posterior analysis for ACE(X � Y ) for the Lipid Data;

priors are green; posteriors are red; vertical lines indicate bounds on the ACE

evaluated at the empirical distribution. Tick marks indicate respective medi-

ans. See text for further details.

plot show, respectively, the prior and posterior for ACE(X � Y ) under a uniform

Dir(1, . . . , 1) on the distribution �(tX , tY ); the dashed green and red lines indicate

the corresponding prior and posterior after increasing the parameter corresponding

to (NT,HE) to 1.2, while reducing that for (NT,NR) to 0.8, but leaving all others

at 1. If the model were identified we would expect such a change in the prior to

have little e�ect (the smallest observed count is 12). However, as the plot shows,

this perturbation makes a considerable di�erence to the posterior.

Experts whom we consulted, noting the fact that there was relatively little prior

support in the range dominated by the posterior, hypothesized that the sensitivity

might be due to an insu⇥ciently di�use prior. It was suggested that a ‘unit infor-

mation’ prior should be used instead. The right plot in Figure 3 shows the prior and

posterior for the ACE resulting from a Dir(1/8, . . . , 1/8) and under a prior in which

the parameter for (NT,HE) is increased to 3/16 while that for (NT,NR) is reduced

to 1/16. The plot shows that the more di�use prior on �(tX , tY ) has succeeded

in increasing the spread of the prior for ACE(X � Y ), but this has come at the

Figure 3: Prior to posterior analysis for ACE(X ↵ Y ) for the Lipid data;
priors are green; posteriors are red; vertical lines indicate bounds on the ACE
evaluated at the empirical distribution. Tick marks indicate respective medians.
See text for further details.

Figure 3 illustrates this sensitivity. The solid green and red lines in the left
plot show, respectively, the prior and posterior for ACE(X ↵ Y ) under a uniform
Dir(1, . . . , 1) on the distribution �(tX , tY ); the dashed green and red lines indicate
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the corresponding prior and posterior after increasing the parameter corresponding
to (NT,HE) to 1.2, while reducing that for (NT,NR) to 0.8, but leaving all others
at 1. If the model were identified, we would expect such a change in the prior to
have little e⇤ect (the smallest observed count is 12). However, as the plot shows,
this perturbation makes a considerable di⇤erence to the posterior.

Experts whom we consulted, noting the fact that there was relatively little prior
support in the range dominated by the posterior, hypothesized that the sensitivity
might be due to an insu⌃ciently di⇤use prior. It was suggested that a “unit infor-
mation” prior should be used instead. The right plot in Figure 3 shows the prior
and posterior for the ACE resulting from a Dir(1/8, . . . , 1/8) and under a prior in
which the parameter for (NT,HE) is increased to 3/16 while that for (NT,NR) is
reduced to 1/16. The plot shows that the more di⇤use prior on �(tX , tY ) has suc-
ceeded in increasing the spread of the prior for ACE(X ↵ Y ), but this has come at
the expense of multi-modality in the posterior, and greater prior sensitivity: notice
the di⇤erence between the posterior medians (indicated at the base of the plot).

On closer inspection, the sensitivity should not be surprising, since the observed
data contain no information allowing us to learn about the ratio of (NT,HE) to
(NT,NR): patients who are of type “Helped” (HE), and “Never Recover” (NR) will
both have Yx=0 = 0; they only di⇤er with respect to their values of Yx=1. However,
patients who are “Never Takers” will never expose themselves to treatment, so
these potential outcomes are never observed (at least not without instituting a new
experimental protocol that eliminates non-compliance). Of course, the proportion of
patients who are of type “Helped” (rather than “Never Recover”) is directly relevant
to ACE(X ↵ Y ).

3.1. Separating the Identified from the Unidentified

Figure 4 provides a graphical depiction of the functional relations between the pa-
rameters �X , ⇤i·

CO, and ⇤i·
NT, and the observed distribution p(y, x|z).Transparent parametrizations of models for potential outcomes 9
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Figure 4: A graph representing the functional dependencies in the analysis of

the simple IV model with no Always Takers or Defiers. Rectangular nodes

are observed; oval nodes are unknown parameters. p(x = 1|z = 0) = 0, so

p(y|x=1, z=0) is undefined, hence these nodes are omitted.
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analysis of the simple IV model with no Always Takers or Defiers.
Rectangular nodes are observed; oval nodes are unknown parameters.
p(x = 1|z = 0) = 0, so p(y|x = 1, z = 0) is undefined, hence these nodes
are omitted.

The parameters �X , ⇤1·
CO, ⇤0·

CO, and ⇤0·
NT are identified thus:

�CO = px1|z1 , ⇤1·
CO = py1|x1,z1 , ⇤0·

CO = (py1,x0|z0 � py1,x0|z1)/px1|z1 ,

�NT = px0|z1 , ⇤0·
NT = py1|x0,z1 .
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The equation for ⇤0·
CO leads to the following restrictions on the distribution p(y, x|z):

⇤0·
CO ⌥ 1 � py0,x0|z1 ⌥ py0,x0|z0 ,

(3)
⇤0·
CO � 0 � py1,x0|z1 ⌥ py1,x0|z0 .

It is not hard to show that these inequalities define the set of distributions p(y, x|z)
arising from this potential outcome model. Consequently, we may parametrize the
identifiable portion of the model directly via the set of distributions p(y, x|z) that
obey the inequalities on the right of (3). Under a Dirichlet prior over the observed
distribution p(y, x|z), truncated so as to remove distributions violating (3), the
posterior may easily be sampled from via conjugacy and Monte Carlo rejection
sampling.

As a by-product, we may also examine the posterior probability assigned to the
model defining restrictions (3) being violated under a uniform prior on the saturated
model. For the Lipid data, under this prior, the posterior probability of such a
violation is still 0.38, which is a consequence of the empirical distribution being
close to violating (3). (The prior probability of violating (3) is 0.5.) This might cast
doubt on the exclusion restrictions, Eq. (2). One possible explanation for a violation
of Eq. (2), even in the context of a double-blind study, is the dichotomization of
the compliance measure; see Robins et al. (2009); Balke and Pearl (1997). Note
that although (2) implies (3), the converse does not hold. Similarly, if the posterior
probability of (3) holding is high, this does not imply that the posterior probability
of (2) is high, unless there is high prior conditional probability that (2) is true given
that (3) is true. This follows from the fact that the posterior probability that (2)
is true given that (3) is true is equal to the conditional prior probability that (2) is
true given that (3) is true. The model that allows (2) to be violated is of the same
dimension as model (2).

In this example, where Equation (2) is assumed to hold, we could have used
(�X , ⇤1·

CO, ⇤0·
CO, ⇤0·

NT) rather than p(y, x|z) to parametrize the identifiable part of
the model. However, this approach does not generalize to more complex potential
outcome models such as those that include Defiers, or make fewer exclusion restric-
tions, since both �X and ⇤i·

tX
may themselves be partially identified; see Richardson

and Robins (2010).

3.2. Posterior Distributions for the ACE

The ACE(X ↵ Y ) depends on the (wholly) unidentified parameter ⇤1·
NT:

ACE(X ↵ Y ) = �CO(⇤1·
CO � ⇤0·

CO) + �NT(⇤1·
NT � ⇤0·

NT).

We elect to display the posterior for ACE(X ↵ Y ) as a function of ⇤1·
NT; see Figure 5.

This permits readers to see clearly the dependence of the ACE on this parameter,
and to incorporate easily their priors regarding ⇤1·

NT.

4. THE GENERAL FRAMEWORK

We now consider the general setting in which we do not assume Eq. (2), nor do we
rule out the possibility of Always Takers or Defiers. Thus, there are 4⇤ 16 possible
values for (tX , tY ).
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Figure 5: The posterior for the ACE(X � Y ) for the Lipid data displayed as

a function of the (completely) unidentified parameter �1·
NT: (blue) posterior

median; (red) 2.5% and 97.5% quantiles; (green) simultaneous 95% posterior

region obtained from a 95% HPD region for p(y, x|z); horizontal lines are

bounds on the ACE evaluated at the empirical distribution. A uniform prior

was used on distributions p(y, x | z) that satisfy the inequalities (3).

Figure 5: The posterior for the ACE(X ↵ Y ) for the Lipid data
displayed as a function of the (completely) unidentified parameter ⇤1·

NT:
(blue) posterior median; (red) 2.5% and 97.5% quantiles; (green) si-
multaneous 95% posterior region obtained from a 95% HPD region for
p(y, x|z); horizontal lines are bounds on the ACE evaluated at the empir-
ical distribution. A uniform prior was used on distributions p(y, x | z)
that satisfy the inequalities (3).

Following Hirano et al. (2000) we consider models under which (1) holds, and
(combinations of) the following three assumptions hold:

(MonX) Monotonicity of compliance: X0 ⌥ X1, or equivalently, there are no
Defiers.

(ExNT) Stochastic exclusion for NT under non-exposure: ⇤01
NT = ⇤00

NT, so
among Never Takers the distributions of Y00 and Y01 are the same.

(ExAT) Stochastic exclusion for AT under exposure: ⇤11
AT = ⇤10

AT, so among
Always Takers the distributions of Y10 and Y11 are the same.

Note that assumption (2) implies stochastic exclusion for all compliance types

under all exposures, i.e., ⇤ij

tX
= ⇤ij⇧

tX
for all i, j, j⇧ ⇣ {0, 1} and all tX ⇣ DX . Figure 6

and Table 4 list these eight models. Imposing other exclusion restrictions, besides
ExAT or ExNT, will correspond to merely relabeling a single node ⇤ij

tX
in Figure 6

with ⇤i·
tX

. Thus, although the causal interpretation of estimands may change, the

implied set of compatible distributions p(y, x|z) will not.

The saturated model p(y, x|z) consists of the Cartesian product of two three-
dimensional simplices: �3 ⇤ �3. The other seven models are all characterized by
simple inequality restrictions on this set.

4.1. Inequalities Defining Models with Defiers

Results of Balke and Pearl (1997) and Bonet (2001) imply that the set of distribu-
tions arising from a potential outcomes model satisfying (1), ExAT and ExNT may
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Figure 8: Functional dependencies in the eight models. Terms �ij
tX

that do

not appear in the likelihood are not shown. See also Table 4.

Figure 6: Functional dependencies in the eight models. Terms ⇤ij

tX
that do not
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be characterized via the following inequalities:

p(y0, x0 | z0) + p(y1, x0 | z1) ⌥ 1, p(y1, x0 | z0) + p(y0, x0 | z1) ⌥ 1, (4)

p(y0, x1 | z0) + p(y1, x1 | z1) ⌥ 1, p(y0, x1 | z1) + p(y1, x1 | z0) ⌥ 1. (5)

Note that any distribution p(y, x | z) can violate at most one of these four inequal-
ities. In addition, they are invariant under relabeling of any variable. Cai et al.
(2008) give a simple interpretation of the inequalities in terms of bounds on average
controlled direct e⇤ects in the potential outcomes model that only assumes (1):

p(y0, xi | z0)+p(y1, xi | z1)�1 ⌥ ACDE(xi) ⌥ 1� p(y0, xi | z1)� p(y1, xi | z0) (6)
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where ACDE(x) ⇧ E[Yx1 � Yx0]. We may also obtain bounds on average controlled
direct e⇤ects for AT and NT:

1� p(y0, x0|z0) + p(y1, x0|z1)
p(x0|z0)� p(x1|z1)

⌥ ACDENT(x0) ⌥ p(y0, x0|z1) + p(y1, x0|z0)
p(x0|z0)� p(x1|z1)

� 1,

1� p(y0, x1|z1) + p(y1, x1|z0)
p(x1|z1)� p(x0|z0)

⌥ ACDEAT(x1) ⌥ p(y0, x1|z0) + p(y1, x1|z1)
p(x1|z1)� p(x0|z0)

� 1,

where ACDEtX
(x) ⇧ E[Yx1 � Yx0 | tX ]. Causal contrasts such as ACDENT(x0)

and ACDEAT(x1) were introduced in Robins (1986, Section 12.2), in the context
of estimating treatment in the presence of censoring by competing causes of death.
Rubin (1998, 2004) and Frangakis and Rubin (2002) later coined the term “principal
stratum direct e⇤ect”. Bounds for ACDEAT and ACDENT have been derived by
Zhang and Rubin (2003); Hudgens et al. (2003) and Imai (2008).

ACDE(x0) may be bounded away from 0 i⇤ ACDENT(x0) may be bounded away
from 0 in the same direction (hence ExNT does not hold); see Kaufman et al. (2009)
and Cai et al. (2008). Likewise, with ACDE(x1), ACDEAT(x1) and ExAT. Note
that since any distribution p(y, x|z) may violate at most one of the four inequalities
(4) and (5), in the absence of further assumptions (such as MonX), every distribution
is either compatible with ExAT or ExNT (or both).

