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ABSTRACT

In this paper we develop a complete methodology for document classification and cluster-
ing. We start by investigating how the choice of document features influences the perfor-
mance of a document classifier and then use our findings to develop a clustering method
suitable for document collections. From our study of the effect of frequency transformation,
term weighting and dimensionality reduction through principal components analysis on the
performance of a simple K-nearest-neighbors classifier, we conclude that: (a) applying a
logarithm or square-root transformation to the term frequencies reduces error rates; (b)
term weighting of the transformed frequencies does not appear to help much; and (c) in-
creasing the feature space dimension beyond 50 does not improve performance. We use
these findings in the construction of a Gaussian Mixture Document Clustering (GMDC) al-
gorithm. This algorithm models the data as a sample from a Gaussian mixture. The model
is used to build clusters based on the likelihood of the data, and to classify documents ac-
cording to Bayes rule. One main advantage of our approach is the ability to automatically
select the number of clusters present in the document collection. Our experiments with
the Topic Detection and Tracking Corpus demonstrates the ability of GMDC to choose a
sensible number of clusters and to generate meaningful partitions of the data.
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1 Introduction

With the dramatic growth of digital document collections (news, journal articles, e-mail, man-
uals, etc.) comes an increasing need for tools facilitating various kinds of access such as
query-based retrieval, browsing, or generating synopses.

The primary focus of this paper is topic detection, i.e. assigning the documents in a collection C

to “topics”. For example, the documents might be coming from a newswire agency, and topics
might be “Carter in Bosnia” (referring to the negotiations to cease fi re in Bosnia in December
of 1994), “DNA evidence in the OJ Simpson trial” (referring to the DNA blood analysis in the
OJ Simpson murder trial), “Kobe earthquake” (referring to the severe earthquacke that took
place in Kobe, Japan, on January 17, 1995), etc. There are two versions of the topic detection
problem: we can require that each document be assigned to exactly one topic, in which case
we are constructing a partition of the collection; or we can allow each document to be assigned
to one or more topics. In this paper we focus on the case when the topics form a partition of
the collection.

We also briefly touch on “topic tracking”. In its simplest form the goal of topic tracking is to
assign a new document to one of the topics detected in C, or to decide that it is about a new
topic not represented in C.

Document detection and tracking is different from document retrieval. The goal of document
retrieval is to fi nd the documents in a collection that best match some query. The query might
be considered a very short document consisting of a few keywords, and the goal then is to fi nd
the documents in the collection that are most similar to the query document.

In Statistics terminology, topic detection is a clustering problem: we want to partition C into
groups such that documents in each group are similar to each other, and dissimilar from doc-
uments in other groups.

In its simplest form, topic tracking is a classifi cation problem. We have a collection C of doc-
uments, each labeled with a topic, and we want to assign a label to a new document. The
unusual aspect of the problem is that our answer could be “none”, in which case the document
is taken to represent a new topic.

Clustering and classifi cation methods play a central role in the reduction of both the number
of operations needed for document classifi cation, and the retrieval time. Also, they can be
designed to make accurate decisions on whether or not a document represents a new topic.

In order to apply clustering and classifi cation methods, we fi rst map documents to vectors in
some p-dimensional space. This is not strictly speaking necessary. Most clustering methods
and some classifi cation methods (for example K-nearest-neighbor classifi cation) only require
similarities or dissimilarities between documents. However, the distinction is not as important
as it might seem at fi rst glance. Given a representation of documents as p-dimensional points
we can always defi ne dissimilarity as interpoint distance. Given a dissimilarity matrix, on the
other hand, we can use multi-dimensional scaling (Kruskal, 1964a; Kruskal, 1964b; Kruskal
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and Wish, 1978; Shepard, 1980) to fi nd points in p-dimensional Euclidean space such that the
interpoint distances approximately or exactly match the dissimilarities.

The influence of the mapping from documents to feature vectors (or, equivalently, the influ-
ence of the similarity measure) on the performance of document retrieval methods has been
extensively studied, and has been found to be considerable (Zobel and Moffat, 1998; Du-
mais, 1991; Berry, Dumais and O’Brien, 1995). In contrast, the influence on clustering and
classifi cation methods appears to have attracted little attention (see however (Scḧutze and
Silverstein, 1997)).

It is clear that in order to successfully address the topic tracking and detection problem, one
need not only design a good clustering method for documents, but also discover a map from
documents to feature vectors that eases the task for the clustering method. Thus, in this paper
we develop a complete methodology for document clustering. We start by investigating how the
choice of document features influences the performance of a document classifi er (Section 2);
and then use our fi ndings to develop a clustering method suitable for document collections
(Section 3).

Our study of the effect of document feature selection, e.g. word frequency transformation
and weighting, and document dimensionality reduction (Subsection 2.1), is based on the K-
nearest-neighbor classifi er. We choose to work with this classifi er because of its simplicity
and lack of assumptions on the distributional properties of the documents. We expect that a
choice of features resulting in good performance of the K-nearest-neighbor classifi er is also a
good choice for clustering. Although this admittedly requires a leap of faith, our experiments on
document clustering in Subsection 3.2 seem to confi rm this belief. Our fi ndings suggest that
applying a square-root or logarithm transformation to word frequencies results in substantial
gains for classifi cation. The combination of any of these transformations with the so-called
inverse document frequency or entropy weighting schemes also improve classifi cation per-
formance. Similar results have been found in the information retrieval literature (Zobel and
Moffat, 1998; Dumais, 1991; Berry et al., 1995) but with somewhat less general experiment
designs that ours (Section 2).

Our document clustering method borrows ideas from the model based clustering literature
(Banfi eld and Raftery, 1993; Celeux and Govaert, 1995). It explicitly models the data as a sam-
ple from a Gaussian mixture. Each of the components in the mixture distribution is assumed to
be a multivariate Gaussian distribution with uncorrelated components. This assumption fi ts the
data well and greatly simplify the computations involved, including the estimation of the param-
eters. These are effi ciently estimated through the Expectation-Maximization (EM) algorithm
(Dempster, Laird and Rubin, 1977). We propose several ways of initializing the EM algorithm;
these include effi cient and accurate variations of the K-means algorithm (Ward, 1963), as well
as the more popular agglomerative hierarchical clustering techniques.

