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The counterfactual framework: philosophy

Hume (1748) An Enquiry Concerning Human Understanding:

We may define a cause to be an object followed by another, and
where all the objects, similar to the first, are followed by objects
similar to the second, . . .

. . . where, if the first object had not been the second never had
existed.

Note: this is not one of the 3(!) causal theories Hume is famous for.
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The potential outcomes framework: crop trials
Jerzy Neyman (1923):

To compare v varieties [on m plots] we will consider numbers:

plots︷ ︸︸ ︷
U11 . . . U1m

...
...

Uv1 . . . Uvm

 varieties

Uij is crop yield that would be observed if variety i were planted in plot j.

Physical constraints only allow one variety to be planted in a given plot in
any given growing season⇒ Observe only one number per col.
Sometimes called the ‘Rubin causal model’, owing to Rubin (1974).Thomas Richardson DSI Seminar, Stanford 19 May 2014 Slide 3



Potential outcomes with binary treatment

For binary treatment X and response Y, we define two potential
outcome variables:

Y(x = 0): the value of Y that would be observed for a given
unit if assigned X = 0;

Y(x = 1): the value of Y that would be observed for a given
unit if assigned X = 1;

WIll also write these as Y(x0) and Y(x1).
Implicit here is the assumption that these outcomes are
well-defined. Specifically:

I Only one version of treatment X = x
I No interference between units / Stable Unit Treatment Value

Assumption (SUTVA)

Will use ‘potential outcome’ and ‘counterfactual’
synonymously.
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Drug Response ‘Types’:

In the simplest case where Y is a binary outcome we have the
following 4 types:

Y(x0) Y(x1) Name
0 0 Never Recover
0 1 Helped
1 0 Hurt
1 1 Always Recover
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Assignment to Treatments

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 0 1 1
2 0 1 0
3 0 0 1
4 1 1 1
5 1 0 0

Thomas Richardson DSI Seminar, Stanford 19 May 2014 Slide 6



Observed Outcomes from Potential Outcomes

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 0 1 1 1
2 0 1 0 0
3 0 0 1 0
4 1 1 1 1
5 1 0 0 1
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Potential Outcomes and Missing Data

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 ? 1 1 1
2 0 ? 0 0
3 ? 0 1 0
4 ? 1 1 1
5 1 ? 0 1
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Average Causal Effect (ACE) of X on Y

ACE(X→ Y) ≡ E[Y(x1) − Y(x0)]

= p(Helped) − p(Hurt) ∈ [−1, 1]

Thus ACE(X→ Y) is the difference in % recovery if
everyone treated (X = 1) vs. if noone treated (X = 0).
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Identification of the ACE under randomization

If X is assigned randomly then

X ⊥⊥ Y(x0) and X ⊥⊥ Y(x1) (1)

hence

E[Y(x1) − Y(x0)] = E[Y(x1)] − E[Y(x0)]

= E[Y(x1) | X = 1] − E[Y(x0) | X = 0]

= E[Y | X = 1] − E[Y | X = 0].

Thus if (1) holds then ACE(X→ Y) is identified from P(X, Y).
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Inference for the ACE without randomization
Suppose that we do not know that X ⊥⊥ Y(x0) and X ⊥⊥ Y(x1).
What can be inferred?

X = 0 X = 1
Placebo Drug

Y = 0 200 600
Y = 1 800 400

What is:

The largest number of people who could be Helped?
400 + 200

The smallest number of people who could be Hurt? 0

⇒ Max value of ACE: (200 + 400)/2000 − 0 = 0.3

Similar logic:

⇒ Min value of ACE: 0 − (600 + 800)/2000 = −0.7

In general, bounds on ACE(X→ Y) will always cross zero.

Thomas Richardson DSI Seminar, Stanford 19 May 2014 Slide 11



Summary of Counterfactual Approach

In our observed data, for each unit one outcome will be
‘actual’; the others will be ‘counterfactual’.

The potential outcome framework allows
Causation to be ‘reduced’ to Missing Data
⇒ Conceptual progress!

The ACE is identified if X ⊥⊥ Y(x1) and X ⊥⊥ Y(x0)

Independences implied by Randomization of Treatment.

Ideas are central to Fisher’s Exact Test; also many parts of
experimental design.