It may be shown that the model imposing ExNT alone is characterized by (4),
while the model imposing ExAT is given by (5); see Richardson and Robins (2010).

4.2. Weaker Assumptions

It is worth noting that the inequalities (4) and (5) are implied by the larger coun-
terfactual model which only assumes:

p(Yx=i,z=0 = 1) = p(Yx=i,z=1 = 1), for i = 0, 1, (7)

and
Z ◆◆ Yx=0 and Z ◆◆ Yx=1. (8)

(Note that (7) is implied by (2), though they are not equivalent.) This follows from
the following simple argument. For i, j, k ⇣ {0, 1},

p(Yx=i,z=k = j) = p(Yx=i,z=k = j | Z = k)

= p(Yx=i,z=k = j, X = i | Z = k)

+ p(Yx=i,z=k = j, X = 1� i | Z = k)

⌥ p(Y = j, X = i | Z = k) + p(X = 1� i | Z = k), (9)

where the first equality follows from (8). It follows that:

max
k

p(Y = 1, X = i | Z = k) ⌥ p(Yx=i,z=k = 1) ⌥ min
k⇤

1�p(Y = 0, X = i | Z = k⇤),

where the lower bound is obtained from (9) taking j = 0. The requirement that the
lower bound be less than the upper bound, together with (7) then directly implies
(4) with i = 0, and (5) with i = 1. Thus, (4) and (5) will hold in contexts where
Z ⌘◆◆Xz, for example, where there is confounding between Z and X, or even where

0 101

,z,z for z=0,1.
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Xz is not well-defined, provided that (7) and (8) hold. Further, we do not require
joint independence:

Z◆◆Yx0 , Yx1 . (10)

However, we know of few realistic contexts where one would know that (8) holds,
but (10) does not.

Robins (1989) considered the ACE(X ↵ Y ) under the model given by (7) and
(8), deriving what Pearl (2000) calls the “natural bounds”; see also Manski (1990).
Although the natural bounds are sharp under the assumption of (7) and (8) alone,
they are not sharp under the stronger assumption (1) and (7), for which Pearl
derived the bounds. This is interesting given that, as we have seen, both of these
independence assumptions, combined with (7), lead to the same set of distributions
p(x, y | z) for the observables, characterized by (4) and (5). Finally, we note that
in fact the ACE bounds derived by Pearl assuming (7) and (1) are also implied by
the weaker assumption (10), i.e., without requiring Z◆◆Xz=0, Xz=1 (Richardson and
Robins, 2011). This appears to contradict a remark in Pearl (2009, p. 395).

4.3. Inequalities Defining Models without Defiers

The assumption MonX , that there are no Defiers, implies:

p(x1 | z1) � p(x1 | z0), (11)

since the left and right sides are the proportions of (AT or CO) and AT respectively.
Thus (11) characterizes the observed distributions resulting from MonX alone.

Results of Balke and Pearl (1997) imply that the model assuming MonX + ExNT

+ ExAT implies the following inequalities:

p(y1, x0 | z1) ⌥ p(y1, x0 | z0), p(y0, x0 | z1) ⌥ p(y0, x0 | z0), (12)

p(y1, x1 | z1) � p(y1, x1 | z0), p(y0, x1 | z1) � p(y0, x1 | z0). (13)

The inequalities (12) and (13) imply (11), (4) and (5). A distribution p(y, x | z) may
violate all of the inequalities (12) and (13) simultaneously. However, if (11) holds,
then at most one inequality in each of the pairs (12) and (13) may be violated. The
inequalities (12) and (13) are invariant to relabeling Y , and to relabeling X and Z
simultaneously, but not individually; this is not surprising since relabeling X or Z
alone will turn Defiers into Compliers and viceversa.

It may be shown that (12) and (13) characterize the set of distributions p(y, x|z)
arising from the potential outcomes model MonX + ExNT + ExAT. Likewise, the
model imposing MonX + ExNT is characterized by (11) and (12), while MonX +
ExAT is given by (11) and (13).

An interpretation of (12) and (13) is given by the following lower bound on �DE
in the model that imposes ExNT + ExAT (but not MonX):

�DE � max

8
><

>:

0, p(x1 | z0)� p(x1 | z1),

p(y1, x0|z1)� p(y1, x0|z0), p(y0, x0|z1)� p(y0, x0|z0),

p(y1, x1|z0)� p(y1, x1|z1), p(y0, x1|z0)� p(y0, x1|z1)

9
>=

>;
; (14)

see Richardson and Robins (2010). Requiring that the lower bound be zero, as
required by MonX , leads directly to the inequalities (11), (12) and (13).
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Another interpretation of (12) and (13) arises in the model MonX that (solely)
assumes that there are no Defiers. Under MonX , we may obtain tighter bounds on
the ACDE for AT and NT:

p(y1|x0, z1)�min (p(y1, x0|z0)/p(x0|z1), 1) ⌥ ACDENT(x0) ⌥ (15)
p(y1|x0, z1)�max (0, 1� (p(y0, x0|z0)/p(x0|z1))) ,

max (0, 1� (p(y0, x1|z1)/p(x1|z0)))� p(y1|x1, z0) ⌥ ACDEAT(x1) ⌥ (16)
min (p(y1, x1|z1)/p(x1|z0), 1)� p(y1|x1, z0).

However, the bounds (6) on the global ACDE(xi) remain sharp, being unchanged
by the assumption of monotonicity.

It is simple to show that ACDENT(x0) is bounded away from 0 by (15) i⇤ one
of the inequalities (12) is violated; likewise for ACDEAT(x1), (16) and (13). Thus,
if MonX , and hence (11) holds, then, as mentioned above, at most one inequality in
each of the pairs (12) and (13) may be violated. However, in contrast to the case
without the monotonicity assumption, since it is possible for a distribution p(y, x|z)
to violate one inequality in each pair simultaneously, ACDENT and ACDEAT may
both be bounded away from zero. Thus, under the assumption of No Defiers both
ExNT and ExAT may be inconsistent with p(y, x|z).

Finally, we note that in the situation where (12) and (13) hold, the natural
bounds on ACE(X ↵ Y ) are sharp (regardless of whether MonX holds or Zx is
undefined).

Table 4 summarizes the constraints for the eight models we consider. For fre-
quentist approaches to testing these constraints see Ramsahai (2008).

Table 4: Models and implied sets of distributions for p(y, x|z); (12) and (13)
imply (11).

Model Assumptions Constraints on p(y, x|z)

Saturated Randomization (1) None

ExNT (1), Exclusion for NT (4)

ExAT (1), Exclusion for AT (5)

ExAT + ExNT (1), Exclusion for AT and NT (4), (5)

MonX (1), No Defiers (11)

MonX + ExNT (1), No Defiers, Exclusion for NT (11), (12)

MonX + ExAT (1), No Defiers, Exclusion for AT (11), (13)

MonX (1), No Defiers,
[(11)], (12), (13),

+ ExNT + ExAT Exclusion for NT and AT

ANALYSIS OF FLU VACCINE DATA

We consider the influenza vaccine data from McDonald et al. (1992), which was
previously analyzed by Hirano et al. (2000); see Table 5. Here, the instrument Z
was whether a patient’s physician was sent a card asking them to remind patients
to obtain flu shots, or not; X is whether or not the patient did in fact get a flu shot.
Finally, Y = 1 indicates that a patient was not hospitalized.

should be X_z
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Table 5: Summary of Flu vaccine data; originally from McDonald e tal. (1992);
analyzed by Hirano et al. (2000).

z x y count p(y, x|z0) z x y count p(y, x|z1)

0 0 0 99 0.071 1 0 0 84 0.057

0 0 1 1027 0.739 1 0 1 935 0.635

0 1 0 30 0.022 1 1 0 31 0.021

0 1 1 233 0.168 1 1 1 422 0.287

1389 1472

To examine the support for the restrictions on p(y, x|z), we fitted a saturated
model with uniform priors and then evaluated the posterior probability that the
inequalities (4), (5), (11), (12) and (13) are violated. For a model without covariates,
these probabilities are shown in the first line of Table 7. The posterior probability
that at least one of the inequalities (13) fails to hold is greater than 0.5; a similar
conclusion may be arrived at by inspection of the row of Table 5 for (y=0, x=1). If
(13) is violated, then, under the assumptions of no Defiers (which seems plausible)
and randomization, there is a direct e⇤ect for Always Takers.

Hirano et al. (2000) place priors over the (partially) identified parameters of the
potential outcome model and compute posteriors for the Intent-To-Treat e⇤ect:

ITTtX
⇧ E[YXz11 � YXz00 | tX ]

for NT, AT and CO under the models MonX , MonX+ExAT, MonX+ExNT and
MonX+ExAT+ExNT. Under additional exclusion assumptions for compliers, ⇤00

CO =
⇤01
CO and ⇤10

CO = ⇤11
CO, ITTCO is equal to the Complier Average Causal E⇤ect of X

on Y , ACECO(X ↵ Y ) ⇧ E[YX1 � YX0 | tX ] = ⇤1·
CO � ⇤0·

CO.

In Figure 7, we display the joint posterior distributions over upper and lower
bounds on ITTCO under each of the eight models we consider. (Each scatterplot is
based on 2000 simulations.) The bounds were computed by applying the methods
described in Sections 2 and 3 of Richardson and Robins (2010).

5. INCORPORATING COVARIATES

In many situations, we wish to examine causal e⇤ects in sub-populations defined
by baseline covariates V . In this situation, we assume that the randomization as-
sumption (1), and (when we impose them) MonX , ExAT, and ExNT hold within
levels of V . With discrete covariates taking a small number of levels, we may sim-
ply repeat our analysis within each level of V . However, in order to incorporate
continuous baseline covariates, we require a parametrization of each of the sets of
distributions appearing in Table 4. For each model, we provide a smooth variation
independent parametrization of the relevant subset of �3 ⇤�3. This allows us to
construct (multivariate) generalized linear models for p(y, x|z) as a function of V .

5.1. Parametrization of Models with Defiers

For each v, consider the set of distributions p(y, x|z, v) that result from models
assuming both ExAT and ExNT, and hence satisfy the inequalities (4) and (5) for
each v. In the following development, all models and probability statements are
conditional on v, which we suppress in the notation.
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Figure 6: Posterior distributions for upper and lower bounds on ITTCO; under

MonX+ExAT+ExNT the parameter is identified.

Parametrization of Models with Defiers

For each v, consider the set of distributions p(y, x|z, v) that result from models

assuming both ExAT and ExNT, and hence satisfy the inequalities (4) and (5) for

each v. In the following development all models and probability statements are

conditional on v, which we suppress in the notation.

It is clear that for any distribution p(y, x|z0) there exists a distribution p(y, x|z1)

such that the pair satisfy (4) and (5). Thus the set of distributions obeying (4) and

(5) is:

8
<

:p(y, x|z)

˛̨
˛̨
˛̨ p(y, x|z0) ⌅ �3, p(y, x|z1) ⌅ �3 ⇧

\

i,j⇥{0,1}

Hij(p(y1�i, xj |z0))

9
=

; (17)

where Hij(p(y1�i, xj |z0)) ⇥ {p(y, x|z1) | p(yi, xj |z1) ⇤ 1 � p(y1�i, xj |z0)}, i.e. a

half-space. We parametrize the set (17) via the parameters: p(x1|zi), p(y1|xi, z0)

Figure 7: Posterior distributions for upper and lower bounds on
ITTCO; under MonX+ExAT+ExNT the parameter is identified.

It is clear that for any distribution p(y, x|z0) there exists a distribution p(y, x|z1)
such that the pair satisfy (4) and (5). Thus, the set of distributions obeying (4) and
(5) is:
⌥

p(y, x|z)

˛̨
˛̨ p(y, x|z0) ⇣ �3, p(y, x|z1) ⇣ �3 �

\

i,j⌃{0,1}

Hij(p(y1�i, xj |z0))

�
(17)

where Hij(p(y1�i, xj |z0)) ⇧ {p(y, x|z1) | p(yi, xj |z1) ⌥ 1 � p(y1�i, xj |z0)}, i.e., a
half-space. We parametrize the set (17) via the parameters: p(x1|zi), p(y1|xi, z0)
i = 0, 1 and two further parameters, ⇣0, ⇣1 where

⇣i ⇧ log

„
p(y0, xi|z1)(1� p(y1, xi|z1)� {p(y0, xi|z0)})
p(y1, xi|z1)(1� p(y0, xi|z1)� {p(y1, xi|z0)})

«
. (18)

Thus, ⇣i replaces the parameter p(y1|xi, z1). Under (4) and (5), p(y1|xi, z1) is
not variation independent of p(x1|zi) and p(y1|xi, z0). In contrast, p(x1|zi) and
p(y1|xi, z0), ⇣0 and ⇣1 are variation independent. The inverse map from the varia-
tion independent parameters to p(y1|xi, z1) is given by:

p(y1|xi, z1) =
„
�bi +

q
b2
i + 4(e⌅i � 1)p(xi|z1)(1� p(y0, xi|z0))

«�“
2(e⌅i � 1)p(xi | z1)

”
,

for i = 0, 1, where bi = e⌅i(p(x1�i|z1)� p(y1, xi|z0)) + p(xi|z1) + 1� p(y0, xi|z0).