The model is used to build clusters based on the likelihood of the data, and to classify doc-
uments according to Bayes rule (Section 3). We call this approach to document clustering
Gaussian Mixture Document Clustering (GMDC). One main advantage of our approach is the
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ability to automatically estimate the number of clusters (topics) present in the document collec-
tion via Bayes factors (Raftery, 1995).

Our experiments in Subsection 3.2, with the TDT Corpus (Allan, Carbonell, Doddington, Yam-
ron and Yang, 1998), are extremely encouraging, demonstrating the ability of GMDC to choose
a reasonable number of clusters as well as to generate meaningful partitions of the data.

Our ideas have been successfully applied to large collections of documents and in general
to large data sets, through a simple procedure that combines “fractionation” (Cutting, Karger,
Pedersen and Tukey, 1992) with Gaussian mixture document clustering. The study of this ex-
tension has been published elsewhere (Tantrum, Murua and Stuetzle, 2004; Tantrum, Murua
and Stuetzle, 2002). The present work focuses on the foundations of our methodology. Sim-
ilar ideas to deal with large datasets, but not necessarily documents, have been reported in
the literature recently. But unlike our comprenhensive treatment of the problem for document
collections, they focus on scalability of the original EM algorithm used to fi t Gaussian mixtures
(Jin, Wong and Leung, 2005), or on feature extraction procedures for general data sets (Hsieh,
Wang and Hsu, 2006).

This paper is organized as follows. Section 2 describes our study of the influence of document
dimensionality reduction, term weighting and transformation (feature selection) on the perfor-
mance of the K-nearest-neighbors document classifi er. Within this section, we summarize a
number of term frequency transformation and term weighting schemes used in the conversion
of documents into high dimensional vectors. In Subsection 2.2 we focus on dimensionality re-
duction methods like latent semantic indexing and principal component analysis, and discuss
connections between them. In Subsection 2.3 we describe our experiment on the effect of
feature selection on the performance of the K-nearest-neighbors classifi er, present the results
and our conclusions concerning feature selection. In Section 3, we describe our model based
approach to document classifi cation and clustering. Our experiments regarding GMDC are
presented in Subsection 3.2. Finally, Section 4 contains an overall summary of our fi ndings.

2 The effect of feature selection on document classification

In this section, we report the results of an experiment investigating how the choice of docu-
ment features influences the performance of a document classifi er. We chose the K-nearest-
neighbor classifi er due to its simplicity and lack of assumptions on the distributional properties
of the documents. As our test data we use a subset of 1131 documents from the TDT cor-
pus (Allan et al., 1998) that have been manually partitioned into 25 topics. Our fi ndings in
this section are used later in Section 3 to select feature vectors that ease the classifi cation
and clustering of documents. We start with a brief overview of widely used pre-processing
techniques on documents.
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2.1 Converting documents into vectors

The documents in a collection are fi rst decomposed into word or sub-word units usually referred
to as terms,. The terms are arbitrarily assigned sequence numbers between 1 and the number
of terms p. Each document in the collection is then represented by a p-dimensional vector of
term frequencies, and the collection of n documents is represented by a n × p term-frequency
matrix F = {fij}. In applications such as topic detection and tracking, (on-line) customer
support, product catalog navigation, and web-surfi ng, the vocabulary size typically is on the
order of tens of thousands of terms, giving rise to extremely sparse term frequency matrices.

The raw term-frequency matrix F is then subjected to various transformations. The fi rst step
often is to replace the term frequencies by their square-root or logarithm. This reduces the
influence of high counts, which is motivated by the belief that the difference between a term
occuring 10 times versus 11 times is not as signifi cant as the difference between a term occur-
ing once versus not occuring at all. A more extreme step in the same direction is to convert F

to a binary matrix indicating whether a term does or does not occur in a document.

A document is usually characterized by a few key terms; these terms indicate what topic the
document is covering, and do not necessarily appear more than once within the document.
Hence total term frequency is not necessarily indicative of a term’s information content; for ex-
ample a rare term (e.g. “OJ”, from“OJ Simpson”) immediately reveals what topic the document
is about. To account for this disparity between terms, several global weighting schemes have
been proposed. They are global in the sense that the weights reflect the distribution of terms
over the entire document collection. Some proposed choices for the weight assigned to the
j-th term are:

Identity: wj = 1

Normal: wj = 1/
√∑

i f2
ij

Global frequency Inverse document frequency (GfIdf):
wj =

∑
i fij/

∑
i I(fij > 0), where I denotes the indicator function.

Inverse document frequency: wj = log(n/
∑

i I(fij > 0))

Entropy: wj = 1 +
∑

i pij log pij/ log n, with pij = fij/
∑

i fij .

The normal weighting scheme normalizes the term counts over the document collection. Hence
a term which occurs infrequently will make the same contribution to the distance between doc-
uments as a very common term. The global frequency inverse document frequency (GfIdf)
weighting scheme weights each term by the average frequency of the term in documents con-
taining the term. Among two terms with equal total frequency

∑
i fij , GfIdf favors the one that

occurs in a smaller number of documents. The inverse document frequency (Idf) weighting
scheme gives lower weights to terms occurring in a large number of documents. The entropy
weighting scheme is based on information-theoretic ideas. Basically, the entropy of a frequency
distribution is maximized if all the frequencies are the same. This case is thought of as least
informative: if a given term is equally likely to be present in all documents, then this term is not
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telling anything about a particular document. A frequency distribution that is concentrated at
a single document is at the other extreme (entropy = 0): the term completely distinguishes a
particular document from the others.

Previous studies by Dumais (Dumais, 1991) suggest that entropy weighting outperforms other
weighting schemes in the context of information retrieval; however her study focuses only on
untransformed frequencies and log-transformed entropy weighted frequencies. In our exper-
iment we evaluate all 15 combinations of the three term frequency transformations (i.e. un-
transformed, square root and logarithm) with the fi ve weighting schemes listed above. We fi rst
transform the term frequencies, multiply the transformed frequencies by their global weights,
and then normalize each document vector to have Euclidean norm equal to one. The last step
eliminates the influence of document length on distance. More precisely, let (fi1, fi2, . . . , fip)
be the term frequency vector for the i-th document in the collection. The transformed and
weighted term frequencies are given by

xij =
wj × g(fij)√∑
k(wk × g(fik))2

,

where wj is the global weight associated with the j-th term, and g(·) is the term transformation
(square-root, log, identity). In the following, X denotes the transformed and weighted term
frequency matrix.