The framework is the basis of many practical causal data
analyses published in Biostatistics, Econometrics and
Epidemiology.
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Relating Counterfactuals and ‘do’ notation

Expressions in terms of ‘do’ can be expressed in terms of
counterfactuals:

P(Y(x) = y) ≡ P(Y = y | do(X = x))

but counterfactual notation is more general.
Ex. Distribution of outcomes that would arise among those who
took treatment (X = 1) had counter-to-fact they not received
treatment:

P(Y(x = 0) = y | X = 1)

If treatment is randomized, so X ⊥⊥ Y(x = 0) then this equals
P(Y(x = 0) = y), but in an observational study these may be
different.
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Graphs
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Factorization Associated with a DAG
We associate the following factorization of a joint distribution P(V)
with a DAG:

P(V) =
∏
X∈V

P(X | pa(X))

Example:

A D

B

C

E

P(A,B,C,D,E)

= P(A)× P(B | A)× P(C | A)× P(D | B,C)× P(E | D)

Graphical rule (d-separation) allows independence relations holding in a
distribution that factorizes wrt a graph to be ‘read’ from the graph.
Ex: C ⊥⊥ B | A D ⊥⊥ A | B,C E ⊥⊥ A,B,C | D.
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Graphical Approach to Causality

X Y

No Confounding

X

H

Y

Confounding

Unobserved

Graph intended to represent direct causal relations.

Convention that confounding variables (e.g. H) are always included
on the graph.

Approach originates in the path diagrams introduced by Sewall
Wright in the 1920s.

If X→ Y then X is said to be a parent of Y; Y is child of X.
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Graphical Approach to Causality

X Y

No Confounding

Associated factorization:

P(x,y) = P(x)P(y | x)

In the absence of confounding the causal model asserts:

P(Y(x) = y) = P(Y = y | do(X = x)) = P(Y = y | X = x).

here ‘P(y | do(x))’ is defined as the distribution resulting from
an intervention (or experiment) where we fix X to x.
Q: How does this relate to the counterfactual approach?
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Linking the two approaches

X Y

X ⊥⊥ Y(x0) & X ⊥⊥ Y(x1)

X

H

Y

X 6⊥⊥ Y(x0) or X 6⊥⊥ Y(x1)

Unobserved

Elephant in the room:
The variables Y(x0) and Y(x1) do not appear on these
graphs!!
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Node splitting: Setting X to 0

X Y

P(X= x̃, Y= ỹ) = P(X= x̃)P(Y= ỹ | X= x̃)

⇒ X x = 0 Y(x = 0)

Can now ‘read’ the independence: X ⊥⊥ Y(x=0).
Also associate a new factorization:

P (X= x̃, Y(x=0)= ỹ) = P(X= x̃)P (Y(x=0)= ỹ)

where:
P (Y(x=0)= ỹ) = P(Y= ỹ |X=0).

This last equation links a term in the original factorization to the
new factorization. We term this the ‘modularity assumption’.
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Node splitting: Setting X to 1

X Y

P(X= x̃, Y= ỹ) = P(X= x̃)P(Y= ỹ | X= x̃)

⇒ X x = 1 Y(x = 1)

Can now ‘read’ the independence: X ⊥⊥ Y(x=1).
Also associate a new factorization:

P (X= x̃, Y(x=1)= ỹ) = P(X= x̃)P (Y(x=1)= ỹ)

where:
P (Y(x=1)=y) = P(Y=y |X=1).
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Marginals represented by SWIGs are identified
The SWIG G(x0) represents P(X, Y(x0)).
The SWIG G(x1) represents P(X, Y(x1)).
Under no confounding these marginals are identified from P(X, Y).
In contrast the distribution P(X, Y(x0), Y(x1)) is not identified.
Y(x=0) and Y(x=1) are never on the same graph.
Although we have:

X ⊥⊥ Y(x=0) and X ⊥⊥ Y(x=1)

we do not assume

X ⊥⊥ Y(x=0), Y(x=1)

Had we tried to construct a single graph containing both Y(x=0)
and Y(x=1) this would have been impossible.

⇒ Single-World Intervention Graphs (SWIGs).
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Representing both graphs via a ‘template’

X Y

G

⇒ X x Y(x)

G(x)

Represent both graphs via a template:

Formally the template is a ‘graph valued function’ (not a graph!):

Takes as input a specific value x∗

Returns as output a SWIG G(x∗).

Each instantiation of the template represents a different margin:
SWIG G(x0) represents P(X, Y(x0));
SWIG G(x1) represents P(X, Y(x1)).
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Intuition behind node splitting:
(Robins, VanderWeele, Richardson 2007)

Q: How could we identify whether someone would choose to take
treatment, i.e. have X = 1, and at the same time find out what
happens to such a person if they don’t take treatment Y(x = 0)?