If we let

⇣̃i ⇧ log

„
p(y0, xi|z1)(1� p(y1, xi|z1))
p(y1, xi|z1)(1� p(y0, xi|z1))

«
, (19)

the parameter defined by removing the terms in braces from (18), then the model
imposing ExAT alone may be parametrized via (p(y, x|z0), p(x|z1), ⇣̃0, ⇣1). Similarly,
(p(y, x|z0), p(x|z1), ⇣0, ⇣̃1) parametrizes the model imposing ExNT alone.

Inverse maps for these models are similar to those for ExAT + ExNT.
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5.2. Parametrization of Models without Defiers

The model with MonX alone may be parametrized via p(y, x|z0), ⌦x|z1 and p(y|x1, z1),
where

⌦x|z1 ⇧ logit(p(x0|z1)/p(x0|z0)).

The model MonX + ExNT + ExAT may be parametrized via p(y, x|z0), ⌦x|z1 , ✏0

and ⌘1, where the latter are defined via:

✏0 ⇧ log

„
p(y0, x0|z1)(1� p(y1, x0|z1)� {1� p(y1, x0|z0)})
p(y1, x0|z1)(1� p(y0, x0|z1)� {1� p(y0, x0|z0)})

«
,

⌘1 ⇧ log

„
(1� p(y1, x1|z1))(p(y0, x1|z1)� {p(y0, x1|z0)})
(1� p(y0, x1|z1))(p(y1, x1|z1)� {p(y1, x1|z0)})

«
.

The inverse map from (p(y, x|z0), ⌦x|z1 , ✏0, ⌘1) to p(y, x|z) is given by:

p(x0|z1) = p(x0|z0)expit(⌦x|z1),

p(y1, x0|z1) =

„
�c0 +

q
c2
0 + 4(e⇤0 � 1)p(x0|z1)p(y1, x0|z0)

«�“
2(e⇤0 � 1)

”
,

p(y0, x0|z1) = p(x0|z1)� p(y1, x0|z1),

p(y0, x1|z1) = 1�
 
�c1 +

p
c2
1 + 4(e⇧1 � 1)(1 + p(x0|z1))(1� p(y0, x1|z0))

2(e⇧1 � 1)

!
,

p(y1, x1|z1) = 1� p(x0|z1)� p(y0, x1|z1),

where

c0 = e⇤0(p(y0, x0|z0)� p(x0|z1)) + p(y1, x0|z0) + p(x0|z1),

c1 = 1� e⇧1(p(y1, x1|z0) + p(x0|z1)) + 1� p(y0, x1|z0) + p(x0|z1).

Hirano et al. (2000) give an alternative variation independent parametrization
for the observed data distribution under this model. The fact that the Hirano
et al. model parametrizes the observed data distribution is a consequence of the fact
that this model is nonparametrically identified; see also our rejoinder for further
discussion.

MonX + ExAT may be parametrized via p(y, x|z0), ⌦x|z1 , ✏̃0 and ⌘1, where

✏̃0 ⇧ log

„
p(y0, x0|z1)(1� p(y1, x0|z1))
p(y1, x0|z1)(1� p(y0, x0|z1))

«

simply omits the terms in braces in ✏0.
MonX + ExNT may be parametrized via p(y, x|z0), ⌦x|z1 , ✏0 and ⌘̃1, where

⌘̃1 ⇧ log

„
(1� p(y1, x1|z1))p(y0, x1|z1)
(1� p(y0, x1|z1))p(y1, x1|z1)

«

again simply omits the terms in braces in ⌘1.

Inverse maps for these models are similar to that for MonX + ExNT + ExAT.

Note that the parameters p(y, x|z0), ⌦x|z1 , ✏̃0 and ⌘̃1 provide an alternative
parametrization of the model MonX .
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Table 6: Parametrization of Models. Distributions appearing in the parameter
list are unrestricted.

Model Parameters

Saturated p(x, y|z)

ExNT p(x, y|z0), p(x|z1), �0, �̃1

ExAT p(x, y|z0), p(x|z1), �̃0, �1
ExAT + ExNT p(x, y|z0), p(x|z1), �0, �1

MonX p(x, y|z0), ⇧x|z1 , p(y|x, z1)

MonX + ExNT p(x, y|z0), ⇧x|z1 , ⌥0,  ̃1

MonX + ExAT p(x, y|z0), ⇧x|z1 , ⌥̃0,  1

MonX p(x, y|z0), ⇧x|z1 , ⌥0,  1+ ExNT + ExAT

5.3. Flu Vaccine Data Revisited

Following the analysis of Hirano et al. (2000), we consider the baseline covariates
Age, and COPD (chronic obstructive pulmonary disease). Table 7 shows the pos-
terior probability of violations of constraints under saturated models stratifying
on COPD, and under a model specified via 6 logistic regressions (for p(x|z) and
p(y|x, z)) each with intercept, Age, COPD and COPD⇤Age.

Table 7: Posterior probabilities that inequalities are violated under models that
do not impose constraints. The two models without Age used a uniform prior
on �3 ⇤ �3; the model with Age used logistic regressions with Normal priors.
Columns (4), (5), (12) and (13) give the probability that at least one inequality is
violated; (12)+(13) is the probability of at least one violation in both pairs; (12)b
is the probability that both inequalities are violated; similarly for (13)b.

age copd (4) (5) (11) (12) (13) (12)+(13) (12) b (13) b

- - 0 0 0 0.0603 0.5411 0.0343 0 0

- N 0 0 0 0.0704 0.4635 0.0347 0 0

- Y 0 0 0.0014 0.2969 0.5865 0.1829 0.0003 0.0003

60 N 0 0 0 0.0768 0.2600 0.0306 0 0

60 Y 0 0 0.0064 0.3016 0.6222 0.2074 0.0014 0.0016

70 N 0 0 0 0.0422 0.5958 0.0288 0 0

70 Y 0 0 0.0080 0.4154 0.5580 0.2626 0.0026 0.0030

80 N 0 0 0.0002 0.0900 0.8064 0.0764 0 0

80 Y 0 0 0.0608 0.5338 0.5320 0.3214 0.0116 0.0128

To illustrate our parametrization, we fitted the four models that include MonX .
Figure 8 shows posterior distributions on ITTCO under MonX + ExNT + ExAT in
which this parameter is identified, and posterior distributions on bounds under the
other three models. Each model was specified via logistic regressions for p(y|x0, z0),
p(y|x1, z0), p(x|z0) and linear models for ⌦x|z1 , ✏0 (or ✏̃0) and ⌘1 (or ⌘̃1), again
each with intercept, Age, COPD and COPD⇤Age. Independent N(0, 3) priors were
used for all 6⇤ 4 coe⌃cients. Sampling was performed via a Metropolis algorithm.
The proposal for each of the six GLMs was multivariate normal, mean 0, covariance
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7: Posteriors on lower (red) and upper (blue) bounds, and point esti-

Figure 8: Flu vaccine data. Posteriors on lower and upper bounds for ITTCO,
when not identified, and on ITTCO itself, when identified, as a function of Age and
COPD for the four models which preclude Defiers; medians are solid, pointwise
credible intervals are dashed. p(y, x|z0, v) was parametrized via logits ⌃y|x0,z0 ,
⌃y|x1,z0 and ⌃x|z0 . These logits and ⌦x|z1 , ✏0 (or ✏̃0) and ⌘1 (or ⌘̃1) are
modelled as linear functions of Age and COPD.

matrix �̂2
kV

T V where V is the n ⇤ 4 model matrix, and �̂2
k (k = 1, . . . , 6) is an

estimate of the variance of the specific parameter, obtained via the delta method
at the empirical MLE for p(y, x|z). There were 2000 burn-in iterations followed
by 5000 main iterations. The Markov chain was initialized by setting all of the
generalized linear model parameters to 0. Our results are generally consistent with
those obtained without including covariates; see the second row of Figure 8.
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6. PROTECTING THE CAUSAL NULL HYPOTHESIS FROM POSSIBLE
MODEL MIS-SPECIFICATION

In this section, we consider a successfully randomized clinical trial (RCT) with data
available on a vector V of baseline covariates that includes continuous covariates,
such as height and weight, and with randomization probabilities p(Z =1 |V ) that do
not depend on V . We further assume that Eqs. (1) and (2) hold for each v; hence,
the causal model ExAT + ExNT holds within strata defined by V . The induced
model for the observed data is characterized by Eqs. (4) and (5) holding for each v.

Under this model, the sharp null hypothesis

Yx=1 = Yx=0 = Y (20)

of no causal e⇤ect of X on Y for each subject implies both the conditional and
unconditional intention to treat (ITT) null hypotheses

p(Y = 1 | Z = 1, V )� p(Y = 1 | Z = 0, V ) = 0 (21)

and
p(Y = 1 | Z = 1)� p(Y = 1 | Z = 0) = 0. (22)

Thus, a test of either of these ITT null hypotheses is a test of the sharp null (20).
Since the conditional ITT null (21) implies the unconditional null (22) but not vice
versa, a test of the conditional null is preferable. Furthermore, tests that use data
on V may be more powerful than tests that ignore V .

Although the cost of RCTs is often an order of magnitude greater than the cost
of an observational study, the U.S. FDA will generally only license a new drug if
benefit has been demonstrated in such a randomized trial. The primary reason
behind this policy is that, in contrast to observational studies, the sharp null can
be empirically tested when Eq. (2) holds. Thus, it is critical to analyze these trials
with a robust methodology that guarantees that, under the ITT null, the estimator
of p(Y = 1 | Z = 1, V )� p(Y = 1 | Z = 0, V ) converges to zero in probability under
the true distribution of (Z, X, Y, V ) as the sample size n ↵ ✏, even under model
mis-specification.

Unfortunately, the procedure used to estimate the joint distribution of (X, Y )
given (Z, V ) in the previous section does not fulfill this guarantee. Specifically, sup-
pose we specify a variation independent parametric model for p(x|z1, v), p(y, x | z0, v),
⇣0(v), ⇣1(v) and a smooth prior for its parameters. If, as will essentially always be
the case in practice, these parametric models are mis-specified, then the posterior
distribution of the function

ITT(v) = p(Y = 1 | Z = 1, V = v)� p(Y = 1 | Z = 0, V = v)

will generally concentrate on a non-zero function under the ITT null that ITT(v) =
0 for almost all v. This follows from the fact that, in large trials, the posterior
distribution of ITT(v) will be centered on the MLE of ITT(v) and the MLE is
generally inconsistent under mis-specification. Thus, in large trials, we will falsely
reject the sharp null hypothesis even when true. As a consequence, not only has
the large sum spent on the trial been wasted but, more importantly, a drug without
benefit may become licensed.
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Example: As a concrete illustration of the danger of mis-specification, we generated
5000 samples from the following data generating process, in which V is a covariate
taking three states:

Z  Ber(1/2),

V  Uniform({0, 1, 2}),
Yx=0,z=0 = Yx=0,z=1 = Yx=1,z=0 = Yx=1,z=1  Ber(1/2),

and

Xz | Yx,z = y, V = v  Ber
“
expit(�4+y+z +

5
2
v� 3

2
v2 +y·(z +v)+v·z(1+2y))

”
.

Note that it follows from this scheme that Y ◆◆ {Z, V }, so that the conditional ITT
null hypothesis clearly holds. We fitted linear models (in V ) for the six parameters
logit(p(x1 | zi)), logit(p(y1 | xi, z0)) and ⇣i, i ⇣ {0, 1} for ExAT + ExNT; see
Eq. (18).

We performed inference via MCMC with a burn-in of 1000, retaining 5000 iter-
ations. The posterior distributions for each of the ITT e⇤ects,

p(y = 1|z = 1, v)� p(y = 1|z = 0, v)

are shown in Table 8. As can be seen, the posterior distribution indicates ITT e⇤ects
in two strata, even though none was present in the generating process.

Theorems 1 and 2 in the appendix provide necessary and su⌃cient conditions
for a parametric model to be robust to mis-specification under the ITT null. These
theorems include as special cases the results of Rosenblum and Van Der Laan (2009).

