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CHAPTER 23: Network-Based Methods for Accessing Hard-to-Reach 

Populations Using Standard Surveys 

 

Tyler H. McCormick, University of Washington and Tian Zheng, Columbia University 

 

23.1 INTRODUCTION 

Standard surveys often exclude members of certain groups, known as hard-to-reach groups. One reason 

these individuals are excluded is difficulty accessing group members. Persons who are homeless are very 

unlikely to be reached by a survey that uses random-digit dialing, for example. Other individuals can be 

accessed using standard survey techniques, but are excluded because of issues in reporting. Members of 

these groups are often reluctant to self-identify because of social pressure or stigma (Shelley et al. 1995). 

Individuals who are homosexual, for example, may not be comfortable revealing their sexual preferences 

to an unfamiliar survey enumerator. A third group of individuals is difficult to reach because of issues 

with both access and reporting (commercial sex workers, for example). Even basic demographic 

information about these groups is typically unknown, especially in developing nations.  

 

        One approach to estimating demographic information about hard-to-reach groups is to reach 

members of these groups through their social network. Some network-based approaches, such as 

Respondent-Driven Sampling (RDS), recruit respondents directly from other respondents' networks 

(Heckathorn 1997; Heckathorn 2002), making the sampling mechanism similar to a stochastic process on 

the social network (Goel and Salganik 2009). RDS (see Chapter 24) affords researchers face-to-face 

contact with members of hard-to-reach groups, facilitating exhaustive interviews and even genetic or 

medical testing. The price for an entry to these groups is high, however, as RDS uses a specially 

designed link-tracing framework for sampling. Estimates from RDS are also biased because of the 

network structure captured during selection, with much statistical work surrounding RDS being intended 
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to re-weigh observations from RDS to have properties resembling a simple-random-sample. Though 

methods such as RDS can be advantageous (researchers interview members of hard-to-reach groups 

directly, for example), financial and logistical challenges often prevent researchers from employing these 

methods, especially on a large scale.  

 

        In this chapter, we focus on methods that utilize social network structure, but collect data about 

networks and hard-to-reach groups indirectly via standard surveys. Indirectly in this context means that 

survey respondents provide information, through carefully crafted network-based questions, about 

general population and members of hard-to-reach groups. These methods are easily implemented on 

standard surveys and require no specialized sampling methodology.  

 

        We focus specifically on Aggregated Relational Data (ARD), or “How many X's do you know,” 

questions (Killworth et al. 1998). In these questions, “X” defines a population of interest (e.g. How many 

people who are homeless do you know?). A specific definition of “know” defines the network the 

respondent references when answering the question. In contrast to RDS, ARD do not require reaching 

members of the hard-to-reach groups directly. Instead, ARD access hard-to-reach groups indirectly 

through the social networks of respondents on standard surveys. ARD never affords direct access to 

members of hard-to-reach populations, making the level of detail achievable though RDS impossible 

with ARD. Unlike RDS, however, ARD require no special sampling techniques and are easily 

incorporated into standard surveys. ARD are, therefore, feasible for a broader range of researchers across 

the social sciences, public health, and epidemiology to implement with significantly lower cost than 

RDS. The work presented in this chapter draws heavily on related work in the statistics literature. 

Though we present statistical results, the focus of this chapter is on designing surveys that reduce 

common sources of bias found in estimates using ARD. In the following sections, we provide 

background on ARD (Section 23.2) and related methods for deriving network features using ARD 

questions in standard survey (Section 23.3), including discussions of potential sources of bias using ARD 
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and methods we profile to address these challenges. More specifically, Section 23.3 provides 

recommendations for selecting populations that reduce bias in estimating degree, or respondent network 

size. These degree estimates are necessary for estimating hard-to-reach population sizes.  Section 23.3.4 

moves beyond estimating sizes of hard-to-count populations with these data and provides survey design 

recommendations for estimating demographic profiles of such groups. We end with a discussion (Section 

23.4). 

 

23.2 NETWORK-RELATED QUESTIONS IN STANDARD SURVEYS 

 

In this section, we discuss methods for asking network-related questions using standard surveys.  By 

standard surveys we mean a design where respondents are sampled randomly without replacement from 

a sampling frame (including various types of stratified or cluster designs).   Asking respondents on a 

survey about their social network servers to increase the sample size of the survey, including both 

respondents sampled directly and reports about individuals they are connected to through their social 

network.  The data we discuss in this chapter attain this network information indirectly. They are 

considerably easier to obtain than complete network data and there are currently limited lines of research 

using this type of data. A dearth of methods for indirect network data remains, however and the few 

existing methods estimate very specific characteristics of the network and do not address relationships 

between groups. 