2.2 Dimensionality reduction

The number p of terms occuring in a document collection can easily be in the thousands
and may be larger than the number n of documents. Representing each document by a p-
dimensional vector of (tranformed and weighted) term frequencies has at least two disadvan-
tages. First, it is costly. Storing a document vector requires space proportional to the number of
terms occuring in the document. Finding the distance between two document vectors requires
work that is proportional to the number of terms occuring in the two documents. This assumes
that sparse matrix techniques are used. Representing documents by vectors of dimensionality
lower than the average number of terms in a document results in savings of space as well as
time. Principal component analysis is a standard statistical tool for mapping a collection of
high-dimensional vectors into some lower dimensional space while (hopefully) preserving the
essential structure.

Second, representing documents by high dimensional term frequency vectors might even be
detrimental to performance. This was fi rst noted in the context of document retrieval and led
to the discovery of latent semantic indexing. Latent semantic indexing was conceived with
the goal of obtaining a measure of similarity between documents that is more invariant to
“semantic content” than lexical matching (Berry et al., 1995). Lexical matching between words
has been observed to be quite ineffective in information retrieval, since only documents having
at least one word in common with the query are retrieved. In fact, lexical matching yields low
recall (many relevant documents are missed) and low precision(many unrelated documents
are retrieved). According to (Berry et al., 1995), the philosophy behind LSI is that “there is
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an underlying or latent structure in the pattern of word usage that is partially obscured by the
variability of word choice.” Latent semantic indexing is designed to uncover this structure.

There is a close connection between principal component analysis and latent semantic index-
ing, which we will now discuss.

Principal component analysis Given document vectors x1, . . . ,xn ∈ Rp and a target di-
mensionality q, principal component analysis fi nds the q-dimensional affi ne subspace S of Rp

that is closest to the document vectors, i.e. that minimizes
∑
d2(xi, S), where d(·, ·) denotes

euclidean distance. It is a standard result ((Mardia, Kent and Bibby, 1979), Chapter 8) that S

passes through the mean of the document vectors and is spanned by the q eigenvectors of the
term covariance matrix Σ with the largest eigenvalues. The term covariance matrix is defi ned
as

Σ = 1/n X̃t X̃, where

X̃ = X̃ = (I − 1/n 11t) X

is obtained from X by mean centering the columns. Here 1 = (1, . . . , 1). Let

Σ = AΛ At

be the eigen-decomposition of Σ. The columns of A are the normalized eigenvectors of Σ, and
Λ = diag(λ1, . . . , λp) is the diagonal matrix of eigenvalues, in decreasing order. The projection
y of a document vector x on the space spanned by the fi rst q eigenvectors of Σ is given by
y = At

qx, where Aq denotes the p × q matrix consisting of the q leading columns of A.

Dimensionality reduction by principal component analysis has another interesting property: it
preserves distances between documents to the largest extent possible ((Mardia et al., 1979),
Chapter 14.4). For a set of feature vectors z1, . . . , zn ∈ Rq, defi ne

E(z1, . . . , zn) =
∑
ij

(d2(xi, xj) − d2(zi, zj))2

The fi gure of merit E(z1, . . . , zn) measures how well the interpoint distances of the q-dimensional
feature vectors z1, . . . , zn match those of the p-dimensional document vectors x1, . . . ,xn. It is
optimized by choosing zi = At

qxi, i.e. by projecting the document vectors on the space spanned
by the q largest principal components. As the ”structure” of the document cloud is captured by
its interpoint distance matrix it is justifi ed to say that, in a sense, dimensionality reduction by
principal component analysis preserves structure to the largest extent possible.

There is an alternative algorithm for principal component analysis that brings out the similarity
to latent semantic indexing: Find the singular value decomposition X̃ = Ũ Φ̃ Ṽ t of X̃. Here Ũ

is n × n orthogonal, Ṽ is p × p orthogonal, and Φ̃ is the diagonal matrix of singular values, in
decreasing order. We have

X̃tX̃ = Ṽ Φ̃2Ṽ t

which shows that Ṽ = A and Φ̃2 = Λ (up to sign changes).
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Latent semantic indexing Latent semantic indexing is a dimensionality reduction tool very
similar to principal component analysis. In contrast to principal component analysis, it fi nds the
singular value decomposition X = UΦV t of X — the columns of X are not mean-centered. Di-
mensionality reduction is achieved as in principal component analysis: yi = V t

q xi, where Vq is
the matrix consisting of the leading q columns of V . Latent semantic indexing reduces dimen-
sionality by projecting the document vectors onto the closest q-dimensional linear subspace,
whereas principal component analysis projects them onto the closest affine subspace.

Computational considerations At fi rst glance it might seem that principal component anal-
ysis requires the eigen-decomposition of the p×p matrix X̃T X̃. Often this is infeasible because
the number of terms in the document collection is too large. If the number n of documents is
small compared to p it is more effi cient to instead compute the eigen-decomposition of the
n×n matrix X̃X̃t. In fact, it is straightforward to verify that if UDU t is the eigen-decomposition
of X̃X̃t, then the columns of X̃tU are the eigenvectors of X̃tX̃ associated with the largest n

eigenvalues (since the non-zero eigenvalues of X̃tX̃ coincide with those of X̃X̃t). When both
n and p are very large, we propose to estimate X̃X̃t from a large but manageable sample of
documents.

Compared to principal component analysis, latent semantic indexing has the advantage that
it uses the singular value decomposition of X, which is sparse, while X̃ is not. There are
effi cient algorithms for computing the singular value decomposition of a sparse matrix and the
projections of the document vectors (Berry, Drmac and Jessup, 1999; Berry et al., 1995).

2.3 Experiments on document dimensionality reduction

The goal of this experiment was to assess the influence of three factors — frequency transfor-
mation, term weighting, and dimensionality q of the feature space — on the ability to predict
the topic of a document from its feature vector.

We tried all 15 frequency transformation / term weighting combinations described in Sec-
tion 2.1. We used principal component analysis for dimensionality reduction, with a range
of dimensions between 5 and 500.