Table 8: Summary of posterior for ITT(v) under ITT null with mis-specification

v 2.5% Mean 97.5%

0 �0.02289 0.02041 0.06190

1 �0.12820 �0.09863 �0.07088

2 0.02395 0.06915 0.11590

6.1. ITT-Null-Robust Parametrization of ExAT + ExNT

The key to constructing a parametric Bayes estimator robust to mis-specification
under the ITT null is to parametrize, for each v, the set of distributions (17) for the
observed data corresponding to a model constrained by (4) and (5) as follows: for
each V = v, we have the following six variation independent parameters:

�i ⇧ p(y1 | zi), p(x1 | yi, z0), ⇧i, for i ⇣ {0, 1},

where:
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and pij
X ⇧ p(x1 | yi, zj). Thus, we have replaced p(x1 | yi, z1) of the standard varia-

tion dependent parametrization of this model by ⇧i, i = 0, 1. Unlike our previous
parametrizations, the inverse map from the variation independent parameters to
p(x1 | yi, z1), i = 0, 1, is not available in closed form.

To model p(x, y, z, v) when V contains continuous covariates, we specify para-
metric models ⇧i(v; �0), p(x1 | yi, z0, v; �1) i = 0, 1 and f(v; �2) as well as a logistic
regression model expit(Zm(V ; �) + q(V ; �3)) for p(y1|z, v) satisfying m(V ; �) = 0 if
and only if � is the zero vector; the parameter vectors �0, �1, �2, �3, � are variation
independent. Thus, under this model, � = 0 if and only if the conditional ITT null
hypothesis Y◆◆Z | V holds.

In the appendix, we show, following Rosenblum and Van Der Laan (2009), that
if we choose q(V ; �3) = �T

3 q⇤(V ) such that each component of ⌫m(V ; 0)/⌫� is in the
linear span of the components of q⇤(V ), then, under the conditional ITT null, the
MLE of � converges to its true value of 0 at rate n�1/2 even if the models ⇧i(v; �0),
p(x1|y, z0, v; �1), f(v; �2) and p(y1|z0, v; �3) = expit(�T

3 q⇤(v)) are all mis-specified.
As a consequence, under a smooth prior p(�, �), the posterior distribution of � and
of ITT(v) will concentrate on the zero function in large samples.

Note that we can always guarantee the linear span condition holds by choosing
q⇤(V ) to include ⌫m(V ; 0)/⌫� as a subvector.

6.2. ITT-Null-Robust Parametrization of MonX + ExAT + ExNT

To obtain a parametric Bayes estimator with the aforementioned robustness prop-
erty under the conditional ITT null for the model that excludes Defiers, we parame-
trize, for each v, the set of distributions for the observed data constrained by (12)
and (13) as follows: for each V = v, we have the following six variation independent
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parameters:

�i ⇧ p(y1 | zi),

↵i ⇧ pi1
X

(1� pi1
X)

h
�0 � (1� pi1

X)�1

i
⇤ �

�1/pi1
X

0 ⇤ �
(1�pi1

X )/pi1
X

1 ,

⌥i ⇧ pi0
X�2

0

[(1� pi0
X)�0 � (1� pi1

X)�1][pi1
X�1 � pi0

X�0]
⇤
„

�1

�0

«(2pi1
X�1)/(pi1

X�pi0
X )

,

for i ⇣ {0, 1}, where pij
X ⇧ p(x1 | yi, zj).

In the appendix, we prove that any parametric submodel with p(y1 | zi) mod-
elled as in the previous subsection will enjoy the same robustness properties under
the conditional ITT null, even if the models for ↵i(v; �0), ⌥i(v; �1), f(v; �2) and
p(y1|z0, v; �3) = expit(�T

3 q⇤(v)) are all mis-specified.

Though we do not do so here, our approach may be extended to the other six
potential outcome models in which fewer exclusion restrictions hold.
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APPENDIX

To prove the claims in Section 6 we establish some general properties of paramet-
ric models under mis-specification. For this purpose, we require some additional
semiparametric concepts; see Bickel et al. (1993).

Given a model M and smooth functional � : F ✓↵ �(F ) mapping F ⇣ M into
Rd, we wish to estimate �(F ) based on n i.i.d. observations Oi; i = 1, . . . , n, from an
unknown distribution F ⇣ M . In this appendix, our goal is to determine the high
level conditions required for the MLE of � based on a given parametric submodel of
M to remain consistent for � at certain laws F ⇣ M that lie outside the submodel.

Formally, a parametric submodel of M is the range R(h) = {Fh,�; � ⇣ A} ⌦ M
of a smooth map h : � ✓↵ Fh,� with domain an open set A ⇣ Rl (Bickel et al., 1993,
p. 13). Write fh{o; �} for the density of Fh,� with respect to a common dominating
measure µ. For convenience, we henceforth suppress the dependence on h and write
f{o; �} and F�. Let e�(�) = �(F�) be the value of � at F�.

Let M(b) = {F ⇣ M ; �(F ) = b} be the submodel of M on which the func-
tional � takes the value b ⇣ Rd. Let R(h, b) = {F�; � ⇣ A, e�(�) = b} be the
submodel of the parametric model R(h) = {F�; � ⇣ A} contained in M(b). Let
A(b) = {� ⇣ A; e�(�) = b} be the pre-image of R(h, b). Let

b� = arg max
�⌃A

Pn [log {f [O; �]}] and

�(F ) = arg max
�⌃A

EF [log {f [O; �]}]

be maximizers of the empirical and expected log-likelihood, where Pn denotes a
sample average. Similarly, let

b�(b) = arg max
�⌃A(b)

Pn [log {f [O; �]}] and

�(b; F ) = arg max
�⌃A(b)

EF [log {f [O; �]}]

be the maximizers of the empirical and expected “profile” log-likelihood given e�(�) =
b. Thus, �(b; F ) is the maximizer of EF [log {f [O; �]}] over all � ⇣ A subject to
the d constraints e�(�) = b. Note � {F�⇤} = �⇤, as the expected log likelihood is
maximized at the true density. Under regularity conditions b� and b�(b), respectively,
converge to �(F ) and �(b; F ) at rate n�1/2.

Let S(�) = ⌫ log{f [O; �]}/⌫� be the score for � evaluated at F�. Typically
�(F ) is the (assumed) unique solution to EF [S(�)] = 0 for all F ⇣ M .

Since EF� [S(�)S(�)T ]�1S(�) is the influence function for �, taking deriva-
tives we obtain that IF⇥,par(�) = {⌫e�(�)/⌫�}T EF� [S(�)S(�)T ]�1S(�) is the d-
dimensional “parametric” e⌃cient influence function for � in the parametric model
R(h) = {F�; � ⇣ A} at F�. Further, varF�{IF⇥,par(�)} is the parametric Cramér–
Rao variance bound for � at F�

For F� ⇣ M(b), let ⇥(�) and ⇥(b; �) be the closed linear span in L2(F�) of
the scores for all parametric submodels in M and M(b), respectively, that include
F�. By definition, ⇥(�) and ⇥(b; �) are the tangent spaces for models M and
M(b) at F�, and ⇥(b; �) is the nuisance tangent space for � in model M at F�.
Further, the e⌃cient influence function IF⇥ (F�) for � in model M at F� is the
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unique element of ⇥(�) satisfying EF� [IF⇥ (F�)D] = ⌫� (F (t)) /⌫t|t=0 for all D ⇣
⇥(�) and F (t) ⇣ M a parametric model with parameter t with F (0) = F� and
score at F� equal to D. In particular, EF� [IF⇥ (F�)D] = 0 if D ⇣ ⇥(b; �). Then
varF�{IF⇥ (F�)} is the semiparametric Cramér–Rao variance bound for � in model
M at F�. Note varF�{IF⇥,par(�)} ⌥ varF�{IF⇥ (F�)} with equality if and only if
IF⇥,par(�) = IF⇥ (F�) w.p.1.

Robins et al. (2011) prove the following two Theorems.

Theorem 1 Given a fixed b, suppose for all F ⇣ M(b), EF [S(�)] = 0 has a unique
solution. If EF [S(�(b; F ))] = 0 for all F ⇣ M(b), then, for all � ⇣ A(b),

IF⇥ (F�) = IF⇥,par(�).

Note the conclusion of Theorem 1 can also be expressed as equality of the parametric
and semiparametric (for model M) Cramér–Rao variance bounds for � at F�, � ⇣
A(b).

Corollary 1.1 Suppose for all F ⇣ M(b), EF [S(�)] = 0 has a unique solution.
Then the following hold:

(i) If IF⇥ (F�) ⌘= IF⇥,par(�) for some F� ⇣ M(b), then there exists F ⇤ ⇣ M(b)
such that e� {�(F ⇤)} ⌘= b.

(ii) The MLE b� ⇧ e�(b�) is not consistent for � = b at F ⇤.

Proof: (i) By Theorem 1 there exists F ⇤ ⇣ M(b) such that EF⇤ [S(�(b; F ⇤))] ⌘= 0.
Hence e� {�(F ⇤)} cannot equal e� {�(b; F ⇤)} ⇧ b.

(ii) Since e� {�(F ⇤)} is the limit of the MLE e� {b�}, (ii) follows. ⇤
Remark: Robins et al. (2011) prove the following stronger result. Let

Q = {�; � ⇣ A (b) and IF⇥ (F�) ⌘= IF⇥,par(�)} .

Then there exists an injective map from Q ↵ M(b) such that e� {�(F )} ⌘= b for all F
in the range of the map.

Theorem 2 Suppose for all F ⇣ M(b), EF [S(�)] = 0 has a unique solution. Then
if (i) for all � ⇣ A(b), the parametric and semiparametric influence functions are
equal, i.e., IF⇥ (F�) = IF⇥,par(�) w.p. 1 for all � ⇣ A(b), and (ii) for all F ⇣ M(b),
(f(O)/f(O; �(b; F )))� 1 is contained in the tangent space ⇥(b; �(b; F )) of M(b) at
�(b; F ), then

EF [S(�(b; F ))] = 0 for all F ⇣ M(b). (23)

Remark: A su⌃cient condition for (ii) is that the model M(b) is convex: that is,
if F1 and F2 are in M(b) then so is the law �F1 + (1� �)F2 for � ⇣ [0, 1].

Corollary 2.1 Under the hypotheses of Theorem 2, for all F ⇣ M(b),

(i) e� (� (F )) = b;

(ii) under regularity conditions, the parametric MLE b� is a consistent, asymptot-
ically normal (CAN) estimator of �(F ) = b.

Proof: (i) The conclusion of Theorem 2 implies that e� (� (b; F )) = e� (� (F )) for
all F ⇣ M(b). But e� (� (b; F )) ⇧ b and � (F ) ⇧ b. (ii) Under standard regularity
conditions, the MLE is a CAN estimator of its limit.

⇤
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6.3. Proving the Robustness Claims of Section 6

We first consider the model ExAT + ExNT, which allows for Defiers.
Let M be a model for O = (V, Z, X, Y ) characterized by:

(i) p(Z = 1|V ) = c is a known constant;

(ii) logit[p(y1 | zi, v)] ⇣ {Zm(v; �) + q(v); � ⇣ Rd, q : v ✓↵ q (v) unrestricted,
m(·; ·) known satisfying m(·; �) = 0 � � = 0};

(iii) ⇧i(v), logit[p(x1 | yi, z0, v)], i = 0, 1 and f(v) are all unrestricted.

It follows from the construction of the parameters ⇧0 and ⇧1 that for each v, Eqs. (4)
and (5) will hold with strict inequalities.

Let M(0) be the submodel of M with � = 0, in which the conditional ITT Null
(21) holds. Thus, M(0) is the model characterized by the constraints (4) and (5)
and Y◆◆Z | V .

Henceforth, we use the semiparametric notation introduced at the start of the
appendix. Let R(h) =

˘
F�; � ⇣ A ⌃ Rl

¯
be a parametric submodel Msub,par of

M characterized by known functions of � = (�0, �1, �2, �3, �4) ⇣ Rl : ⇧i(v; �0),
p(x1|yi, z0, v; �1), f(v; �2), q(v; �3) = �T

3 q⇤(v), �4 = � with the �j variation inde-
pendent and with each component of ⌫m(V ; 0)/⌫� in the linear span of the compo-
nents of q⇤(V ).

Such a parametric submodel exists because our ITT-null-robust parametrization
is variation independent. We further assume that there is a unique solution to
EF [S(�)] = 0, for all F ⇣ M(0).

Our goal is to prove the following:

Theorem 3 For F ⇣ M(0), � (F ) solving EF [S(�)] = 0 satisfies the constraint
e�(�(F )) ⇧ �4 (F ) = 0, i.e., �(F ) = �(0; F ).

Theorem 3 implies that, under regularity conditions, the parametric MLE b� is a
consistent, asymptotically normal (CAN) estimator of �(F ) = 0, for all F ⇣ M(0),
i.e., under mis-specification of the parametric (nuisance) submodels.