 

23.2.1 Coverage Methods 

Several methods to collect social context of survey respondents have been developed, mostly to estimate 

the respondent's network size, or degree. One of the earliest methods was the reverse small-world 

method in (Killworth and Bernard 1978; Killworth, Bernard, and McCarty 1984; Bernard et al. 1990) 

which, motivated by the small-world experiments of (Milgram 1967), asked respondents to name 

someone they would use if they were required to pass a message to a given target. By asking respondents 
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about a large number of such targets, it is possible that a respondent will enumerate a large proportion of 

his acquaintance network. Unfortunately, however, this procedure required a large number (as many as 

500) targets and, thus, remained impractical for most surveys. In contrast, the summation method 

(McCarty et al. 2001) requires fewer categories. Respondents are asked how many people they know in a 

list of specific relationship types, for example, immediate family, neighborhood, coworkers, etc., and 

these responses are then summed to yield an overall estimate. These relationship types often overlap, 

however, so degree estimates suffer from double-counting. 

 

23.2.2 Sampling Methods 

(Pool and Kochen 1978) developed the phone book method where a respondent was provided randomly 

selected pages from the phone book and based on the proportion of pages which contained the family 

name of someone known to respondent, it was possible to estimate the respondent's social network size. 

The estimation was improved greatly in later work by (Freeman and Thompson 1989) and (Killworth et 

al. 1990) which instead of providing respondents pages of phone books provided them with lists of last 

names. The general logic of the phone book procedure was then developed further as the scale-up 

procedure (Killworth et al. 1998) using Aggregated Relational Data (ARD). Aggregated relational data 

questions ask respondents “How many X's do you know1,” and are easily integrated into standard 

surveys. Here, X, represents a subpopulation of interest. 

 

Aggregated Relational Data (ARD). Among methods to measure network information indirectly, we 

find the most promise in Aggregated Relational Data (ARD). ARD are most often used to estimate the 

size of populations that are difficult to count directly. The scale-up method, an early method for ARD, 

uses ARD questions where the subpopulation size is known (people named Michael, for example) to 

estimate degree in a straightforward manner. Information about the size of some populations is often 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The definition of “know” defines the network of interest, though the methods presented here do not depend on the 
definition of “know.” 
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available through administrative records, such as the Social Security Administration in the United States.  

Suppose that you know two persons named Nicole, and that at the time of the survey, there were 358,000 

Nicoles out of 280 million Americans. Thus your two Nicoles represent a fraction (2/358,000) of all the 

Nicoles. Extrapolating to the entire country yields an estimate of (2/358,000) × (280million) = 1,560 

people known by you. Then, the size of unknown subpopulations is estimated by solving the given 

equation for the unknown subpopulation size with the estimated degree. Using this method, ARD has 

been used extensively to estimate the size of populations such as those with HIV/AIDS, injection drug 

users, or the homeless (for example (Killworth et al. 1990; Killworth et al. 1998)).  

 

        Unlike the previously described methods, ARD allows researchers to choose specific 

subpopulations of interest without sampling or surveying members of these subpopulations directly. This 

feature holds potential to learn additional information about these subpopulations and their relationship 

to the overall network. (Shelley et al. 2006), for example, uses ARD to explore how the structure of the 

network of seropositive individuals impacts the dissemination of information about their disease status.  

 

        Despite the potential value of ARD and the ease of obtaining these data through standard surveys, 

the literature on learning about network structure from ARD remains underdeveloped. The scale-up 

method, for example, is easy to implement but does not account for network structure. Consider, for 

example, asking a respondent how many people named “Rose” she/he knows. If each person was equally 

likely to know Rose's2, then this would be equivalent to asking if they know each person on a list of the 

one-half million Rose's in the U.S.  If we were to take all one-half million of these Roses and put their 

names on a list, then each respondent would have the same chance of knowing each of these one-half 

million individuals if knowing someone named Rose were entirely random.  That is, each respondent on 

each Rose is a Bernoulli trial with a fixed success probability proportional to the size of this respondent’s 
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  This also assumes that one could recall their acquaintanceships with complete accuracy. This assumption is often 
not valid and we will discuss the issue in further detail in subsequent sections. 
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network size. Network structure makes these types of independence assumptions invalid. For example, 

since Rose is most common amongst older females and people are more likely to know individuals of 

similar age and the same gender, older female respondents are more likely to know a given Rose than 

older male respondents. Statistical models are needed to understand how these responses change based 

on homophily, as in this example, and on more complicated network properties. Ignoring social network 

structure induces bias in the individuals' responses. Since estimates of hard-to-count populations are then 

constructed using responses to aggregated relational data questions, the resulting estimates are also 

biased (Killworth et al. 1998; Bernard et al. 1991).  