The Data. The data used in the experiment were the 1131 labeled documents in the TDT
corpus. The corpus consists of 15,863 news stories (documents) taken from Reuters and CNN
between July 1, 1994, and June 30, 1995 (Allan et al., 1998). The TDT project investigators
classifi ed 1131 of these documents into 25 topics (e.g. Carter in Bosnia, Comet into Jupiter,
DNA in the OJ trial, Kobe Japan quake, etc.). The number of documents on a given topic
ranges from 2 to 273, and most topics appear in between 10 and 60 documents. We carried out
a visual exploration of the data using the data exploration tool XGobi (Swayne, Cook and Buja,
1998). Some relevant fi ndings concerning the shape of the clusters comprising the labeled
TDT data are pointed out in Subsection 3.2.
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The desing of the experiment. We used a K-nearest-neighbor classifi er for document clas-
sifi cation. To classify a document with feature vector x, a K-nearest-neighbor classifi er fi nds its
k nearest neighbors among the training observations and takes majority vote. The number k of
neighbors is a parameter of the procedure. We used cross-validation to estimate the optimal k

from the training sample. Here is a detailed description of the experiment:

• Randomly partition the n = 1131 labeled documents into fi ve groups D1, . . . ,D5 of roughly
equal size.

• Choose a combination of the experimental factors (frequency transformation, term weight-
ing, and dimensionality).

• For i = 1, . . . , 5, use group Di as the test set and the union D−i of the remaining groups
as the training set. Estimate the optimal k from D−i by cross-validation. Classify the
documents in Di using the optimal k. Let Ei denote the number of errors. Measure the
merit of the current combination of experimental factors by the error rate E =

∑5
i=1 Ei/n.

Figures 1 and 2, and Table 1 show the results of the experiment. In both fi gures the error rate E

is plotted on the vertical axis, and the dimension of the feature space is plotted on the horizontal
axis. Each fi gure contains 15 curves, one for each of the 15 frequency transformation/term
weighting combinations. The grey band is a ±2 standard error band for log-Idf.
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Figure 1: Performance of the 15 transformation/weighting scheme combinations as a function
of the number of components utilized for data reduction.

We conclude that:

• Applying a square-root or log transformation to the term frequencies results in substantial
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transformation
weight Number of Principal Components

combination
5 7 11 16 25 37

log-gfldf 47.5 (6.86) 19.9 (4.49) 14.6 (4.71) 10.2 (4.01) 5.1 (2.99) 5.5 (2.34)
sqrt-gfldf 48.4 (6.87) 21.2 (4.52) 13.3 (2.34) 8.8 (3.66) 5.7 (2.40) 5.7 (2.13)

none-gfldf 51.9 (5.12) 29.8 (7.70) 16.6 (6.44) 9.7 (2.86) 8.2 (2.42) 7.7 (2.59)
log-ldf 33.4 (5.76) 14.1 (3.70) 8.8 (2.47) 6.6 (3.03) 2.7 (1.26) 2.0 (0.92)

sqrt-ldf 36.2 (7.26) 15.9 (2.54) 9.7 (2.13) 6.4 (2.75) 2.9 (0.99) 1.5 (0.99)
none-ldf 39.8 (10.60) 18.1 (4.03) 7.3 (4.03) 5.5 (2.82) 5.5 (0.78) 5.1 (2.15)

log-entropy 33.6 (7.14) 13.3 (3.22) 9.5 (2.01) 5.7 (1.64) 2.7 (0.61) 1.3 (1.21)
sqrt-entropy 37.6 (9.21) 15.7 (3.61) 8.8 (3.03) 5.5 (1.35) 2.7 (0.61) 1.8 (0.61)

none-entropy 37.8 (11.23) 19.2 (4.85) 8.8 (4.88) 5.3 (2.64) 5.3 (1.98) 4.9 (2.01)
log-normal 56.4 (3.41) 29.6 (4.09) 20.6 (3.18) 14.1 (4.01) 7.5 (2.26) 9.1 (2.13)

sqrt-normal 58.8 (6.22) 32.0 (4.42) 20.3 (3.09) 15.7 (3.16) 8.6 (2.75) 9.3 (1.26)
none-normal 47.7 (6.96) 21.9 (4.97) 15.5 (2.47) 12.6 (1.48) 6.2 (1.68) 6.2 (2.29)

log-identity 48.4 (4.97) 25.2 (3.70) 12.6 (3.88) 8.4 (1.26) 4.9 (2.29) 2.7 (0.99)
sqrt-identity 46.6 (4.09) 24.3 (3.98) 13.7 (2.99) 10.4 (2.29) 5.3 (1.98) 3.3 (0.78)

none-identity 39.8 (5.79) 23.0 (6.32) 14.8 (5.16) 10.6 (2.99) 8.4 (1.48) 4.4 (2.21)
56 85 128 192 288 432

log-gfldf 4.9 (2.29) 6.0 (1.68) 6.4 (2.75) 4.0 (1.68) 5.1 (2.88) 4.2 (1.64)
sqrt-gfldf 5.3 (2.40) 6.2 (2.15) 6.4 (3.07) 4.9 (1.85) 4.9 (3.09) 4.2 (3.07)

none-gfldf 10.4 (1.85) 12.6 (4.18) 11.7 (3.80) 8.4 (3.18) 9.1 (3.70) 7.5 (5.03)
log-ldf 2.0 (1.21) 3.1 (2.13) 2.2 (1.56) 2.4 (1.44) 3.1 (2.40) 3.8 (2.01)

sqrt-ldf 2.0 (0.49) 3.1 (2.75) 2.9 (2.01) 2.4 (1.44) 3.3 (1.56) 4.0 (1.85)
none-ldf 5.7 (1.21) 7.1 (2.54) 6.9 (1.82) 6.9 (2.13) 8.2 (3.09) 10.2 (2.64)

log-entropy 2.7 (0.99) 2.9 (1.68) 2.7 (1.85) 2.9 (2.01) 3.3 (2.21) 5.5 (1.10)
sqrt-entropy 2.7 (0.99) 2.4 (1.82) 2.7 (2.29) 2.9 (1.26) 3.3 (2.21) 4.0 (2.42)

none-entropy 5.3 (2.13) 6.9 (2.64) 7.7 (4.13) 6.9 (1.98) 8.2 (3.80) 11.9 (3.07)
log-normal 8.0 (2.75) 13.3 (3.91) 18.3 (7.23) 24.5 (4.52) 26.7 (2.75) 26.1 (2.42)

sqrt-normal 8.0 (1.82) 14.4 (5.36) 20.6 (6.84) 27.0 (4.60) 27.6 (6.58) 29.0 (2.13)
none-normal 6.9 (2.40) 9.7 (2.40) 12.4 (3.78) 15.5 (2.47) 18.3 (4.53) 14.1 (3.53)

log-identity 3.1 (2.40) 2.9 (1.26) 2.7 (1.48) 3.8 (1.48) 4.0 (2.01) 6.2 (2.54)
sqrt-identity 2.7 (1.68) 3.1 (1.21) 2.7 (1.48) 3.8 (1.68) 4.9 (2.77) 8.2 (4.32)

none-identity 4.2 (2.13) 5.1 (1.85) 4.2 (2.13) 6.0 (2.29) 5.7 (2.86) 8.2 (3.55)