Remark: A natural approach to a proof is to establish that the premises of Theorem
2 hold and then appeal to its corollary. We shall see that, although premise (i) holds,
premise (ii) does not. However, a minor fix gets around this di⌃culty.

Before proving Theorem 3, we prove the following lemma that establishes premise
(i) of Theorem 2.

Lemma 1 For all � ⇣ A(0), the parametric and semiparametric influence functions
are equal, i.e.,

IF⇥ (F�) = IF⇥,par(�) w.p. 1 for all � ⇣ A(0). (24)

Furthermore, they depend on � only through �3 and on the data only through
(Z, Y, V ). (Recall that � ⇣ A(0) i� �4 ⇧ � = 0, so �4 is fixed.)

Proof: Write S (�) = (S�k (�) ; k = 0, 1, 2, 3, 4). Consider a particular F� ⇢ M(0). Now

IF⇥,par(�) = IF⇥ (F�) if and only if

S⇥,e↵(�) ⌘ S�4 �⇥F� [S�4 (�)|�(0;�)] = S⇥,e↵,par(�) ⌘ S�4 �⇥�
ˆ
S�4 (�)|S�\�4 (�)

˜
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where S�\�4 = (S�0 , . . . , S�3 ) and ⇥F� is the projection operator in L2(F�). This fol-

lows from the fact that IF⇥,par(�) = EF�

ˆ
S⇥,e↵,par(�)⌅2

˜�1
S⇥,e↵,par(�) and IF⇥ (F�) =

EF�

ˆ
S⇥,e↵(�)⌅2

˜�1
S⇥,e↵(�).

Now, the likelihood for one observation is

f(Y, X, V, Z) =

n
py(Z, V ;�3,�4)Y {1� py(Z, V ;�3,�4)}1�Y

o

⇥
n

pz=0
x (Y, V ;�1)X

n
1� pz=0

x (Y, V ;�1)1�X
ooI(Z=0)

⇥
n

pz=1
x (Y, V ;�\�2)X

n
1� pz=1

x (Y, V ;�\�2)1�X
ooI(Z=1)

⇥f(V ;�2)cZ(1� c)1�Z ,

where py(z, v;�3,�4) = p(y1 | z, v;�3,�4), pz=0
x (y, v;�1) = p(x1 | y, z0, v;�1), etc. Thus

S�0 (�) = I(Z = 1)
˘
X � pz=1

x (Y, V ;�\�2)
¯ ⇢

�pz=1
x (Y, V ;�\�2)/��0

pz=1
x (Y, V ;�\�2) {1� pz=1

x (Y, V ;�\�2)}

�
,

S�1 (�) = I(Z = 0)
˘
X � pz=0

x (Y, V ;�1)
¯ �pz=0

x (Y, V ;�1)/��1

pz=0
x (Y, V ;�1) {1� pz=0

x (Y, V ;�1)}

+ I(Z = 1)
˘
X � pz=1

x (Y, V ;�\�2)
¯ �pz=1

x (Y, V ;�\�2)/��1

pz=1
x (Y, V ;�\�2) {1� pz=1

x (Y, V ;�\�2)}
,

S�2 (�) = � {log f(V ;�2)} /��2,

S�3 (�) = {Y � py(Z, V ;�3,�4)}
�py(Z, V ;�3,�4)/��3

py(Z, V ;�3,�4) {1� py(Z, V ;�3,�4)}

+ I(Z = 1)
˘
X � pz=1

x (Y, V ;�\�2)
¯ ⇢

�pz=1
x (Y, V ;�\�2)/��3

pz=1
x (Y, V ;�\�2) {1� pz=1

x (Y, V ;�\�2)}

�
,

S�4 (�) = {Y � py(Z, V ;�3,�4)}
�py(Z, V ;�3,�4)/��4

py(Z, V ;�3,�4) {1� py(Z, V ;�3,�4)}

+ I(Z = 1)
˘
X � pz=1

x (Y, V ;�\�2)
¯ ⇢

�pz=1
x (Y, V ;�\�2)/��4

pz=1
x (Y, V ;�\�2) {1� pz=1

x (Y, V ;�\�2)}

�
.

Richardson et al. (2011) prove that under our ITT-null-robust parametrization, when

�4 = 0,

�pz=1
x (Y, V ;�\�2)

��4
=
�pz=1

x (Y, V ;�\�2)

��3
= 0.

Our parametrization was carefully constructed to ensure that these derivatives were zero

when �4 = 0. Consequently, under the ITT null (�4 = 0) S�3 (�) and S�4 (�) are functions

only of �3 and the data (Y, Z, V ); crucially they are not functions of �0, �1, �2 and X.

Let E� be shorthand for EF� . At �4 = 0,

E�

h
S�4 (�)

˘
S�\(�3,�4)(�)

¯T
i

= E�

h
S�3 (�)

˘
S�\(�3,�4)(�)

¯T
i

= 0
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since for i = 0, 1, and j = 3, 4,

E�

h
S�j (�) {S�i (�)}T

i
= E�

h
S�j (�)E�

h
S�i (�)T

˛̨
˛ Y, V, Z

ii
= 0

and

E�

h
S�2 (�)S�j (�)T

i
= E�

n
S�2 (�)E�

h
S�j (�)T

˛̨
˛ V

io
= 0.

Thus, ⇥F�

ˆ
S�4 (�) |S�\�4 (�)

˜
= ⇥F� [S�4 (�) |S�3 (�)]. Now at �4 = 0, py(Z, V ;�3,�4) =

E�3 [Y |V ],

�py(Z, V ;�3,�4)/��4

py(Z, V ;�3,�4) {1� py(Z, V ;�3,�4)}
= Z�m(V ; 0)/��4

and
�py(Z, V ;�3,�4)/��3

py(Z, V ;�3,�4) {1� py(Z, V ;�3,�4)}
= q⇤(V ).

Hence,

S�3 (�) = [Y � E�3 (Y |V )] q⇤(V ), S�4 (�) = {Y � E�3 [Y |V ]}Z {�m(V ; 0)/�⌃} .

The argument just given above applies to any parametric submodel contained in M(0)

and containing F�. Therefore, when �4 = 0, �(0;�) = �(0,1,2)(0;�) � �3 (0;�) with

�(0,1,2) (0;�) and �3 (0;�) orthogonal under F�. Here

�3 (0;�) = {(Y � E�3 (Y |V )) q (V ) ; q (·) unrestricted}

and �(0,1,2) (0;�) is the linear span of scores corresponding to the set of unrestricted

functions and densities ⌅i (v) , p(x1|yi, z0, v), f(v). The argument also implies that the

score S�4 (�) ⌘ S⇥ (�) for ⌃ = �4 is orthogonal to �(0,1,2) (0;�). Thus, when �4 = 0,

S⇥,e↵ (�) = S�4 (�) � ⇥F� [S�4 (�) |� (0;�)] = S⇥ (�) � ⇥F� [S⇥ (�) |�3 (0;�)] . One can

check that ⇥F� [S⇥ (�) |�3 (0;�)] = {Y � E�3 (Y |V )} {�m (V ; 0) /�⌃} c with c = E [Z|V ].

Hence, S⇥,e↵ (�) = S⇥,e↵,par (�) if

{Y � E�3 (Y |V )} {�m (V ; 0) /�⌃} {E [Z|V ]} = ⇥F� [S�4 (�) |S�3 (�)] .

But by �m (V ; 0) /�⌃ in the span of the components of q⇤ (V ), we know that

varF� (⇥F� [S�4 (�) |S�3 (�)]) � varF� {⇥F� [S⇥ (�) |�3 (0;�)]} .

However, by S�3 (�) ⇢ �3 (0;�),

varF� (⇥F� [S�4 (�) |S�3 (�)])  varF� {⇥F� [S⇥ (�) |�3 (0;�)]} .

Thus, S⇥,e↵ (�) = S⇥,e↵,par (�).

Hence

IF⇥ (F�) = IF⇥,par(�) w.p. 1 for all � 2 A(0). (25)

Further, from its formula, when �4 = 0, IF⇥,par(�) depends on � only through �3 and on

the data only through (Y, Z, V ).
⇤

This lemma establishes premise (i) of Theorem 2. However, we cannot apply
convexity to establish premise (ii) of Theorem 2 because the model M(0) is not
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convex. This is because Y◆◆Z | V is not preserved under convex combination.
For example the convex combination of laws with densities f1(Y |V )f(Z)f1(V ) and
f2(Y |V )f(Z)f2(V ) does not in general satisfy Y◆◆Z | V unless f1(V ) = f2(V ).
Based on this observation, we consider the submodel Mv of M and Mv,sub,par that
assumes f(v) equals a known density f0(v) and that the model f(v; �2) satisfies
f(v; �2)|�2=0 = f0(v). Note that this latter condition can always be arranged;
since f0(v) is known, we simply choose any model f(v; �2) that satisfies the con-
dition. The model Mv(0) = Mv �M(0) is convex since f(z, v) is the same for all
F ⇣ Mv(0). Specifically, under convex combinations, (a) Y◆◆Z | V is preserved
and (b) the constraints Eqs. (4) and (5) are also preserved, as the constraints are
linear in p(y, x|z, v). Furthermore, by inspecting the proof of Lemma 1, we see that
IF⇥ (F�) and IF⇥,par(�) under model Mv(0) and Mv,sub,par(0) and models M(0) and
Msub,par(0) are identical. Thus both premises of Theorem 2 hold for models Mv and
Mv,sub,par. Hence, by Theorem 2, for F ⇣ Mv(0), �(F ) solving EF [S(�)] = 0 subject
to the constraint �2 = 0 required by model Mv,sub,par satisfies e�(�(F )) ⇧ �4(F ) = 0.
However since S�2(�) only depends on � through �2 and S�\�2(�) is not a function
of �2, we conclude that for F ⇣ Mv(0), �(F ) solving EF [S(�)] = 0 without con-
straints also satisfies e�(�(F )) ⇧ �4(F ) = 0. (The discussion in the last paragraph
becomes unnecessary if, as is often assumed, we treat the distribution of V as fixed
at its empirical, i.e., we e⇤ectively condition on the observed values of V .)

But each F ⇣ M(0) is an element of a model Mv(0); the model with f0(v) equal
to the density of V under F . We conclude that for each F ⇣ M(0), �(F ) solving
EF [S(�)] = 0 satisfies e�(�(F )) ⇧ �4(F ) = 0. This result holds therefore even when
f0(v) is unknown and the chosen model f(v; �2) is mis-specified. ⇤

Rosenblum and Van Der Laan (2009) give an alternate proof of the fact that
S⇥,e↵(�) = S⇥,e↵, par(�) that does not use Theorem 2.

To prove the analogous result for our ITT-null-robust parametrization for MonX

+ ExAT + ExNT it su⌃ces to show that

⌫pz=i
x (Y, V ; �\�2)/⌫�4 = ⌫pz=i

x (Y, V ; �\�2)/⌫�3 = 0, i = 0, 1 when �4 = 0,

under our parametrization. Again our ITT-null-robust parametrization was care-
fully constructed to ensure that these derivatives were zero. The remainder of the
proof is analogous to that for the robust parametrization of ExAT + ExNT.

DISCUSSION

STEPHEN E. FIENBERG (Carnegie Mellon University, USA)

Overview. Given the by now extensive literature on non-compliance in ran-
domized experiments, one might have thought that there was little new to be said,
especially about the simplest such studies, when the idealized data come in the
form of a 2⇤2⇤2 contingency table. Further, given the commentary about the role
of randomization for Bayesians that appears in at least part of the literature, one
might presume that there is nothing that is necessarily Bayesian about the problem
at all. Both of these presumptions are false.

Stephen E. Fienberg is Maurice Falk University Professor of Statistics and Social Science

in the Department of Statistics, the Machine Learning Department, Cylab, and i-Lab at

Carnegie Mellon University, Pittsburgh PA 15213-3890, USA
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Richardson, Evans, and Robins (henceforth RER) have written a stimulating
paper, one worthy of careful study by Bayesians and non-Bayesians of all stripes
and flavors, and not just by those interested in the non-compliance problem. RER
have a new and remarkably clear message about this topic and this is the central
idea in the paper, which I paraphrase:

In many randomized experimental contexts the causal estimands of interest

are not identified by the observed data. We need to re-parametrize partially

identified models to separate wholly-identified and wholly-non-identified pa-

rameters. Our goal as statisticians is to focus on what is identifiable. As

Bayesians, when we then look at such model structures, we need to recognize

that what we will get out of our posterior distribution for the non-identifiable

part will essentially be what we put into the prior, and una⇤ected by the

experimental data!

Like prior authors addressing the non-compliance problem, RER use latent structure
to resolve the identification of parameters and to make inference about causal e⇤ects
and adopt many of the conventions for these found in the earlier literature. Some
of the specifications for the latent structure have heuristic appeal but in many
ways despite their continuing use are arbitrary. The impact of these choices, not
surprisingly, plays an important role in what is identifiable and estimable.