 

        In addition to the applications of the scale-up method using ARD described in the previous section, 

two substantial steps in modeling ARD will influence our proposed method. Zheng, Salganik, and 

Gelman (2006) began by noting that under simple random mixing the responses to the “How many X's 

do you know?” questions would follow a Poisson distribution with rate parameter determined by the 

degree of the respondent and the network prevalence of the subpopulation. Here the network prevalence 

is the proportion of ties that involve individuals in subpopulation and should match the proportion of the 

population comprised of members of the given subpopulation. Under this assumption for example, the 

expected number of Rose's known by a respondent with degree equal to 500 would be 500×(500,000/280 

million) ≈ 1. They apply their method to data from (McCarty et al. 2001) and find that many of the 

questions in the data did not follow a Poisson distribution. In fact, most of the responses show 

overdispersion, or greater-than-expected variance. We can interpret the overdispersion as a factor that 

decreases the frequency of people who know exactly one person of type X, as compared to the frequency 

of people who know none. As overdispersion increases from its null value of 1, it is less likely for a 

person to have an isolated acquaintance from that group. For example, consider the responses to the 

question: “How many males do you know incarcerated in state or federal prison?” The mean of the 

responses to this question was 1.0, but the variance was 8.0, indicating that some people are much more 

likely to know more than one individual in prison than others. To model this increased variance (Zheng, 
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Salganik, and Gelman 2006) allowed individuals to vary in their propensity to form ties to different 

groups. In a multilevel model, this corresponds to assuming that these propensities follow a gamma 

distribution with a shape parameter determined by the overdispersion. The responses then can be 

modeled as a negative binomial distribution so that the expected number of alters known by a respondent 

in a given subpopulation is the degree of the respondent times the network prevalence, as under the 

simple model, but now scaled by the overdispersion parameter to estimate the variation in individual 

propensities to form ties to people in different groups. 

 

23.3 STATISTICAL METHODS FOR ARD 

 

In this section, we discuss methods for extracting network properties using ARD collected using survey 

questionnaires. The discussion is organized according to the network features under study. 

 

23.3.1 Estimating Personal Network Size. 

 

The scale-up estimate. Consider a population of size N. We can store the information about the social 

network connecting the population in an adjacency matrix Δ = [𝛿!!]!×! such that 𝛿!" = 1 if person i 

knows person j. Though the methods discussed here do not depend on the definition of know, throughout 

this chapter we will assume the (McCarty et al. 2001) definition of know: “that you know them and they 

know you by sight or by name, that you could contact them, that they live within the United States, and 

that there has been some contact (either in person, by telephone or mail) in the past 2 years.” The 

personal network size or degree of person i is then 𝑑! = 𝛿!"! . 

 

        One straightforward way to estimate the degree of person i would be to ask if she knows each of n 

randomly chosen members of the population. Inference could then be based on the fact that the responses 

would follow a binomial distribution with n trials and probability 𝑑!/𝑁. In a large population, however, 
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this method is extremely inefficient because the probability of a relationship between any two people is 

very low. For example, if one assumes an average personal network size of 750 (as estimated by(Zheng, 

Salganik, and Gelman 2006)), then the probability of two randomly chosen Americans knowing each 

other is only about 0.0000025 meaning that a respondent would need to be asked about millions of 

people to produce a decent estimate. 

 

        A more efficient method would be to ask the respondent about an entire set of people at once 

through ARD type survey questions. For example, asking, “How many women do you know who gave 

birth in the last 12 months?” instead of asking the respondent if she knows 3.6 million distinct people. 

The scale-up method uses responses to ARD questions of this form (“How many X's do you know?”) to 

estimate personal network size. For example, if you report knowing 3 women who gave birth, this 

represents about one-millionth of all women who gave birth within the last year. We could then use this 

information to estimate that you know about one-millionth of all Americans, 

3
3.6  million

(300  million)  ≈250  people. 