Table 1: Classifi cation error rates (×1000) as a function of both the frequency transforma-
tion/term weighting scheme and the number of principal components (dimensionality of the
feature space). The fi gures in parenthesis correspond to the associated standard deviations of
the classifi cation error rates; they were estimated from the fi ve error rate estimates arising in
the cross-validated K-nearest-neighbors procedure. See text for further details.

performance improvement over using untransformed frequencies. The two transforma-
tions give virtually identical results in all cases.

• When combined with square-root or log transformation of term frequencies, entropy and
Idf term weighting do slightly better than identity weighting. GfIdf and normal weighting
do worse than identity weighting.

• Except for the case of normal weighting, going beyond a feature space dimension of 50
does not improve the error rate. Normal weighting seems to be the worst performer; the
number of errors reaches a minimum roughly for dimensionality 30 and then increases
with dimensionality.

• Misclassifi cation error rates for the best performing combinations of frequency transfor-
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Figure 2: Performance of the 15 transformation / weighting scheme combinations as a function
of the number of components utilized for data reduction (log-log scale).

mation / term weighting / feature space dimension are less than 1%; most of the errors
correspond to misclassifi cation of documents representing very rare topics, e.g. Cuban
riot in Panama (two documents), Karrigan/Harding (two documents), and Pentium chip
flaw (four documents).

3 Gaussian Mixture Document Clustering

In this section we use model based clustering ideas (Banfi eld and Raftery, 1993; Celeux and
Govaert, 1995) to cluster documents. The documents are assumed to be mapped to feature
vectors of reduced dimension as explained in the previous section. This mapping involves term
weighting, term transformation, and data reduction through principal components analysis.

Our clustering procedure explicitly models the data as being drawn from a Gaussian mixture.
This mixture distribution is used to construct clusters based on the likelihood of the data and
to classify documents according to Bayes rule. We call this approach to document clustering
Gaussian Mixture Document Clustering (GMDC). One main advantage of our approach is the
ability to automatically select the number of clusters present in the document collection via
Bayes factors (Raftery, 1995).
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The Gaussian mixture model.

The underlying assumption of GMDC is that the document feature vectors x1, x2, . . . , xn are
sampled from a Gaussian mixture density of the form

f(x) =
G∑

g=1

pgNq(x; μg, Σg), (3.1)

where G is the number of components in the mixture, q is the dimension of the reduced doc-
ument feature vector, {pg}G

g=1 are the mixture proportions, and Nq(x; μg, Σg) denotes the
q-variate normal density with mean μg, and variance-covariance matrix Σg, evaluated at x,
g = 1, . . . , G.

With high-dimensional data, as in our case with documents, the density given by (3.1) has
many parameters. For example, The variance-covariance matrix of a 50-dimensional fea-
ture vector requires the estimation of 1275 covariances. Hence model complexity reduction
is needed. Based on our visual exploration of the document feature vectors (as in Section 2)
in multiple dimensions using the XGobi statistical visualization package (Swayne et al., 1998),
it seems adequate (and reasonable) to model each component in the mixture density (3.1)
as a multivariate Gaussian distribution with a diagonal variance-covariance matrix, i.e. with
Σg = diag (σ2

1g, . . . , σ
2
qg). Furthermore, the variance-covariance matrices cannot be reduced

from diagonal matrices to multiples of the identity matrix (i.e. spherical Gaussian densities).
This is also corroborated by the classifi cation results below (see experiments in Subsec-
tion 3.2). We note that when the variance-covariance matrices Σg are restricted to be diagonal
matrices the number of parameters associated with a Gaussian mixture (3.1) is r = G(1 + 2q),
which increases only linearly with the dimension of the document feature vector, giving rise to
very parsimonious models.

Selecting the Number of Clusters

One main advantage of GMDC over nonparametric clustering methods, is its ability to explicitly
compute the likelihood of the model, and hence compare different models (i.e. different clus-
terings of the data) through Bayes factors (Raftery, 1995). Let D denote the data, and M1,M2

be two different mixtures models, e.g. models with different covariance structure, or different
number of components. The Bayes factor for model M2 against model M1 is the ratio

P (D|M2)/P (D|M1);

it corresponds to the posterior odds for M2 against M1, assuming that a priori any of the two
models is equally likely.

Since in document clustering we are interested in estimating the number of groups that give
rise to the data, Bayes factors will be utilized to suggest the appropriate number of components
in the mixture model. Our models are Gaussian mixture densities with similar covariance
structure but with different number of components.
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In (Raftery, 1995) Raftery shows that Bayes factors can be reasonably approximated by the
Bayes information criterion, BIC, when the prior on the parameters is a multivariate normal
distribution with mean equal to the MLE of the parameters, and variance-covariance matrix
equal to the inverse of the Fisher information matrix given by the model. In this case choosing
the most likely model as hinted by the Bayes factors, is equivalent to choosing the mixture
model maximizing the BIC:

BIC = 2 log-likelihood − r log(n),

where n = |D| is the data size, and r, the number of parameters in the model, as defi ned
above. Thus BIC will prefer those models that balance the likelihood of the model and the
number of parameters in the model.

Assigning documents to clusters

Once a model is selected, each mixture component of the Gaussian mixture density gives rise
to a cluster. The cluster structure or partition of the data is formed by assigning a cluster to
each document. The usual cluster assignment corresponds to the Bayes classifi cation rule: let
d be a document and x be its associated feature vector (note: in what follows, we will refer to d

and x as documents); then Bayes rule assigns document d to cluster g, if

g = arg max
g′=1,...,G

pg′ Nq(x; μg′ , Σg′).