Whether this is a message for Bayesians or for all statisticians and those who use
statistical methods to analyze data from experiments subject to non-compliance is
a topic to which I return below. In addition, in what follows I address the following
pair of questions:

(i) How should we define causal e⇤ects?

(ii) Can we use algebraic geometry ideas to restructure the problem?

Latent structure and causal inference. The basic experimental structure RER
describe takes the simple form of a 2 ⇤ 2 ⇤ 2 contingency table with treatment
variable Z, exposure variable X, and response variable y each of which is binary.
Because they are dealing with a randomized experiment, the values of Z come in
pre-specified form. These three random variables are linked via a graphical model.
Since Y has both X and Z as parents there are four potential outcomes:

Y (x = 0, z = 0), Y (x = 0, z = 1), Y (x = 1, z = 0), Y (x = 1, z = 1).

The latent structure on Y , tY , involves classes of individuals or types. These don’t
have any kind of agreed-upon name in the literature but they get simplified with later
assumptions. There is also a latent structure on exposure, X, which is unobservable
involving four types: {NT, CO, DE, AT}.

When Y has only X as a parent, Z has no direct e⇤ect on Y , and there
are just four Y -latent types, which by convention are typically called “Helped”
= (Y (x = 0) = 0, Y (x = 1) = 1), “Hurt,” “Always Recover,” and “Never Re-
cover.” Thus we have four Y -latent types and four X-latent types called “Never
Takers,” “Compliers,” “Defiers,” and “Always Takers” or 16 types for {tX , tY }:
{NT, CO, DE, AT}⇤ {HE, HU, AR, NR}, far more than the original counts in the
23 table about which we had hoped to make inferences. Something has to give way
or the infrastructure will crash in a heap.
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Finally, if no one in the placebo arm of the randomized trial can get the treat-
ment (often not true), Z = 0 implies X = 0, and there are no “Defiers” or “Al-
ways Takers.” Thus there are only two X-latent types and four Y -latent types:
{NT, CO} ⇤ {HE, HU, AR, NR.} as in Figure 9. As RER note, this is the simple
situation which arises for the Lipid data under Pearl’s analysis (which presumes
that Z does not have a direct e⇤ect on Y ).

Figure 9: Graphical representation of the Pearl IV model for Lipid data.

At this point I’d like to o⇤er a major caution. As appealing as the heuristic
labels and categories for {tX , tY } are, we need to remember latent variables are
simply that and thus unobservable. They are basically fictions which we introduce
to help the modeling process. The true structure underlying compliance in a real
randomized trial is obviously more complex and possibly not captured by the nice
labels used in the compliance literature. We tend to forget this when we make
graphical pictures such as in Figure 9. Therefore, we must proceed with caution
when we move to the estimation of causal e⇤ects.

Once RER lay out this infrastructure for compliance, they spend most of the
remainder of the paper working out plausible inequality restrictions that sharpen
focus on p(y, x|z). In particular they derive upper and lower bounds on causal
relationships and “e⇤ects” under di⇤erent assumptions about {tX , tY }, specifically
what they refer to as

(MonX) Monotonicity of compliance;
(ExNT) Stochastic exclusion for NT under non-exposure;
(ExAT) Stochastic exclusion for AT under exposure.

These bounds allow RER to talk about identification and estimability. Along
the way, they include a variety of insights to the modeling process including a a way
to represent the di⇤erent models that are not inherently graphical using directed
acyclic graphical ideas, albeit at the expense of some additional complexity. There
is a richness of detail here worthy of study by those interested in the compliance
problem.

In praise of Bayes? Should we be surprised to see a paper like this at Valencia 9?
It does contain the naive Bayesian approaches to this problem, as I noted above, but
to make the point that these just disguise the identification problem and can easily
lead to nonsensical inferences. The only way to make inferences about essentially
non-identifiable parts of the model is via strong information about them in the prior.
RER make this point convincingly by example.

Most of bounding arguments and results could easily be presented from a fre-
quentist perspective. In fact, Richardson and Robins (2010), in a companion paper
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to the present one, actually describe this problem and the basic ideas from a like-
lihood perspective. The real action in the present paper is about the specification
of bounds on probabilities in the model and not so much on inference per se. There
are implications of argument for Bayesian analyses, but I find them more cautionary
than prescriptive and I would have liked to see the work culminate in a full-scale
informative Bayesian analysis.

Yet there may be a deeper reason for Bayesians to take note of what RER
have to say. After all, many of us have been long convinced by Rubin’s (1978)
argument about how randomization cuts the ties to covariates and allows for a
direct assessment of the causal e⇤ect. RER are also exploiting randomization for
the restrictions in the model and to garner identification, albeit in alimited way, but
Bayesians are barely better o⇤ than frequentists when it comes to dealing with the
part of the model that is not identifiable.

Alternative specifications for causal e�ects. RER follow prior authors and work
with what is usually called the “Average Causal E⇤ect”:

ACE(X causes Y ) = log

»
E[Yx=1]
E[Yx=0]

–
= log

»
�(help) + �(always recover)
�(hurt) + �(always recover)

–

as well as “Intent to Treat E⇤ect” (ITT) e⇤ects, principal stratification, and ACDE
e⇤ects. It is as if these “causal” quantities were imbued with some objective status
independent of the structure of the problem at hand. I think this is misleading.

Why not define causal e⇤ect based on log(E[Yx=1]/E[Yx=0])? If we used this
alternative specification for causal e⇤ect, we would be working with adjusted odds
ratios or ratios of odds ratios for the basic 2⇤2 table, and then the definition of the
causal e⇤ect would be rooted in a logit-like statistical model instead of the linear
model implicit in the definition of ACE, ITT, and ACDE. Sfer (2005) develops this
kind of argument for a simple randomized experiment involving a binary treatment
variable and a binary outcome. My guess is that much of the thinking in the present
paper would carry over to this model-based representation.

In the companion paper by Richardson and Robins, the authors derive much of
inequality results using geometry arguments. In many ways, I missed this elegant
geometric representation in the present paper. I’d be interested in exploring how
the restrictions derived in this pair of papers e⇤ect the characterization of p(x, y, z)
and thus p(x, y|z), through marginals, conditionals, and ratios of odds ratios for the
alternative definition of causal e⇤ect based on odds ratios and log-linear parameters.
Then we might be able to exploit algebraic geometric arguments such as those
described in Slavković and Fienberg (2010). This was a problem I tried to address,
with singular lack of success, when I first saw the bounds in Balke and Pearl (1997)
thirteen years ago. Perhaps it is time to return to it with RER’s work as a guide.

PAUL GUSTAFSON (University of British Columbia, Canada)

I congratulate Richardson, Evans and Robins (hereafter RER) on a very interesting
paper. I completely agree that given a partially identified problem, identifying a
transparent parameterization is key to understanding the e⌃cacy of Bayesian infer-
ence. I also think that the paper breaks fruitful new ground in exploring Bayesian
inference for the instrumental variables model based on potential outcomes. Given
the ease with which a Bayesian solution integrates uncertainty due to finite sampling
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and uncertainty due to a lack of identification, consideration of Bayesian inference
for potential outcome models seems important in general.

One curious point about partially identified models is that in the asymptotic
limit the Bayesian has more to convey than the frequentist. That is, both will
agree on the set of possible values for the target parameter, but the Bayesian will
additionally weight the plausibility of di⇤erent values in this set with respect to one
another, i.e., the limit of the posterior distribution will have some shape. It seems
relevant to ask about the utility of this shape, and the extent to which it is driven
by the data versus the prior.

As a simple illustration, consider a slight extension of RER’s motivating example
in Section 3. Still making the “randomized trial” assumption Yx0 = Yx1, consider
the three compliance types {NT, AT, CO}, i.e., always-takers, but not defiers, have
been added to the mix. Following the RER notation, the situation can be understood
scientifically with reference to parameterization

(�NT , �AT , ⇤0·
CO, ⇤1·

CO, ⇤0·
NT , ⇤1·

NT , ⇤0·
AT , ⇤1·

AT ),

where implicitly �CO = 1��NT ��AT . These scientifically interpretable parameters
can simply be cleaved into a wholly identified component

✏ = (�NT , �AT , ⇤0·
CO, ⇤1·

CO, ⇤0·
NT , ⇤1·

AT ),

and a component ⇣ = (⇤1·
NT , ⇤0·

AT ) which is not involved in the likelihood function.

Now, say the target of inference is the average causal e⇤ect,

ACE = (1� �NT � �AT )(⇤1·
CO � ⇤0·

CO) + �NT (⇤1·
NT � ⇤0·

NT ) + �AT (⇤1·
AT � ⇤0·

AT ).

Thus, regardless of whether one pursues a frequentist or Bayesian analysis, in the
asymptotic limit one learns the range of possible values for the target is a±b, where

a = (1� �NT � �AT )(⇤1·
CO � ⇤0·

CO) + �NT (1/2� ⇤0·
NT ) + �AT (⇤1·

AT � 1/2),

and b = (�NT + �AT )/2.

From a frequentist viewpoint, (a, b) are all that can be learned about the ACE
from an infinite-sized dataset. The situation is di⇤erent, however, for a Bayesian.
The large-sample limit of the posterior distribution must have a ± b as its support,
but additionally the shape of the limiting distribution may depend on the identified
parameters.

For instance, say a uniform prior is applied in the scientific parameterization
(more formally a Dirichlet(1, 1, 1) prior for (�NT , �AT , 1��NT��AT ), and Unif(0, 1)
priors for each of ⇤’s, with independence throughout). Then it follows directly
that the large-sample limit of the posterior distribution for the ACE has a stochas-
tic representation as a + �NT (U1 � 1/2) + �AT (U2 � 1/2), where U1, U2 are iid
Unif(0, 1). It then follows that the limiting distribution is symmetric on a± b, with
a trapezoid-shaped density. Particularly, the top edge of the trapezoid extends along
a ± (max{�NT , �AT }�min{�NT , �AT }) /2. Extreme cases are a uniform limiting
density (when 0 = min{�NT , �AT } < max{�NT , �AT }), and a triangular limiting
density (when �NT = �AT > 0). Thus, the peakedness of the limiting distri-
bution depends on identified parameters, showing that the shape is not merely a
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pre-ordained consequence of the shape of the prior. As a practical implication, the
width of a central credible interval for the target, relative to the width of the set of
plausible values, varies according to the underlying true parameter values.

In fact, in the present problem the influence of the identified parameters on the
shape of the posterior on the target is fairly mild. Particularly, the limiting posterior
distribution is symmetric on a±b, no matter what. However, Gustafson (2010) gives
examples of partially identified models where the shape depends more strongly on
the identified parameters. This is more prone to occur when the identified parameter
vector ✏ is a complicated function of the original scientific parameters, rather than
simply a subset of them as in the example above.

FABRIZIA MEALLI (Università di Firenze, Italia) and
FAN LI (Duke University, USA)

We appreciated the invited paper by Richardson, Evans and Robins (henceforth
RER), as the only one in Valencia 9 dealing with causal inference, an important
branch of statistical inference for which Bayesian analysis is particularly and nat-
urally suited (Rubin, 1978). However, in our view, the paper misses important
recent advances made in causal inference, and specifically, in Bayesian analysis of
broken randomized experiments. We would like to stress that a framework, namely
Principal Stratification (PS; Frangakis and Rubin, 2002), exists that allows one to
transparently specify causal models, to separate structural behavioral assumptions
from model assumptions and priors on parameters, and to conduct model-based
Bayesian inference in a principled fashion; the area could certainly benefit from
cross-fertilization.

PS has been successfully applied to a wide range of more general and complicated
settings, where the applicability of RER’s approach is not completely clear. The
aim of our discussion is three-fold: (i) to provide a brief account of the existing
literature on the subject of Bayesian causal inference with intermediate variables;
(ii) to elucidate how Bayesian inference is conducted under the PS framework; and
(iii) to discuss some inferential and practical restrictions embedded in RER.