The precision of this estimate can be increased by averaging responses of many groups yielding the 

scale-up estimator (Killworth et al. 1998) of the degree of person i 

  𝑑! =
𝑦!"!

!!!

𝑁!!
!!!

⋅ 𝑁 

where 𝑦!" is the number of people that person i knows in subpopulation k, 𝑁! is the size of subpopulation 

k, and N is the size of the population. One important complication to note with this estimator is that 

asking “How many women do you know who gave birth in the last 12 months?” is not equivalent to 

asking about 3.6 million random people; rather the people asked about are women, probably between the 

ages of 18 and 45. This creates statistical challenges that are addressed in detail in subsequent sections. 

To estimate the standard error of the simple estimate, we follow the practice of (Killworth et al. 1998) by 

assuming 
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𝑦!"
!

!!!
~Binomial 𝑁!

!

!!!
, 𝑝 =

𝑑!
𝑁

. 

The estimate of the probability of success, 𝑝 = !!
!

, is 

𝑝 = !!"!
!!!

!!!
!!!

= !!
!

     (1) 

with standard error (including finite population correction) (Lohr 1999) 

SE 𝑝 =
1
𝑁!!

!!!
  𝑝 1 − 𝑝

𝑁 − 𝑁!!
!!!

𝑁 − 1
. 

The scale-up estimate 𝑑! then has standard error 

SE 𝑑! = 𝑁 ⋅ SE 𝑝 = 𝑁
1
𝑁!!

!!!
  𝑝 1 − 𝑝

𝑁 − 𝑁!!
!!!

𝑁 − 1
≈ 𝑑!

1 −
𝑁!!

!!!
𝑁
𝑁!!

!!!
𝑁

. 

For example, if we asked respondents about the number of women they know who gave birth in the past 

year the approximate standard error of the degree estimate is calculated as 

SE 𝑑! ≈ 𝑑!
1 −

𝑁!!
!!!
𝑁
𝑁!!

!!!
𝑁

≈ 750 ⋅
1 − 3.6  million

300  million
3.6  million
300  million

≈ 250. 

assuming a degree of 750 as estimated by (Zheng, Salganik, and Gelman 2006). If in addition, we also 

asked respondents the number of people they know who have a twin sibling, the number of people they 

know who are diabetics, and the number of people they know who are named Michael, we would have 

increased our aggregate subpopulation size, 𝑁!!
!!! , from 3.6 million to approximately 18.6 million and 

in doing so decreased our estimated standard error to about 100. In Figure 23.1 (McCormick, Salganik, 

and Zheng 2010), we plot SE 𝑑! / 𝑑! against 𝑁!!
!!! /𝑁. The most drastic reduction in estimated 

error comes in increasing the survey fractional subpopulation size to about 20 percent (or approximately 

60 million in a population of 300 million). Though the above standard error depends only on sum of the 
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subpopulation sizes, we will show that there are other sources of bias that make the choice of the 

individual subpopulations important as well. 

 

Figure 23.1  Standard error of the scale-up degree estimate (scaled by the square root of the true degree) 

plotted against the sum of the fractional subpopulation sizes. As we increase the fraction of population 

represented by survey subpopulations, the precision of the estimate improves, with diminishing 

improvements after about 20 percent. 

Issues with the scale-up estimator.  The scale-up estimator using “How many X do you know?” data, is 

known to suffer from three distinct problems -- transmission errors, barrier effects, and recall problems 

(Killworth et al. 2003; Killworth et al. 2006) -- when the ARD questions are chosen arbitrarily. 

Transmission errors occur when the respondent knows someone in a specific subpopulation, but is not 

aware that they are actually in that subpopulation. For example, a respondent might know a woman who 

recently gave birth, but might not know that she had recently given birth. These transmission errors 

likely vary from subpopulation to subpopulation depending on the sensitivity and visibility of the 
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information. These errors are extremely difficult to quantify because very little is known about how 

much information respondents have about the people they know (Laumann 1969; Killworth et al. 2006; 

Shelley et al. 2006). Barrier effects occur whenever some individuals systematically know more (or 

fewer) members of a specific subpopulation than would be expected under random mixing, and thus can 

also be called non-random mixing. For example, since people tend to know others of similar age and 

gender (McPherson, Smith-Lovin, and Cook 2001), a 30-year old woman probably knows more women 

who have recently given birth than would be predicted just based on her personal network size and the 

number of women who have recently given birth. Similarly, an 80-year old man probably knows fewer 

than would be expected under random mixing. Therefore, estimating personal network size by asking 

only “How many women do you know who have recently given birth?”—the estimator presented above 

in (1)--will tend to overestimate the degree of women in their 30's and underestimate the degree of men 

in their 80's. Because these barrier effects can introduce a bias of unknown size, previous researchers 

have avoided using the scale-up method to estimate the degree of any particular individual. A final 

source of error is that responses to these questions are prone to recall error. For example, people seem to 

under-recall the number of people they know in large subpopulations (e.g., people named Michael) and 

over-recall the number in small subpopulations (e.g., people who committed suicide) (Killworth et al. 