A: Consider an experiment in which, whenever a patient is
observed to swallow the drug have X = 1, we instantly intervene
by administering a safe ‘emetic’ that causes the pill to be
regurgitated before any drug can enter the bloodstream.
Since we assume the emetic has no side effects, the patient’s
recorded outcome is then Y(x = 0).
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Harder Inferential problem

A Z

H B

Y

Query: does this causal graph imply:

Y(a,b) ⊥⊥ B(a) | Z(a),A ?
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Simple solution

A Z

H B

Y
A

a
Z(a)

H

B(a)

b

Y(a,b)

Query does this graph imply:

Y(a,b) ⊥⊥ B(a) | Z(a),A ?

Answer: Yes – applying d-separation to the SWIG on the right we
see that there is no d-connecting path from Y(a,b) given Z(a).
More on this shortly...
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Single World Intervention Template Construction (1)
Given a graph G, a subset of vertices A = {A1, . . . ,Ak} to be intervened
on, we form G(a) in two steps:

(1) (Node splitting): For every A ∈ A split the node into a random
node A and a fixed node a:

A

· · ·

· · ·

⇒ A

a

Splitting: Schematic Illustrating the Splitting of Node A

The random half inherits all edges directed into A in G;

The fixed half inherits all edges directed out of A in G.
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Single World Intervention Template Construction (2)

(2) Relabel descendants of fixed nodes:

a ⇒
A

B C

D

FE

X

T

Y

Z

· · ·

· · ·

· · ·

· · ·

a

A(. . .)

B(a, . . .) C(a, . . .)

D(a, . . .)

F(a, . . .)E(a, . . .)

X(. . .)

T(. . .)

Y(. . .)

Z(. . .)

· · ·

· · ·

· · ·

· · ·
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Single World Intervention Graph

A Single World Intervention Graph (SWIG) G(a∗) is obtained from
the Template G(a) by simply substituting specific values a∗ for the
variables a in G(a);

For example, we replace G(x) with G(x=0).

Resulting SWIG G(x̃) contains variables V(x̃) and represents the
joint: P(V(x̃))
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Factorization and Modularity

Original graph G : observed distribution P(V)
SWIG G(ã) : counterfactual distribution P(V(ã))

Factorization of counterfactual variables: Distribution P(V(ã)) over
the variables in G(ã) factorizes with respect to the SWIG G(ã)
(ignoring fixed nodes):

Modularity: P(V(ã)) and P(V) are linked as follows:
The conditional density associated with Y(ãY) in G(ã) is just the
conditional density associated with Y in G after substituting ãi for any
Ai ∈ A that is a parent of Y.

Consequence: if P(V) is observed then P(V(ã)) is identified.
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Applying d-separation to the graph G(a)

In G(ã) if subsets B(ã) and C(ã) of random nodes are d-separated by
D(ã) in conjunction with the fixed nodes ã, then B(ã) and C(ã) are
conditionally independent given D(ã) in the associated distribution
P(V(ã)).

B(ã) is d-separated from C(ã) given D(ã) ∪ ã in G(ã) (2)

⇒ B(ã) ⊥⊥ C(ã) | D(ã) [P(V(ã))].
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Inferential Problem Redux:

A Z

H B

Y
A

a
Z(a)

H

B(a)

b

Y(a,b)

Pearl (2009), Ex. 11.3.3, claims the causal DAG above does not imply:

Y(a,b) ⊥⊥ B | Z,A = a. (3)

The SWIG shows that (3) does hold; Pearl is incorrect.
Specifically, we see from the SWIG:

Y(a,b) ⊥⊥ B(a) | Z(a),A (4)

⇒ Y(a,b) ⊥⊥ B(a) | Z(a),A = a (5)

This last condition is then equivalent to (3) via consistency.
(Pearl infers a claim of Robins is false since if true then (3) would hold).
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Pearl’s twin network for the same problem

A

Z

H

B

Y

A

Z

H

B

Y

a

Z(a,b)

H(a,b)

b

Y(a,b)

UZ

UH

UY

The twin network fails to reveal that Y(a,b) ⊥⊥ B | Z,A = a.
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Pearl’s twin network for the same problem

A

Z

H

B

Y

A

Z

H

B

Y

a

Z(a,b)

H(a,b)

b

Y(a,b)

UZ

UH

UY

The twin network fails to reveal that Y(a,b) ⊥⊥ B | Z,A = a.
This ‘extra’ independence holds in spite of d-connection because (by
consistency) when A = a, then Z = Z(a) = Z(a,b).
Note that Y(a,b) 6⊥⊥ B | Z,A 6= a.