The all-or-none noncompliance setting analyzed by RER is an example of causal
analysis with intermediate variables, that is, post-treatment variables potentially
a⇤ected by treatment and also a⇤ecting the response. Much of the notation and
terminology in RER stems from the series of papers by Imbens, Rubin and coau-
thors in the 1990s (e.g., Imbens and Angrist, 1994; Angrist, Imbens and Rubin,
1996; Imbens and Rubin, 1997), which provided the terminology of NT, AT, CO,
and DE. Further, Frangakis and Rubin (2002) proposed the general PS framework
for adjusting for intermediate variables, based on stratifying units by their joint
potential intermediate outcomes. Since then, advances have been achieved in causal
inference under PS, both from frequentist and Bayesian perspectives (the literature
listed below is limited to the Bayesian one), dealing with settings of binary, categor-
ical, continuous, censored outcomes with and without covariates (e.g., Hirano, 2000;
Zhang et al., 2008); noncompliance coupled with missing data or/and censored data
(e.g., Barnard et al.; 2003; Mattei and Mealli, 2007); longitudinal treatments and
intermediate variables (Frangakis et al., 2004); clustered treatments (e.g., Frangakis
et al., 2002); surrogate endpoints (Li et al., 2010); continuous intermediate variables,
including partial compliance (e.g., Jin and Rubin, 2008; Schwartz et al., 2010); just
to name a few.
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While RER provide some insights on the information which can be drawn
from randomized experiments with noncompliance, their statement about “standard
Bayesian prior to posterior analysis” of “weakly identified” models may suggest to
those who are unfamiliar with the causal inference literature that the current state-
of-the-art Bayesian analysis of such models is not done properly, or done in a rather
“automatic” fashion, without posing attention on the nature of the di⇤erent causal
estimands, and on the information provided by the data on them. However, Im-
bens and Rubin (1997) already provided a complete recipe for model-based Bayesian
inference and investigated the behavior of weakly identified models for the case of
all-or-none compliance. Their approach can be easily generalized to conduct analysis
with other intermediate variables, as briefly described below.

Let Zi be the binary variable indicating the treatment assignment of unit i.
Under SUTVA, the potential outcomes are a function of Zi rather than the entire
vector Z . Let Yi(z) and Xi(z) be the potential primary and intermediate outcomes
if unit i is assigned to treatment z for z = 0, 1. In Bayesian inference, the observable
quantities for a sample of N units, (Y (0), Y (1), X(0), X(1), Z , V ), are considered
as observed and unobserved realizations of random variables, with joint distribution
Pr(Y (0), Y (1), X(0), X(1), Z , V ) which may be written as

Pr(Y (0), Y (1), X(0), X(1)|Z , V ) Pr(Z |V ) Pr(V )

= Pr(Y (0), Y (1), X(0), X(1)|V ) Pr(Z |V ) Pr(V ),

where the equality follows from randomization, which allows one to separate the
joint distribution of the potential outcomes from the treatment assignment mech-
anism. Analysis is usually conditional on the observed distribution of covariates,
thus Pr(V ) is not modelled. The joint distribution of the potential outcomes,
Pr(Y (0), Y (1), X(0), X(1)|V ), can be rewritten as

Z Y

i

Pr(Yi(0), Yi(1)|Xi(0), Xi(1), Vi, ✓) Pr(Xi(0), Xi(1)|Vi, ✓)�(✓) d✓ (26)

for the global parameter ✓ with prior distribution �(✓). The quantity (Xi(0), Xi(1))
is called a principal stratum Si and the cross-classification of units into the latent
classes of Si is called PS. Clearly the classification of units into NT, AT, CO, DE
is a special case of PS. The key insight is that Si is invariant under di⇤erent treat-
ment assignments, thus the comparisons of {Yi(1) : Si = (x0, x1), Vi = v} and
{Yi(0) : Si = (x0, x1), Vi = v} are well-defined causal e⇤ects (called principal causal
e⇤ects—PCEs). Factorization (26) suggests that model-based PS inference usu-
ally involves two sets of models: One for the distribution of potential outcomes
Y (0), Y (1) conditional on the principal strata and covariates and one for the distri-
bution of principal strata conditional on the covariates. The definition of principle
strata does not involve response Y , unlike the approach in RER. We find it hard
to envision how the approach in RER can be extended to, for example, the most
common case of continuous Y .

Another critical feature in the models adopted in the PS literature is that one
specifies models directly on potential outcomes instead of on observed quantities.
This, we think, is a more transparent way of modelling, and also, by doing so we
can “directly” check which restrictions are supported by the data.

Since causal e⇤ects are defined as (summaries of) comparisons between the po-
tential outcomes of the same individuals, in our opinion directly modelling potential
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outcomes enables analysts to transparently conduct causal inference. To conduct
Bayesian inference in PS, the complete-data likelihood of all units can be written

Pr(Y (0), Y (1), X(0), X(1)|V ; ✓)

=
YN

i=1
Pr
“
Yi(0), Yi(1)|Si, Vi; �

Y
”

Pr
“
Si|Vi; �

S
”

,

where ✓ includes parameters �Y ’s and �S . The Bayesian model is completed by
specifying prior distributions for each set of parameters. Note that separating the
parameters into an identifiable set and a non/weakly identifiable set, as RER do,
may lead to prior independence between parameters that are substantively thought
to be closely related.

Define
Y obs

i = Yi(Zi),

Y mis
i = Yi(1� Zi),

Xobs
i = Xi(Zi),

Xmis
i = Xi(1� Zi).

All PCEs are functions of the model parameters ✓ and observed quantities, so full
Bayesian inference for PCEs is based on the posterior distribution of the parameters
conditional on the observed data, which can be written as,

Pr(✓|Y obs, Xobs, Z , V )

� Pr(✓)

Z Z Y

i

Pr(Yi(0), Yi(1), Xi(0), Xi(1)|Vi, ⌃)dY mis
i dDmis

i .

However, direct inference from the above distribution is in general not available
due to the integrals over Dmis

i and Y mis
i . But both Pr(⌃|Y obs, Xobs, Xmis, V )

and Pr(Xmis|Y obs, Xobs, V , ✓) are generally tractable, so the joint posterior distri-
bution, Pr(✓, Xmis|Y obs, Xobs, Z , V ), can be obtained using a data augmentation
approach for Xmis. Inference for the joint posterior distribution then provides in-
ference for the marginal posterior distribution Pr(✓|Y obs, Xobs, Z , V ).

Note that, by adopting PS, it is rather obvious that some parameters are “wholly”
nonidentified. They are usually those which depend on potential outcomes that
are never observed in a particular experiment for certain types of subjects (prin-
cipal strata). For example Y11 is never observed for units (NT and DE) with
Xi(Zi = 1) = 0; it is thus an “a priori” counterfactual. As a consequence the
e⇤ect of treatment receipt for NT does not appear in the likelihood, and no prior is
put on it. Indeed, even after a Bayesian analysis, bounds can be derived on these
quantities, e.g., by letting the a priori counterfactual outcomes range from their
smallest to their largest possible values (see, e.g., Imbens and Rubin, 1997, page
319). More precise inference can be obtained, e.g., by “extrapolation”, assuming
the e⇤ect found for CO is the same as the e⇤ect that would have been observed for
NT, had they been forced to take the treatment. Also, because the e⇤ect on CO is
well identified only under some restrictions, the Bayesian PS approach allows one
to directly and transparently check what restrictions are supported by the data, by
relaxing those restrictions and checking how much posterior support they receive.
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REPLY TO THE DISCUSSION

We thank the discussants for their thoughtful comments and criticisms. We com-
ment on each contribution in turn. (Readers should note that Section 6 and the
appendix concerning mis-specification were added subsequently, hence were not seen
by the discussants.)

Di�erent causal e�ect measures. Fienberg notes that all of the causal contrasts
in our paper are defined on the linear scale, and asks to what extent the methods can
be applied to the causal relative risk or causal odds ratio. Richardson and Robins
(2010) characterize the set of possible values for

(�NT, �AT, �DE, �CO, ⇤0·
CO, ⇤1·

CO, ⇤0·
NT, ⇤1·

NT, ⇤0·
AT, ⇤1·

AT, ⇤0·
DE, ⇤1·

DE),

compatible with a given observed population distribution p(y, x | z) under the model
EXAT + EXNT. Given this description it is straightforward to compute bounds on
any causal contrast for this model regardless of the chosen scale. The methods of
analysis may be extended fairly easily to any of the other models we consider, as we
did to compute the bounds on ITTCO given in Figure 7.

More generally, we agree with Fienberg that algebraic geometry and, in particu-
lar, the theory of convex polytopes have an important role to play in understanding
identifiability in similar potential outcome models in which variables have more than
two states.

The role of re-parametrization. We thank Gustafson for pointing out that the
use of a transparent re-parametrization in no way precludes the specification of a
prior on the non-identified parameters. From our perspective, re-parametrization
is purely a mathematical technique for clarifying the relationship between the data
and the posterior by separating the wholly identified from the wholly unidentified.
More formally, let ⌃ be the vector of parameters in the original (e.g., “Principal”
Stratum) formulation, and let (⇣,) indicate the transparent re-parametrization
into identified (⇣) and unidentified () components, via some di⇤eomorphism g(·),
so ⌃ = g(⇣,). A prior p(⌃) induces a prior p(⇣,) = p(⇣)p( | ⇣). Then we have:

p(⇣, | y) = p( | ⇣)p(⇣ | y), (27)

where we have used the fact that  does not occur in the likelihood. Forward
sampling may be used to obtain samples from the posterior p(⌃ | y) by first sampling
⇣(i) from p(⇣ | y) and then sampling (i) from p( | ⇣(i)). The corresponding value
of ⌃(i) = g(⇣(i),(i)).

In the illustrative analyses we present in the paper (that make use of re-para-
metrizations) we avoided placing prior distributions on parameters that were not
identified, instead opting to compute posterior distributions on bounds. This was
primarily because we thought that in many circumstances useful subjective infor-
mation relating to these specific unidentified quantities may be hard to come by.
We make a few further points in this regard below.

Transparent re-parametrization is, in principle, compatible with any Bayesian
analysis of a partially identified model. We say “in principle” because it may require
some technical work to be able to find such a re-parametrization: this is one of the
main contributions of our paper for the unidentified models we consider.

However, it is therefore incorrect to suggest, as Mealli and Li do, that an analyst
must choose between a “PS approach” and our re-parametrization. Like co-ordinate
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systems, an analyst is free to use more than one parametrization within a single
analysis: if background knowledge is more amenable to formulation via reference to
compliance types then the prior may be formulated in these terms. However, we,
like Gustafson, Greenland and Leamer before us, believe that in order to assess the
extent to which beliefs regarding unidentifiable quantities influence the posterior
distribution it is often necessary to use a transparent re-parametrization.

Relation to existing methods. Mealli and Li state that Imbens and Rubin (1997)
provide a complete recipe for model-based Bayesian inference of “broken” random-
ized experiments with non-compliance. We do not agree. We believe that the
method of Imbens and Rubin is incomplete in its treatment of two central issues:
(i) the sensitivity of the posterior for a partially identified quantity to the prior; (ii)
bias under model mis-specification in randomized experiments. We now consider
each in turn.

Prior sensitivity.

In order to eliminate extraneous issues, we assume baseline covariates are either
absent, or take only a few values.

Inference for partially identified quantities vs. inference for bounds. An impor-
tant theme in our paper is that when faced with a partially identified parameter, it
is advisable to proceed by computing the bounds on this quantity implied by the
population distribution for the observables, and then to perform inference for these
bounds. Such bounds, being functionals of the observed distribution, are identified.
Though we did not stress this point in the paper, such an analysis need not pre-
clude, and indeed may complement, a standard Bayesian analysis for the quantity
of interest. Thus, contrary to Mealli and Li, it is a false dichotomy to suggest that
an analyst must choose one or the other.

Testing exclusion restrictions. Hirano et al. highlight the ability to relax in-
dividual exclusion restrictions as one of the strengths of their approach. In their
remarks Mealli and Li write:

. . . the Bayesian PS approach allows one to directly and transparently check

what restrictions are supported by the data, by relaxing those restrictions and

check[ing] how much posterior support they receive.

In our opinion, this remark indicates the danger of Bayesian analyses that fail to
distinguish what is from what is not identifiable.

To see this point more clearly, consider the restriction ExAT, which is one of
the assumptions necessary to identify ITTCO. Note that the assumption ExAT is
equivalent to ITTAT = 0. The quote of Mealli and Li above suggests that, had a
99.9% credible interval for ITTAT excluded zero, Mealli and Li would regard this as
overwhelming evidence that ExAT is false, even if they (following Hirano et al.) had
used “o⇤-the-shelf” priors. But such an inference would be erroneous. It is possible
that the (identifiable) population lower and upper bounds, denoted by l ITTAT and
uITTAT, for ITTAT straddle zero, yet owing to the specific prior used, the posterior
credible interval for ITTAT may exclude zero; compare to the right panel of Figure 3.
In contrast, an analysis based on credible intervals for bounds will (asymptotically)
not make such a mistake; see Table 9, with ExAT true.

Hirano et al. concluded, based primarily on subject matter considerations, that
there was reason to doubt the exclusion restriction for Always Takers in the McDon-
ald et al. data. (However, this decision was not a consequence of their likelihood or
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“o⇤-the-shelf” prior.) Our Bayesian inference for bounds provides some empirical
support for this doubt; see Column (13) in Table 7.