2003; Zheng, Salganik, and Gelman 2006). If people were answering such questions consistently we 

would expect a linear relationship between the size of the subpopulation and the mean number of 

individuals recalled. That is, if the size of subgroup doubled, the mean number recalled should also 

double. This is not the case as can be seen in Figure 23.2 (McCormick, Salganik, and Zheng 2010), 

which plots the mean number known in each subpopulation as a function of subpopulation size for the 12 

names in the (McCarty et al. 2001) data. The figure shows that there was over-recall of small 

subpopulations and under-recall of large subpopulations, a pattern that has been noted previously 

(Killworth et al. 2003; Zheng, Salganik, and Gelman 2006).  
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Figure 23.2  Mean number recalled as a function of subpopulation size for 12 names. If respondents 

recall perfectly, then we would expect the mean number recalled to increase linearly as the subpopulation 

size increases. The best-fit line and loess curve show that this was not the case suggesting that there is 

recall error. 

 

Reducing bias in degree estimates.  In this section, we review design recommendations for reducing 

bias in degree estimates described in Section 23.3.1. The intuition behind the recommendations we 

describe is that the names asked about should be chosen so that the combined set of people asked about 

should be easy to recall, with perfect transmission of traits being asked (first names), and is a “scaled-
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down” version of the overall population. For example, if 20 percent of the general population is females 

under 30 then 20 percent of the people with the names used must also be females under 30.  

 

In ARD, respondents are conceptualized as egos, or senders of ties in the network. As discussed in 

(McCormick, Salganik, and Zheng 2010), we divide the egos into groups based on their demographic 

characteristics (males 20-40 years old, for example). The individuals who comprise the counts for ARD 

are the alters, or recipients of links in the network. The alters are also divided into groups, though the 

groups need not be the same for both the ego and the alter groups. The scale-down condition was 

motivated by the latent non-random mixing model in (McCormick, Salganik, and Zheng 2010) that 

assumes an expected number of acquaintances for an individual 𝑖 in ego group 𝑒 to people in group k,  

 𝜇!"# =   𝐸  (𝑦!"#) = 𝑑!   !
!!! 𝑚(𝑒, 𝑎)

!!"
!!
. 

Here, 𝑚(𝑒, 𝑎) is the mixing matrix as in (McCormick, Salganik, and Zheng 2010).  The mixing matrix 

accounts for the propensity for individiuals to know more respondents in some demographic groups than 

others (a young female respondent will likley know more young females than older males, for example).  

On the other hand, the scale-up estimator assumes  

   𝐸     !
!!! 𝑦!"# =   !

!!! 𝜇!"# = 𝑑!   !
!!! 𝑚(𝑒, 𝑎)   !

!!!
!!"
!!

 

 ≡ 𝑑!
  !

!!!   !
!!!!!"
!

,∀𝑒. (2) 

(2) shows that the (Killworth et al. 1998) scale-up estimator is in expectation equivalent to that of the 

latent non-random mixing if either  

 𝑚(𝑒, 𝑎) = !!
!
,∀𝑎,∀𝑒, (3) 

or  

   !
!!!!!"

  !
!!!!!

= !!
!
,∀𝑎. (4) 

In other words, the two estimators are equivalent if there is random mixing (3) or if the combined set of 

names represents a “scaled-down” version of the population (4). Since random mixing is not a reasonable 
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assumption for the acquaintances network in the United States, we need to focus on selecting the names 

to satisfy the scaled-down condition. That is, we should select the set of names such that, if 15 percent of 

the population is males between ages 21 and 40 !!
!

 then 15 percent of the people asked about must also 

be males between ages 21 and 40   !
!!!!!"

  !
!!!!!

. In actually choosing a set of names to satisfy the scaled-

down condition, we found it more convenient to work with a rearranged form:  

   !
!!!!!"
!!