We will refer to the clustering structure arising from the mixture density model as apparent
partition. The clusters in the apparent partition will be referred simply as clusters. In contrast,
the true clusters generating the data will be referred to as topics.

Goodness-of-fit: Empirical measures

In order to objectively evaluate the performance of a clustering method we need labeled data.
We can then compare the apparent partition generated by the clustering method with the true
partition defi ned by the labels (topics). We will now describe two measures of similarity be-
tween partitions, the Fowlkes-Mallows-Wallace index and the F1 index.

The Fowlkes-Mallows-Wallace Index. The Fowlkes-Mallows-Wallace (Hubert and Arabie,
1985; Wallace, 1983; Fowlkes and Mallows, 1983) index is a measure of similarity between
two partitions of the same data. Let {A1, A2, . . . , Ag} be the apparent partition (generated by
the clustering method), and let {T1, T2, . . . , TJ} be the true partition (defi ned by topic labels).
Each cell in Table 2 contains the number nig of documents in topic Ti assigned to cluster Ag.

The Fowlkes-Mallows-Wallace index associated to this table is

∑
i,g

(
nig

2

)
/

√√√√∑
i

(
ni·
2

)∑
g

(
n·g
2

)
.
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This index is the geometric mean of the following two indexes:

∑
i,g

(
nig

2

)
/

∑
i

(
ni·
2

)
, and

∑
i,g

(
nig

2

)
/

∑
g

(
n·g
2

)
.

The fi rst index can be interpreted as the probability that a randomly chosen pair of documents
is assigned to the same cluster given that the pair addresses the same topic. Similarly, the
second index can be interpreted as the probability that a randomly chosen pair of documents
addresses the same topic given that the pair was assigned to the same cluster. Notice that
apparent partitions with large Fowlkes-Mallows-Wallace index are the desirable ones.

The F1 measure: combining recall and precision. When considering retrieval of docu-
ments, a more natural measure of goodness-of-fi t of a model can be created by combining
recall and precision. Given a query document d, recall is the proportion of documents relevant
to d retrieved from the collection, and precision is the proportion of documents relevant to d

among those retrieved. A retrieval model, and in general, a clustering model, will be preferred if
it generates good recall and precision. More specifi cally, associated to each document d there
are a recall r(d) and a precision p(d). These are defi ned as follows. Suppose that document d

in topic Ti is assigned to cluster Ag (see Table 2). When the query is d, all documents is cluster
Ag are retrieved. So,

r(d) = nig/ni· and p(d) = nig/n·g

A reasonable measure of goodness-of-fi t of a model is some sort of average that takes into
account both the recall and precision of all documents in a given collection. Several ways of
combining recall and precision in a single measure are possible. The most popular one in
document retrieval applications is the so-called F1 index (Allan et al., 1998; Van Rijsbergen,
1979), which is given by

F1(d) = 2
p(d)r(d)

p(d) + r(d)
= {1

2
(

1
r(d)

+
1

p(d)
)}−1

giving rise to the F1 average

F1 =
∑

d∈ data collection

F1(d) × 1
n

= 2
∑
i,g

n2
ig

ni· + n·g
1
n

.

Apparent Partition
Topics A1 A2 ... AG Total

T1 n11 n12 · · · n1G n1·
T2 n21 n22 · · · n2G n2·
. . . · · · · · · · · · · · · · · ·
TJ nJ1 nJ2 · · · nJG nJ ·
Total n·1 n·2 · · · n·G n

Table 2: Comparison between the apparent partition (columns) and the topics forming the true
partition (rows). Each cell count nig corresponds to the number of common elements in cluster
Ag and topic Ti.
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In our experiments (Subsection 3.2), the Fowlkes-Mallows-Wallace and F1 indexes give very
similar results.

3.1 Estimating the mixture model

Clustering documents through GMDC requires estimating the parameters of the Gaussian mix-
ture model (3.1). This estimation is usually done via the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977). EM gives explicit iterative updating formulas for the parameters
associated to Gaussian mixtures for most constrained structures of variance-covariance ma-
trices. We now develop these updating formulas for our particular case of interest, namely,
when the variance-covariance matrices in the mixture are constrained to be diagonal matrices
(Celeux and Govaert, 1995).

EM updating formulas. Let θ denote the parameters of the model, and D = {xi}n
i=1 be the

(observed) data (i.e. document feature vectors). Defi ne the variables

zig =

{
1 if g is the cluster containing data item xi,
0 otherwise,

i = 1, . . . , N , g = 1, . . . , G. Then the complete log-likelihood of the model given {(xi, zi)}n
1 is

l(θ|(x1, z1), . . . , (xn, zn)) =
n∑

i=1

G∑
g=1

zig log(pg Nq(xi; μg, Σg)). (3.2)

Now using the diagonal variance-covariance matrix constraint, one can write Σg = λgDg, where
Dg is a unitary diagonal matrix, i.e. the determinant of Dg is 1, and λg = |Σg|1/q (here and
throughout this paper, |A| stands for the determinant of the squared matrix A).

Let ng =
∑n

i=1 zig, g = 1, . . . , G. A straightforward computation shows that the EM updating
formulas for the mixture proportions and means are

p̂g =
ng

n
, μ̂g =

1
ng

n∑
i=1

zigxi.

Substituting these into (3.2), one sees that maximizing the log-likelihood of the model is equiv-
alent to minimizing

�(θ|(x1, z1), . . . , (xn, zn)) =
G∑

g=1

qng log λg +
G∑

g=1

n∑
i=1

1
λg

zig(xi − μ̂g)tD−1
g (xi − μ̂g)

=
G∑

g=1

{q ng log λg +
1
λg

trace (WgD
−1
g )}, (3.3)

where Wg =
∑n

i=1 zig(xi − μ̂g)(xi − μ̂g)t, g = 1, . . . , G. Another straightforward computation
shows that the minimization of (3.3) leads to the updating estimates

λg =
1
ng

|diag (Wg)|1/q, Dg =
diag (Wg)

|diag (Wg)|1/q
.
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Initialization Step. The EM algorithm is a nonlinear optimization method and its results de-
pend heavily on the initial guesses for the parameters. Several ways of initializing the parame-
ters have been suggested in the literature. We have tried the following two methods:

(a) Initializing via K-means a large mixture model. In this case we form a model with a
large number of clusters through slight modifi cations of the K-means algorithm (Ward,
1963), e.g. by considering Mahalanobis distances associated to diagonal variance-
covariance matrices instead of the usual Euclidean distance; once the EM estimates
for this large mixture are obtained, the number of clusters is iteratively reduced by one
by merging two components from the mixture at a time, according to some criterion of
optimality. For example, one could look for those two components whose merging least
decreases the likelihood, or for the two closest components in the sense of the arc-cosine
distance, as is done in the functional merging algorithm (Coates and Fitzgerald, 1999)
(see below). Once the number of components has been reduced, new estimates are
obtained through a new run of the EM algorithm. This process is iterated until only two
components remain in the mixture

(b) Initialization via an agglomerative hierarchical clustering method. In this case the
data is clustered by iteratively merging groups of data points according to some measure
of similarity between the groups. This gives rise to a tree structure (similar to the one
obtained through single linkage analysis) that describes the hierarchy of the clusters
arising from coarse to fi ne partitions of the data. In agglomerative hierarchical clustering
(Fraley, 1998; Posse, 1999) the tree is constructed in a bottom-up fashion, i.e. from the
leaves up to root node; the leaves correspond to single data points (every single data
point is seen as a singleton cluster, i.e. a cluster by itself), and the root to a cluster
containing all the data.

As in the case (a) above, the criterion for merging two clusters is based on a measure
of similarity between clusters; we have employed both likelihood based and functional
merging methods for the merging of clusters. The results obtained with the TDT collection
indicate that likelihood based merging performs better than functional merging for this
task.

Next we briefly describe the likelihood based and the functional merging algorithms used in
our experiments.

Likelihood based algorithm for merging. In GMDC the relevant part of the likelihood of
a given cluster structure is given by equation (3.3). Hence, the merging of two clusters, say
clusters g1 and g2, decreases the likelihood by the quantity

Δ(g1, g2) = q (ng1 + ng2) log λnew +
1

λnew
trace (WnewD−1

new)

−
(

q ng1 log λg1 + q ng2 log λg2 +
1

λg1

trace (Wg1D
−1
g1

) +
1

λg2

trace (Wg2D
−1
g2

)
)

= q(ng1 + ng2) log λnew − qng1 log λg1 − qng2 log λg2 (3.4)
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where the updating formulas for the new cluster formed by the merging of clusters g1 and g2

are

μ̂new =
ng1

ng1 + ng2

μ̂g1 +
ng2

ng1 + ng2

μ̂g2 ,

Wnew = Wg1 + Wg2 + ng1(μ̂new − μ̂g1)(μ̂new − μ̂g1)
t + ng2(μ̂new − μ̂g2)(μ̂new − μ̂g2)

t,

λnew =
1

ng1 + ng2

|diag (Wnew)|1/q.

We note that (3.4) corresponds to the log-likelihood ratio between the hypotheses H0 : clusters
g1 and g2 are in the same cluster, and Ha : clusters g1 and g2 are distinct clusters. At each
iteration of the agglomerative hierarchical clustering procedure the merging of the two current
clusters that least decreases the likelihood (i.e. that minimizes Δ(g1, g2) over all possible pairs
(g1, g2) is performed; the algorithm stops when there are only two clusters left in the model.

Functional merging algorithm. In functional merging (Coates and Fitzgerald, 1999), each
current cluster is represented by its corresponding Gaussian density in the current mixture
model. The procedure is based on the cosine between two Gaussian densities fg1(x) =
Nq(x; μg1 , λg1Dg1), fg2(x) = Nq(x; μg2 , λg2Dg2), which corresponds to the cosine between fg1

and fg2 as vectors in L2, i.e.

cos(fg1 , fg2) =
∫

fg1fg2√∫
f2

g1

√∫
f2

g1

.

In our particular case, this quantity can be easily shown to be equal to

λ
q/4
g1 λ

q/4
g2

|12(λg1Dg1 + λg2Dg2)|1/2
exp{−1

2
(μt

g1
λ−1

g1
D−1

g1
μg1 + μt

g2
λ−1

g2
D−1

g2
μg2

− μt
mergeλ

−1
mergeD

−1
mergeμmerge)} (3.5)

where

λmerge = λg1λg2/|λg1Dg1 + λg2Dg2 |1/q

Dmerge = {|λg1Dg1 + λg2Dg2 |1/q(λg2D
−1
g1

+ λg1D
−1
g2

)}−1

μmerge = λmergeDmerge(λ−1
g1

D−1
g1

μg1 + λ−1
g2

D−1
g2

μg2)

The two clusters with the largest cosine value between their corresponding densities are
merged. In our experiments (see Subsection 3.2) functional merging performs rather poorly in
comparison with the likelihood based hierarchical clustering.

3.2 Experiments with Gaussian mixture document clustering

We applied our GMDC techniques to the clustering of the 1131 labeled news event documents
in the TDT corpus. The labels were manually assigned by people who read the news stories,
giving rise to 25 topics in the data.
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We followed the procedure in Section 2 for dimensionality reduction, term weighting, and term
frequency transformation of these data. According to our conclusions in Subsection 2.3 (see
Figure 2), we chose to work with 50 principal components (i.e. q = 50), inverse document fre-
quency weighting, and logarithm transformation of the resulting reduced and weighted “terms”.

GMDC performance

Figure 3 shows the BIC scores for seven “flavors” of model based document clustering. The
suffi x EM refers to the EM algorithm being applied after the initialization step in order to refi ne
the mixtures; its absence implies that this step was not performed.

• KM-fm-EM: refers to GMDC with initialization through K-means followed by agglomera-
tive hierarchical clustering based on functional merging.

• KM-Lr-EM: refers to GMDC with initialization through K-means followed by agglomerative
hierarchical clustering based on the likelihood ratio criterion.

• He-fm, He-fm-EM: refers to GMDC where the initialization step consists on assigning
each data item to a distinct singleton cluster; these were then iteratively merged by ap-
plying an agglomerative hierarchical clustering method based on functional merging. The
Gaussian components in the mixtures were assumed to be ellipsoidal.