Shpitser & Pearl (2008) introduce a pre-processing step to address this.
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Adjustment for Confounding
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Adjusting for confounding

X Y

L

X x Y(x)

L

Here we can read directly from the template that

X ⊥⊥ Y(x) | L.

It follows that:

P(Y(x̃)=y) =
∑
l

P(Y=y | L= l,X= x̃)P(L= l). (6)
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Adjusting for confounding

X Y

L

X x Y(x)

L

X ⊥⊥ Y(x) | L.

Proof of identification:

P[Y(x̃) = y] =
∑
l

P[Y(x̃) = y | L = l]P(L = l)

=
∑
l

P[Y(x̃) = y | L = l,X = x̃]P(L = l) indep

=
∑
l

P[Y = y | L = l,X = x̃]P(L = l)
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Multiple Treatments
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Sequentially randomized experiment (I)

A B C D

H

A and C are treatments;

H is unobserved;

B is a time varying confounder;

D is the final response;

Treatment C is assigned randomly conditional on the observed
history, A and B;

Want to know P(D(ã, c̃)).
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Sequentially randomized experiment (I)

A B C D

H

If the following holds:

A ⊥⊥ D(ã, c̃)

C(ã) ⊥⊥ D(ã, c̃) | B(ã),A

General result of Robins (1986) then implies:

P(D(ã, c̃)=d) =
∑
b

P(B=b | A= ã)P(D=d | A= ã,B=b,C= c̃).

Does it??
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Sequentially randomized experiment (II)

A ã B(ã) C(ã) c̃ D(ã, c̃)

H

d-separation:

A ⊥⊥ D(ã, c̃)

C(ã) ⊥⊥ D(ã, c̃) | B(ã),A

General result of Robins (1986) then implies:

P(D(ã, c̃)=d) =
∑
b

P(B=b | A= ã)P(D=d | A= ã,B=b,C= c̃).
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Multi-network approach

A B C D

H

UH
UB

UC

UD

a B(a) C(a) D(a)

H(a)

a B(a, c) c D(a, c)

H(a, c)
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Connection to Pearl’s do-calculus

Factorization and modularity are sufficient to imply all of the
identification results that hold in the do-calculus of Pearl (1995);
see also Spirtes et al. (1993):

P(Y = y | do(A = a)) is identified ⇔ P(Y(a) = y) is identified.
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Dynamic regimes
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Dynamic regimes

A1

a1

L(a1) A2(a1)

a2

Y(a1,a2)

H2
H1

A1

A+
1 (g)

L(g) A2(g)

A+
2 (g)

Y(g)

H2H1

P(Y(g)) is identified.
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Dynamic regimes

A1

a1

L(a1) A2(a1)

a2

Y(a1,a2)

H2
H1

A1

A+
1 (g)

L(g) A2(g)

A+
2 (g)

Y(g)

H2H1

P(Y(g)) is not identified.
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Conclusion: Eliminating a false trichotomy

Previously the only approach to unifying counterfactuals and graphs was
Pearl’s approach via Non-Parametric Structural Equation Models with
Independent Errors:

This gave causal modelers three options:

Use graphs, and not counterfactuals (Dawid).

Use counterfactuals, and not graphs (many Statisticians).

Use both graphs and counterfactuals, but be forced to make a lot of
additional assumptions that are:

I not experimentally testable (even in principle);
I not necessary for most identification results.

SWIGs show that one can use graphs and counterfactuals without being
forced to take on additional assumptions.
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Summary and Extensions

SWIGs provide a simple way to unify graphs and
counterfactuals via node-splitting

The approach works via linking the factorizations associated
with the two graphs.

The new graph represents a counterfactual distribution that is
identified from the distribution in the original DAG.

This provides a language that allows counterfactual and
graphical people to communicate.

(Not covered) The approach also provides a way to combine
information on the absence of individual and population level
direct effects.

(Not covered) Also allows to formulate models where
interventions on only some variables are well-defined.
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Thank You!
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Assuming Independent Errors and

Cross-World Independence
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Relating Counterfactuals and Structural Equations
Potential outcomes can be seen as a different notation for
Non-Parametric Structural Equation Models (NPSEMs): Example:

X→ Y.