=   !
!!!!!
!

,∀𝑎. (5) 

In order to find a set of names that satisfy (5) it is helpful to create Figure 23.3 (McCormick, Salganik, 

and Zheng 2010) that displays the relative popularity of many names over time. From this figure, we 

tried to select a set of names such that the popularity across alter categories ended up balanced. For 

example, consider the names Walter, Bruce and Kyle. These names have similar popularity overall, but 

Walter was popular from 1910-1940, whereas Bruce was popular during the middle of the century and 

Kyle near the end. Thus, the popularity of the names at any one time period will be balanced by the 

popularity of names in the other time periods, preserving the required equality in the sum (5).  

 

 

Figure 23.3  Heat maps of additional male and female names based on data from the Social Security 

Administration. Lighter color indicates higher popularity.  
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        When choosing what names to use, in addition to satisfying (5), we recommend choosing names 

that compromise 0.1 to 0.2 percent of the population, as these minimize recall errors and yield average 

responses from 0.6-1.3. Finally, we recommend choosing names that are not commonly associated with 

nicknames in order to minimize transmission errors.  

 

Selecting the number of names. For researchers planning to use the scale-up method, an important 

issue to consider in addition to which names to use is how many names to use. Obviously, asking about 

more names will produce a more precise estimate, but that precision comes at the cost of increasing the 

length of the survey. To help researchers understand the trade-off, we return to the approximate standard 

error under the binomial model presented in Section 23.3. Simulation results using 6, 12, and 18 names 

chosen using the guidelines suggested above agree well with the results from the binomial model in 

Section 23.3 (results not shown). This agreement suggests that the simple standard error may be 

reasonable when the names are chosen appropriately. To put the results of (1) into a more concrete 

context, a researcher who uses names whose overall popularity reaches 2 million would expect a 

standard error of around 11.6× 500 = 259 for an estimated degree of 500 whereas with   𝑁!=6 

million, she would expect a standard error of 6.2× 500 = 139 for the same respondent. Finally, for the 

good names,   𝑁! = 4 million, so a researcher could expect a standard error of 177 for a respondent 

with degree 500.  

 

23.3.2 Estimating Non-random Mixing.  

 

In this section, we introduce a missing data perspective for ARD and propose an estimator based on the 

EM algorithm.  
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     If for a given respondent, 𝑖, we could take all the members of the social network with which 𝑖 has a 

link and place them in a room, we would compute the mixing rate between the ego and a given alter 

group, 𝑎 = (1, . . . ,𝐴), by dividing the room in 𝐴 mutually exclusive sections and asking alters to stand in 

their respective group. The estimated mixing rate would then be the number of people standing in a given 

group divided by the number of people in the room. We could also perform a similar calculation by 

placing a simple random sample of size 𝑛 from a population of size 𝑁 in a room. Then, after dividing the 

alters into mutually exclusive groups, we could count 𝑦!", or the number of alters respondent 𝑖 knows in 

the sample who are in each of the 𝑎 alter groups. Since we have a simple random sample we can 

extrapolate back to the population and estimate the degree of the respondent, 𝑑!, and within alter group 

degree, 𝑑!", as  

 

 𝑑! =   !
!!! 𝑦!"/(𝑛/𝑁)   and   𝑑!" = 𝑦!"/(𝑛!/𝑁!). 

 

Given these two quantities we can estimate the mixing rate between the respondent and an alter group by 

taking the ratio of alters known in the sample who are in alter group 𝑎 over the total number known in 

the sample. This computation is valid because we assumed a simple random sample and, thus, that (in 

expectation) the demographic distribution of alters in our sample matches that of the population. In 

ARD, the distribution of the hypothetical alters we sample depends on the subpopulations we select. If 

we only ask respondents subpopulations which consist of young males, for example, then our 

hypothetical room from the previous example would contain only the respondent's young, male alters. 

Estimating the rate of mixing between the respondent and older females would not be possible in this 

situation. Viewed in this light, ARD is a form of cluster sampling where the subpopulations are the 

clusters and respondents report the presence/absence of a tie between all alters in the cluster. Since the 

clusters are no longer representative of the population, our estimates need to be adjusted for the 
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demographic profiles of the clusters (Lohr 1999). Specifically, if we observe 𝑦!"# for subpopulations 

𝑘 = (1, . . . ,𝐾) and alter groups 𝑎 = (1, . . . ,𝐴), then our estimates of 𝑑! and 𝑑!" become  

 

 𝑑! =   !
!!! 𝑦!"/   !