• He-Lr, He-Lr-EM: refers to GMDC where the initialization step consists on assigning each
data item to a distinct singleton cluster; these were then iteratively merged by applying
an agglomerative hierarchical clustering method based on the likelihood ratio criterion.
The Gaussian components in the mixtures were assumed to be ellipsoidal.

• Hs-Lr: refers to GMDC where the initialization step consists on assigning each data
item to a distinct singleton cluster; these were then iteratively merged by applying an
agglomerative hierarchical clustering method based on the likelihood ratio criterion. The
Gaussian components in the mixtures were assumed to be spherical.

In terms of computational cost, K-means initialization methods are cheaper than the usual ag-
glomerative hierarchical initialization methods, i.e. bottom-up algorithms that start with each
data item as a singleton cluster (from now on we will refer to these initialization methods as fully
bottom-up hierarchical methods). In fact, if n is the data size, and k is the initial number of clus-
ters, then K-means initialization based methods are of the order O(nk), while fully bottom-up
hierarchical methods are of order O(n2). However, fully bottom-up hierarchical methods pro-
duce consistently higher BIC scores, as well as consistently higher Fowlkes-Mallows-Wallace
and F1 indexes (see Figures 3–4).

One can see from Figure 3 that the best method is He-Lr-EM, closely followed by He-Lr. The
two variations of the K-means initialization method perform similarly, and comparable to the
best two performers when the number of clusters is close to the number of topics (i.e. 25).
The Gaussian mixtures with spherical covariance structure closely follows the KM-fm-EM and
KM-Lr-EM curves; however, in contrast to the latter two curves, it steadily increases with the
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Figure 5: Comparison between three apparent partitions (columns) and the true partition
(rows). The apparent partitions correspond to the three highest values of BIC for He-Lr-EM;
these partitions contain 15, 21, and 25 clusters, respectively. The cells are color-coded ac-
cording their absolute counts. Darker cells correspond to larger counts.

number of clusters. This phenomenon can be explained as follows: assume that the true nature
of the covariance structure of the clusters is ellipsoidal; then mixture models with spherical co-
variance structure will tend to divide each ellipsoidal cluster in smaller more spherical-shaped
clusters, thus producing a large number of sub-clusters within clusters. The worst performers
are the two fully bottom-up hierarchical methods based on functional merging. It appears that
functional merging is very sensitive to the initialization step; in contrast, judging from our ex-
periments, the performance of likelihood based methods is more “stable”, in the sense that the
initialization step is not too critical.

In order to illustrate the clustering structure “discovered” by the best method, He-Lr-EM, Fig-
ures 5, 6, and 7, show the association between the true partition (rows) and the apparent
partitions (columns), for the models with the largest BIC scores, i.e. models with 15, 21, and
25 clusters. In these fi gures, each cell number nig corresponds to the number of common
documents in topic i and cluster g. The cells have been colored according to (a) their absolute
counts in Figure 5, (b) their relative counts in the apparent partition (i.e. in each column) in
Figure 6, and (c) their relative counts in the true partition (i.e. in each row) in Figure 7 (darker
cells correspond to larger cells). Figures 6 and 7 give us an idea of the precision and recall,
respectively, associated with the apparent partitions.

These fi gures show the evolution of the clusters as their number is increased. The fi rst partition
is very coarse, containing only 15 clusters (recall that there are 25 topics). Several of the topics
are grouped together in this partition. The second and third partitions contain 21 and 25 cluster,
respectively. In these latter partitions, some topics are split into separate clusters. The third
partition adds only a little to the second one, at the cost of splitting up some of the topics.
This shows the classic trade-off between precision and recall in clustering: the precision is
increased as the number of clusters is increased, but the recall is reduced. The Fowlkes-
Mallows-Wallace index suggests that the optimal choice is the more parsimonious second
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Figure 6: Precision associated with the three apparent partitions with the highest values of
BIC for He-Lr-EM; these partitions contain 15, 21, and 25 clusters, respectively. The cells are
color-coded according to their relative counts on the apparent partitions (columns). Darker
cells correspond to larger counts.
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Figure 7: Recall associated with the three apparent partitions with the highest values of BIC for
He-Lr-EM; these partitions contain 15, 21, and 25 clusters, respectively. The cells are color-
coded according their relative counts on the true partition (rows). Darker cells correspond to
larger counts.
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partition (containing 21 clusters).

In general we observe that the apparent partitions found by GMDC agree well with the topics
and that clusters may show patterns in the data that are not necessarily evident without reading
all of the documents. Indeed a closer look at the cases were differences between the clusters
and the topics are observed reveals that the documents from different topics that are merged
into single clusters present large similarities in their wording. For example, cluster 9 in the
second partition is representative of natural disasters: it contains almost all of topics 6 (comet
crashes into Jupiter) and 12 (Humble, Texas flooding), as well as part of topic 15 (Kobe, Japan
earthquake).

4 Summary

We present a complete methodology for document clustering and classifi cation. This is based
on mapping documents to feature vectors in an Euclidean space followed by Gaussian mixture
modeling of the distribution associated with the feature vectors.

Our study shows that (1) good classifi cation and clustering performance is achieved by using
feature vectors derived through principal component analysis of log or square-root-transformed
term frequencies; (2) increasing the feature space dimension beyond 50 principal components
does not improve performance; (3) a model based on Gaussian mixture densities with diagonal
covariance structure is suffi cient for clustering the TDT labeled corpus, and (4) the BIC criterion
suggests a reasonable number of clusters.

Crucial to the estimation of the parameters associated to GMDC is the choice of the starting
values of the EM algorithm. Our experiments show that hierarchical clustering initialization
gives the best results. However, when the number of components is close to the number of
topics, K-means initialization becomes a competitive alternative. The main advantage of K-
means is its speed, which could be made linear in the number of documents if a binary split
strategy is used on each iteration of the K-means algorithm (Rabiner and Juang, 1993, pp.
126–127).

Also essential in fi nding the initial clustering structure through an agglomerative hierarchical
procedure is the cluster merging criterion. Our experiments clearly show the superiority of the
likelihood ratio criterion over the functional merging criterion.

We have extended our methodology to large collections of documents such as the complete
TDT corpus (Tantrum et al., 2004; Tantrum et al., 2002) via a divide-and-conquer strategy
based on fractionation (Cutting et al., 1992). An alternative strategy based on a scalable EM
algorithm is suggested by Jin, Wong and Leung in (Jin et al., 2005).
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