Table 9: Contrasting large-sample inferences for ITTAT vs. large-sample in-
ferences for upper and lower bounds on ITTAT. PD indicates that this is prior
dependent (even asymptotically); uITTAT and lITTAT are the (identifiable) upper
and lower bounds. MonX is assumed to hold. LSCI is a credible interval in large
samples.

True State

ExAT true ExAT false

Result of Posterior Analysis (13) true (13) true (13) false

0 2 LSCI[ITTAT] PD PD False

0 /2 LSCI[ITTAT] PD PD True

LSCI[uITTAT] \ [0,1) 6= ;
True True False

and LSCI[l ITTAT] \ (�1, 0] 6= ;

LSCI[uITTAT] \ [0,1) = ;
False False True

or LSCI[l ITTAT] \ (�1, 0] = ;

Table 10: Parameter values for simulation scenarios: all linear models (L);
quadratic compliance model (QC); quadratic qesponse models (QR).

�0 �1 �2 ⇥c
0 ⇥c

1 ⇥c
2 ⇤c

0 ⇤c
1 ⇥n

0 ⇥n
1 ⇥n

2
L 2 �0.3 0 �2 1 0 0 0 5 �2 0

QC 3.5 �2.5 0.5 �2 1 0 0 0 5 �2 0
QR 2 �0.3 0 4.6 �4.8 1 0 0 3 �5 1.2

Examining prior sensitivity. The question of the extent to which prior specifica-
tion influences the posterior may arise in any Bayesian analysis. However, we believe
that ad hoc approaches, which may be appropriate in identified contexts, such as
finding “equivalent sample sizes” or comparing the prior and posterior standard
deviations for quantities of interest (see Hirano et al., 2000, p. 78), may be highly
misleading in the context of partially identified parameters and are not logically
justified.

As an example, suppose the population bounds on a partially identified param-
eter of interest were (�2, 2). If a Bayesian analyst specified a di⇤use but proper
prior with a 99% credible interval of (�50, 50) then in large samples, the poste-
rior standard deviation will be at most 1/20 of the prior standard deviation (under
some assumptions on the shapes of the prior and posterior). Nevertheless, owing to
the sensitivity of the posterior to even a di⇤use prior, the Bayesian’s posterior 99%
credible interval could be, (�1.8,�0.3) even though the true value of the partially
identified parameter was 0.5; see Figure 3.

“Principal” strata vs. strata defined by baseline covariates. One of the primary
motivations for the principal stratum (PS) approach is that, if the strata are based on
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Figure 10: Boxplots showing the sampling distribution of the MLE for
ITTCO(v): linear (top left); quadratic compliance (top right); quadratic
response (bottom left). Sampling distributions of the MLE for the global
ITTCO (bottom right). The true values of all ITTCO parameters are
zero; see dotted line.

well-defined potential outcomes for the intermediate, contrasts between the treated
and untreated within such strata admit a causal interpretation. In this regard,
principal strata are analogous to a set of baseline covariates su⌃cient to control
confounding. However, in another important respect, principal strata are very dif-
ferent from baseline covariates in that, in general, we are never able to directly
observe such memberships. Consequently, prior information regarding di⇤erences in
response between compliance types are likely to be scarce and unreliable. This is
a major concern in light of the extreme sensitivity of the posterior distribution for
weakly identified parameters to the choice of prior.

Model mis-specification in randomized experiments

We now consider the consequences of model mis-specification for the method of
Hirano et al. in a randomized experiment with continuous baseline covariates V . In-
clusion of baseline covariates in the analysis is useful because qualitative treatment-
covariate interactions can be detected and, as noted by Hirano et al., e⌃ciency may
be increased.
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We now consider the setting of a double blind (DB) placebo-controlled RCT in
which treatment is without side-e⇤ects and is not available to patients in the control
arm. In this setting Defiers and Always Takers are not present. Furthermore, the
exclusion restrictions for Never Takers (EXNT) and for Compliers (⇤00

CO = ⇤01
CO,

⇤10
CO = ⇤11

CO) can be assumed to hold within levels of V . Then the conditional intent
to treat e⇤ect ITTCO(V ) in the Compliers is identified by

ITTY (V )
ITTX(V )

⇧ E [Y |Z = 1, V ]� E [Y |Z = 0, V ]
E [X |Z = 1, V ]� E [X |Z = 0, V ]

and equals the conditional Complier Average Causal E⇤ect ACECO (X ↵ Y |V ) of
X on Y . The unconditional ITT e⇤ect, ITTCO = E [ITTCO(V )] and unconditional
Complier Average Causal E⇤ect are also identified.

In Section 6, we described why it is critical to analyze randomized trials with
a method that, under the null hypothesis that ITTY (V ) = 0, guarantees that the
posterior distribution and MLE of ITTCO(V ) [and thus of ITTY (V )] concentrate
on the zero function, even under model mis-specification. The following simulation
study demonstrates that the method of Hirano et al. does not o⇤er such a guarantee,
even when V is discrete.

We simulated the data under the model:

p(tX = CO | v, z) = expit(�0 + �1v + �2v
2),

p(Y = 1 | tX = CO, v, z) = expit(⇥c
0 + ⇥c

1v + ⇥c
2v

2 + z(⌅c
0 + ⌅c

1v)),

p(Y = 1 | tX = NT, v, z) = expit(⇥n
0 + ⇥n

1 v + ⇥n
2 v2),

with ⌅c
0 = ⌅c

1 = 0 hence ITTY (V ) = 0. The baseline covariate V is ordinal, dis-
tributed uniformly with sample space {1, 2, 3, 4}. Always Takers and Defiers were
excluded a priori. We considered data simulated under three di⇤erent parameter
settings as shown in Table 10; in the first (L), there are no quadratic terms; in the
second (QC), there is a quadratic term in the logistic regression model for the pro-
portion of Compliers vs. Never Takers; in the third (QR), there is a quadratic term
present in the logistic regression models for E[Y |X = 0, tX ] for tX ⇣ {CO, NT}.
For each scenario we simulated 500 datasets of size 5,000. We used the linear logis-
tic model of Hirano et al. without Always Takers to analyze the data; we purposely
omitted the quadratic terms from the models fitted. Since we are interested primar-
ily in large sample performance we used the MLE and standard asymptotic 95%
Wald confidence intervals as convenient approximations to the posterior mode and
95% credible intervals. Table 11 gives the sampling distribution of the MLEs for
⌅c
0 and ⌅c

1, together with the actual coverage rate for nominal 95% and 90% asymp-
totic confidence intervals. Figure 10 shows sampling distributions of the MLEs
for ITTCO(V ) and ITTCO under each of these scenarios. As can be seen, mis-
specification of either the model for compliance types or for E[Y |X = 0, tX ] leads
to spurious inferences regarding the ITT e⇤ects even under the ITT null.

As discussed in our paper, the model (the last in Table 6), that we had proposed
in Section 5 to analyze such a trial also failed to satisfy the wished-for guarantee;
see the simulation study in §6. As noted earlier, Mealli et al. wrote their discussion
based on an earlier version of the paper that did not include Section 6; hence they
had no opportunity to express their thoughts on this issue.
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Table 11: Simulation results: distribution of MLE for ⌅c
0 and ⌅c

1 fitting potential
outcome models omitting quadratic terms. Coverage shows the actual coverage
corresponding to asymptotic confidence intervals based on the observed information.
Results based on 500 simulations; sample size was 5, 000. The ITT null holds so
⌅c
0 = ⌅c

1 = 0.

⇤c
0 MLE Coverage ⇤c

1 MLE Coverage

Mean Std. Err 90% 95% Mean Std. Err 90% 95%

L �0.001 (0.010) 0.91 0.94 0.000 (0.005) 0.91 0.94

QC 0.331 (0.005) 0.20 0.31 �0.257 (0.005) 0.22 0.35

QR �0.362 (0.008) 0.31 0.43 0.169 (0.003) 0.25 0.34

As noted in the paper, we specifically developed the parametrization and para-
metric model described in the last subsection of §6 to provide robustness to model
mis-specification under the ITT null. Note, however, that this parametric model al-
lows for the possibility of Always Takers. A robust model that assumes the absence
of Always Takers is obtained by simply setting the functions ⌥i(v; �1), i ⇣ {0, 1}, to
zero in the aforementioned model.

Our simulation study demonstrated, by example, the non-robustness of the Hi-
rano et al. approach in the simple setting of a single V with only four levels and a
sample size of 5,000; see Table 11 and Figure 10. As such, it is likely that various
goodness-of-fit statistics would reject the linear analysis model with high power.
However, when V is a vector with continuous components, it is more di⌃cult to
specify correct or nearly correct parametric models and the power of goodness-of-fit
statistics to reject even a quite mis-specified model is poor. Thus we suspect that
in high-dimensional settings the use of non-robust parametric models will typically
result in markedly incorrect inference under the conditional ITT null.

Summary

We certainly do not claim that all model-based analyses of partially-identified
quantities are equally misleading. Indeed, we found the Hirano et al. Bayesian
analysis to be interesting, thoughtful, and restrained in its conclusions.

In contrast, Zhang et al. (2009) analyze partially-identified direct e⇤ects in a job-
training program. They entirely eschew a Bayesian approach, preferring instead to
(i) specify a parsimonious parametric model whose functional form serves to point-
identify the direct e⇤ects, and (ii) estimate these e⇤ects by maximum likelihood
(without associated standard errors). They summarize their inferences with bold
pronouncements such as: “there is a group of individuals, about 8%, for whom
assignment to training is harmful in terms of employment,” without any measure of
uncertainty.

We can summarize our concerns by echoing David Freedman’s invocation of Will
Rogers, who famously said: “It’s not what you don’t know that hurts. It’s what
you know that ain’t so. . . ,” the model-based approach advocated by Mealli et al.
is likely to “increase the stock of things we know that you know for sure that just
ain’t so.”1

Finally, our paper and those referenced by Mealli and Li were concerned with
making inferential statements about causal e⇤ects of scientific interest and not with

1Sander Greenland notes that this quote is originally due to Mark Twain.
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decision-making under uncertainty. When a decision must be made and the optimal
choice depends upon an unknown partially-identified e⇤ect parameter, we, like all
Bayesians, would use our personal posterior distribution for the parameter of inter-
est. In such a situation we would use our proper subjective prior; we would not use
either a default or “o⇤-the-shelf” prior.

ADDITIONAL REFERENCES IN THE DISCUSSION

Angrist, J. D., Imbens, G. W., Rubin, D. B. (1996). Identification of causal e⇤ects using

instrumental variables. J. Amer. Statist. Assoc. 91, 444–455.

Barnard, J., Frangakis, C. F., J., Hill, J. L., Rubin, D. B. (2003). Principal stratification

approach to broken randomized experiments: A case study of school choice vouchers in

New York City. J. Amer. Statist. Assoc. 98, 299–323 (with discussion).

Frangakis, C. E., Rubin, D. B., and Zhou, X. H. (2002). Clustered encouragement design

with individual noncompliance: Bayesian inference and application to advance

directive forms. Biostatistics 3, 147–164.

Frangakis, C. E., Brookmeyer, R. S., Varadhan, R., Safaeian, M., Vlahov, D., and

Strathdee, S. A. (2004). Methodology for evaluating a partially controlled longitudinal

treatment using principal stratification, with application to a needle exchange

program. J. Amer. Statist. Assoc. 99, 239–249.

Gustafson, P. (2010). Bayesian inference for partially identified models. Internat. J.
Biostatistics 6, Art 17.

Imbens, G. W., Angrist, J. (1994). Identification and estimation of local average

treatment e⇤ects. Econometrica 62, 467–476.

Jin, H., Rubin, D. B. (2008). Principal stratification for causal inference with extended

partial compliance. J. Amer. Statist. Assoc. 103, 101–111.

Li, Y., Taylor, J. M., Elliott M. R. (2009). A Bayesian approach to surrogacy assessment

using principal stratification in clinical trials. Biometrics 66, 523–531.

Mattei, A., Mealli, F. (2007). Application of the prinicipal stratification approach to the

Faenza randomized experiment on breast self-examination. Biometrics 63, 437–446.

Robins, J., Rotnitzky, A., and Vansteelandt, S. (2007) Discussion of Principal
stratification designs to estimate input data missing due to death by Frangakis, C.E.,

Rubin, D.B., An, M., MacKenzie, E. Biometrics 63, 650–653.

Rubin, D. B. (1978). Bayesian inference for causal e⇤ects. Ann. Statist. 6, 34–58.

Schwartz, S.L., Li, F., and Mealli, F. (2010). A Bayesian semiparametric approach to

intermediate variables in causal inference. Tech. Rep., Duke University, USA.

Sfer, A. M. (2005). Randomization and Causality. Ph.D. Thesis, Universidad Nacional de

Tucumán, Argentina.
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