!!! 𝑁!/𝑁   𝑎𝑛𝑑   𝑑!" =   !
!!! 𝑦!"#/   !

!!! 𝑁!"/𝑁𝑎  

 

where 𝑁! is the size of subpopulation 𝑘 and 𝑁!" is the number of members of subpopulation 𝑘 in alter 

group 𝑎. To estimate the mixing rate, we could again divide the estimated number known in alter group 

𝑎 by the total estimated number known. Under the scaled-down condition the denominators in the above 

expressions cancel and the mixing estimate is the number known in the subpopulations that are in alter 

group 𝑎 over the total number known in all 𝐾 subpopulations. In the examples above, we have assumed 

the alters are observed so that 𝑦!"# can be computed easily. This is not the case in ARD, however, since 

we observe only the aggregate number of ties and not the specific demographic make-up of the 

recipients. Thus, ARD represent a type of cluster sampling design where the specific ties between the 

respondent and members of the alter group are missing. If we ignore the residual variation in propensity 

to form ties with group 𝑘 individuals due to noise, we may assume that the number of members of 

subpopulation 𝑘 in alter group 𝑎 the respondent knows, 𝑦!"#, follows a Poisson distribution. Under this 

assumption, we can estimate 𝑚!" by imputing 𝑦!"# as part of an EM algorithm EM. Specifically, for 

each individual define 𝑦!"
(!"#) = (𝑦!"# , . . . , 𝑦!!!)! as the complete data vector for each alter group. The 

complete data log-likelihood for individual 𝑖 's vector of mixing rates, 𝑚! = (𝑚!!, . . . ,𝑚!")! , is 

ℓ𝓁(𝑚!; 𝑦!!
(!"#), . . . , 𝑦!"

(!"#)), which has the form  

 ℓ𝓁(𝑚!; 𝑦!!
(!"#), . . . , 𝑦!"

(!"#)) =   !
!!!   !

!!! log   𝑃𝑜𝑖𝑠𝑠𝑜𝑛   𝑦!"#; 𝜆!"# = 𝑑!𝑚!"
!!"
!!

. (6) 

Using (6) we derive the following two updating steps for the EM:  

 𝑦!"#
(!) = 𝑦!"

!!"
(!!!)!!"

!!

  !
!!!!!"

(!!!)!!"
!!
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 𝑚!"
(!) =   !

!!!!!"#
(!!!)

  !
!!!!!"

. 

If one sets 𝑚!"
(!) = 𝑁!/𝑁, which corresponds to random mixing in the population, and runs one EM 

update, this would result in the following  simple ratio estimator of the mixing rate for individual 𝑖:  

 𝑚!" =
  !

!!!!!"(!!"/!!)
  !

!!!!!"
 (7) 

In our simulation studies (details not shown), this simple estimator produces estimates very close to the 

converged EM estimates. Additionally, it is easy to show that the simple ratio estimate, 𝑚!", is unbiased 

if 𝑁!"/𝑁! ≠ 0 for only one alter group 𝑎 and that for any 𝑎 there exists a subpopulation, 𝑘, such that 

𝑁!" = 𝑁!. We refer to this condition as complete separability. Therefore, (7) constitutes a simple 

estimate for individual mixing rate and can be used to estimate average mixing behaviors of any ego 

group.  

 

23.3.3 Estimating Demographic Profiles of Hard-T0-Reach Groups Using ARD 

In this section, we describe a model presented by (McCormick and Zheng 2012) for estimating latent 

demographic profiles for hard-to-reach groups. This method will provide information about the 

demographic make-up of groups which are often difficult to access using standard surveys, such as the 

proportion of young males who are infected with HIV. Under the set-up of ego groups and alter groups 

discussed in Section 23.3.1, members of hard-to-reach groups are one type of alter. Thus, the alter groups 

defined determine the demographic characteristics that can be estimated for the hard-to-reach. The 

(McCormick and Zheng 2012) method combines estimation and survey-design strategy, making it well-

suited for researchers who intend to collect ARD. First one needs to use ARD questions statisfying the 

scaled-down condition in (McCormick, Salganik, and Zheng 2010) for selecting subpopulations to 

reduce bias in the estimates of respondent degree discussed in Section 23.3.1 and derive the mixing 

matrix estimates as in Section 23.3.3.  
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The estimates for respondent degree (Section 23.3.1) and mixing estimates (Section 23.3.3) rely 

on latent profile information from some “known” populations. Using these estimates, we now further 

develop a regression-based estimator for unobserved latent profiles. Define ℎ a, 𝑘  as the fraction of alter 

group a made up of members of group k. For each respondent and each unknown subpopulation we now 

have  

 𝑦!" =   !
!!! 𝑑!𝑚!"ℎ(𝑎, 𝑘). (7) 