NPSEM formulation: Y = f(X, εY)

Potential outcome formulation: Y(x) = f(x, εY)

Two important caveats:

NPSEMs typically assume all variables are seen as being
subject to well-defined interventions (not so with potential
outcomes)
Pearl’s approach to unifying graphs and counterfactuals
simply associates with a DAG the counterfactual model
corresponding to an NPSEMs with Independent Errors
(NPSEM-IEs) with DAGs.
Pearl: DAGs and Potential Outcomes are ‘equivalent theories’.
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Mediation graph
Intervention on X and M:

M YX M(x̃) m̃X x̃ Y(x̃, m̃)⇒

d-separation in the SWIG gives:

X ⊥⊥ M(x̃) ⊥⊥ Y(x̃, m̃), for x̃, m̃ ∈ {0, 1}

Pearl associates additional independence relations with this DAG

Y(x1,m) ⊥⊥ M(x0),X

Y(x0,m) ⊥⊥ M(x1),X

equivalent to assuming independent errors, εX ⊥⊥ εM ⊥⊥ εY .
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Pure Direct Effect

Pure (aka Natural) Direct Effect (PDE): Change in Y had X been
different, but M fixed at the value it would have taken had X not
been changed:

PDE ≡ Y(x1,M(x0)) − Y(x0,M(x0)).

Legal motivation [from Pearl (2000)]:

“The central question in any employment-discrimination case is whether
the employer would have taken the same action had the employee been
of a different race (age, sex, religion, national origin etc.) and everything
else had been the same.” (Carson versus Bethlehem Steel Corp., 70
FEP Cases 921, 7th Cir. (1996)).
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Decomposition

PDE also allows non-parametric decomposition of Total Effect
(ACE) into direct (PDE) and indirect (TIE) pieces.

PDE ≡ E [Y(1,M(0))] − E [Y(0)]

TIE ≡ E [Y (1,M(1)) − Y (1,M(0))]

TIE+ PDE ≡ E [Y(1)] − E [Y(0)] ≡ ACE(X→ Y)
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Pearl’s identification claim

M YX

Pearl (2001) shows that under the NPSEM with independent errors
associated with the above graph:

the PDE is identified (!) by the following mediation formula:

PDEmed =
∑
m

[E[Y|x1,m] − E[Y|x0,m]]P(m|x0)
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Critique of PDE: Hypothetical Case Study

Observational data on three variables:

X- treatment: cigarette cessation

M intermediate: blood pressure at 1 year, high or low

Y outcome: say CHD by 2 years

Observed data (X,M, Y) on each of n subjects.

All binary

X randomly assigned
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Hypothetical Study (I): X randomized

Y = 0 Y = 1 Total P̂(Y=1 |m, x)

M = 0 1500 500 2000 0.25
X = 0

M = 1 1200 800 2000 0.40

M = 0 948 252 1200 0.21
X = 1

M = 1 1568 1232 2800 0.44

A researcher, Prof H wishes to apply the mediation formula to
estimate the PDE.
Prof H believes that there is no confounding, so that Pearl’s
NPSEM-IE holds, but his post-doc, Dr L is skeptical.
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Hypothetical Study (II): X and M Randomized

To try to address Dr L’s concerns, Prof H carries out animal
intervention studies.

Y = 0 Y = 1 Total P̂(Y(m, x)=1)
M = 0 750 250 1000 0.25

X = 0
M = 1 600 400 1000 0.40

M = 0 790 210 1000 0.21
X = 1

M = 1 560 440 1000 0.44

As we see: P̂(Y(m, x)=1) = P̂(Y=1 |m, x);
Prof H is now convinced: ‘What other experiment could I do ?’

He applies the mediation formula, yielding P̂DE
med

= 0.
Conclusion: No direct effect of X on Y.

Thomas Richardson DSI Seminar, Stanford 19 May 2014 Slide 58



Failure of the mediation formula

Under the true generating process, the true value of the PDE is:

P̂DE = 0.153 6= P̂DE
med

= 0

Prof H’s conclusion was completely wrong!
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Why did the mediation formula go wrong?

Dr L was right – there was a confounder:

M YX

H

but. . . it had a special structure so that:

Y ⊥⊥ H |M,X = 0 and M ⊥⊥ H | X = 1
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Why did the mediation formula go wrong?
Dr L was right – there was a confounder:

M YX

H

but. . . it had a special structure so that:

Y ⊥⊥ H |M,X = 0 and M ⊥⊥ H | X = 1

M Y

HX = 0

M Y

HX = 1

The confounding undetectable by any intervention on X and/or M.

Pearl: Onus is on the researcher to be sure there is no confounding (=
independent errors).

Causation should precede intervention.
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Summary of critique of Independent Error Assumption

The independent error assumption cannot be checked by any
randomized experiment on the variables in the graph.

⇒ Connection between experimental interventions and potential
outcomes, established by Neyman has been severed;

⇒ Theories in Social and Medical sciences are not detailed enough to
support the independent error assumption.
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