If we denote the matrix 𝑋! = 𝑑𝑚⋅! and the vector ℎ(⋅, 𝑘) = 𝛽!, then (7) can be regarded as a linear 

regression equation, 𝑦! = 𝑋!!𝛽! , with the constraint that coefficients, 𝛽! , are restricted to be non-

negative.  Lawson and Hanson (1974) propose an algorithm for computing these coefficients. Since the 

𝑚⋅! sum to one across alter groups, the columns of 𝑋! are collinear. This could produce instability in 

solving the quadratic programming problem associated with finding our estimated latent profiles. In 

practice, we have found our estimates perform well despite this feature.  

 

Simulation experiments. Here we present simulation experiments to evaluate our regression-based 

estimates under four strategies for selecting observed profiles. First, we created profiles which are 

completely separable (defined in Section 23.3.3). Second, we constructed profiles for the names 

satisfying the scaled-down condition presented in Section 23.3.1 using data from the Social Security 

Administration. These names provide insights into the potential accuracy of our method using actual 

profiles. As a third case, we include the names from (McCormick, Salganik, and Zheng 2010) which 

violate the scaled-downed down condition and are almost exclusively popular among older respondents. 

For the fourth set of names, recall from Section 23.3.3 that the mixing matrix estimates are identifiable 

only if the matrix of known profiles, 𝐇𝐀×𝐊, has rank 𝐴. To demonstrate a violation of this condition we 

selected a set of names with uniform popularity across the demographic groups, or nearly perfect 

collinearity. There is some correlation in the scaled-down names since several names have similar 

profiles. The degree of correlation is substantially less than in the flat profiles, however. In each 
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simulation, (McCormick and Zheng 2012) generated 500 respondents using the Latent Non-random 

Mixing Model (see McCormick, Salganik, and Zheng 2010) with each of the four profile strategies. 

Mixing matrix estimates were calculated using the simple estimate derived from the first step of the EM 

algorithm in Section 23.3.3. We compare our mixing matrix estimates to the estimated mixing matrix 

from (McCormick, Salganik, and Zheng 2010), which we use to generate the simulated data. We 

evaluate the latent profiles using six names with profiles known from the Social Security Administration. 

We repeated the entire process 1,000 times.  

 

Figure 23.4 Total mean squared error across all elements of the mixing matrix and latent profile matrix. 

The vertical axis is the sum of the errors across all eight alter groups. We generated 500 respondents 

using the four profile structures then evaluated our ability to recover the mixing matrix estimated in 

(McCormick, Salganik, and Zheng 2010), and the known profiles of six additional names. We repeated 

the simulation 1,000 times. In both cases the ideal profile has the lowest error, followed by the scaled-

down names suggested by (McCormick, Salganik, and Zheng 2010). 
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        Figure 23.4 (McCormick and Zheng 2012) presents boxplots of the squared error in mixing matrix 

and latent profile estimates. In both cases, the ideal, completely separable, profiles have the lowest error. 

The scaled-down names also perform well, indicating that reasonable estimates are possible even when 

complete separability is not. The flat profiles perform only slightly worse than the scaled-down names 

for estimating mixing but significantly worse when estimating latent profiles. The names which violate 

the scaled-down condition produce poor estimates of both quantities.  

 

23.4 Conclusion and Discussion 

In this chapter we present methods for estimating features of hard-to-reach populations using indirectly 

observed network data.  ARD are easy and cheap to collect using standard survey mechansisms.  This 

means that the information needed to estimate sizes of some hard-to-reach populations can be collected 

using existing surveys designed for other topics.  We have focused particularly on survey designs which 

lead to reliable, but simple, estimates.  We belive that the design conditions we propose are critical to the 

performance of these simple estimators.  In cases where data have already been collected, or when it is 

not possible to develop survey questions in accordance with these guidelines, we suggest using model-

based strategies proposed in McCormick et al. (2010) and McCormick and Zheng (2012).  We also note 

that there are many open areas of research in this challenging problem, with contributions to be made 

both in improving estimation methods as well as verifying and calibrating currently proposed techniques. 
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