

3.
$$P(X < 1000, Y < 1000) = \int_{0}^{1000} \int_{0}^{1000} \lambda^{2} e^{-\lambda(x+y)} dx dy$$
$$= (1 - exp(-1000\lambda))^{2}$$
$$(1 - e^{-1000\lambda})^{2} = 0.01 \Rightarrow \lambda = 0.00011$$
4. From 2, if X and Y are non-negative integer-valued, we have
$$E(X) = \sum_{k=0}^{\infty} (1 - F_{X}(k)) \ge \sum_{k=0}^{\infty} (1 - F_{Y}(k)) = E(Y)$$
2 can be generalized for integer-valued random variables to
$$E(X) = \sum_{k=0}^{\infty} P(X > k) + \sum_{k=-\infty}^{-1} P(X \le k)$$
and almost the same argument applies.

In the continuous case, if X≥0, we have

$$\int_{0}^{\infty} (1-F_{x}(x)) dx = \int_{0}^{\infty} \int_{x}^{\infty} f_{x}(t) dt dx$$

$$= \int_{0}^{\infty} f_{x}(t) \int_{0}^{t} dx = \int_{0}^{\infty} tf_{x}(t) dt = E(X)$$
and the same argument as in the first
case applies. Finally, the second
argument can similarly be extended to
the continuous case.

$$f_{x}(t) = i|N = k = K = K = i|N = k|P(N = k)$$

$$= \binom{k}{i} \pi^{k}(1-\pi)^{i-k} \binom{n}{k} P^{k}(1-p)^{n-k}$$

(c)
$P(S = j) = \sum_{i=j}^{n} P(S = j, N = i) = \sum_{i=j}^{n} \frac{n! \pi^{i} (1 - \pi)^{i-j} p^{i} (1 - p)^{n-i}}{(n-i)! j! (i-j)!}$
$= (1-p)^n \left(\frac{\pi}{1-\pi}\right)^i \left(\begin{array}{c}n\\j\end{array}\right) \sum_{i=j}^n \left(\begin{array}{c}n-j\\j-i\end{array}\right) \left(\frac{(1-\pi)p}{1-p}\right)^i$
$= (1-p)^n \left(\frac{\pi}{1-\pi}\right)^j \left(\begin{array}{c}n\\j\end{array}\right) \left(\frac{(1-\pi)p}{1-p}\right)^j \left(1+\frac{(1-\pi)p}{1-p}\right)^{n-j}$
$= \begin{pmatrix} n \\ j \end{pmatrix} (\pi p)^{i} (1 - \pi p)^{n-j}$
(d) P(N = i S = j) = $\frac{P(N = i, S = j)}{P(S = j)}$
$= \begin{pmatrix} n-j \\ n-i \end{pmatrix} \left(\frac{1-p}{1-\pi p}\right)^{n-i} \left(1-\frac{1-p}{1-\pi p}\right)^{i-j} $ ¹⁵⁶

A conditional density

If (X,Y) has joint density $f_{X,Y}(x,y)$, we can define a conditional density of X, given that Y=y, by

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

We can then compute

$$P(X \in A \mid Y = y) = \int_{x \in A} f_{X \mid Y}(x \mid y) dx$$

even though the condition {Y=y} has probability 0. Discrete case?

Independence

Two random variables are *independent* if $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$

In particular, this holds if

$$\mathbf{p}_{\mathbf{X},\mathbf{Y}}(\mathbf{X},\mathbf{y}) = \mathbf{p}_{\mathbf{X}}(\mathbf{X})\mathbf{p}_{\mathbf{Y}}(\mathbf{y})$$

or

$$\mathbf{f}_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = \mathbf{f}_{\mathbf{X}}(\mathbf{x})\mathbf{f}_{\mathbf{Y}}(\mathbf{y})$$

or

$$f_{x|y}(x|y) = f_x(x)$$

159

or

$$\mathbf{f}_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \mathbf{f}_{\mathbf{X}}(\mathbf{x})$$

160

The addition rule for expectations

E(X+Y) = E(X) + E(Y)

NOTE: No assumption of independence. This result holds whenever the expectations exist.

A special case: E(aX + b) = a E(X) + b

167

 $\left|\rho(X,Y)\right| \leq 1$

If $|\rho(X, Y)| = 1$ then Y = aX + b

Last Monday's lecture

Conditional distribution and density Independent random variables The addition rules for expected value and variance Covariance and correlation

An example Let X be -1, 0, or 1 with equal probabilities 1/3. E(X) =Let Y = 1 if X=0, 0 otherwise. E(Y) =XY = E(XY) =Cov(X,Y) = E(XY) - E(X)E(Y) =Are X and Y independent?

Calculating covariance and correlation

$f_{x,y}(x,y) = 2, 0 < x < y < 1$	
$f_x(x) = 2(1-x), 0 < x < 1$	
$f_{y}(y) = 2y, 0 < y < 1$	
$E(X) = \int_0^1 x \ 2(1-x) \ dx = \frac{1}{3}$	
$E(Y) = \int_0^1 y 2y dy = \frac{2}{3}$	
$E(XY) = \int_0^1 \int_0^y xy 2 dx dy = \frac{1}{4}$	
$Cov(X,Y) = \frac{1}{4} - \frac{1}{3}\frac{2}{3} = \frac{1}{36}$	
$Var(X) = \int_0^1 x^2 2(1-x) dx - \left(\frac{1}{3}\right)^2 = \frac{1}{18}$	
$Var(Y) = \int_{0}^{1} y_{1/2}^{2} 2y dy - \left(\frac{2}{3}\right)^{2} = \frac{1}{18}$	
$\operatorname{Corr}(\mathbf{X}, \mathbf{Y}) = \frac{\frac{736}{118}}{\frac{1}{118}} = \frac{1}{2}$	168

Law of large numbers

Let $X_1, X_2, ...$ be independent random variables, all with the same distribution having expected value μ and variance σ^2 . Then

Concepts

Theoretical	Practical
Parameter θ	Parameter value θ_0
Sample X ₁ ,X ₂ ,,X _n	Data x ₁ ,x ₂ ,,x _n
Statistic g(X ₁ ,,X _n)	Observed statistic g(x ₁ ,,x _n)
Estimator $\hat{\theta}(X_1,, X_n)$	Estimate $\hat{\theta}(x_1,,x_n)$
pdf f _x (x;θ)	Estimated pdf $f_X(x;\hat{\theta})$

Sampling distribution

Since $\hat{\theta}(X_1,...,X_n)$ is a random variable, we can compute its *sampling distribution* cdf $P(\hat{\theta}(X_1,...,X_n) \le x)$ and other properties such as

$$\begin{split} & \mathsf{E}_{\theta}(\hat{\theta}(\mathsf{X}_{1},...,\mathsf{X}_{n}) = \\ & \int \cdots \int \hat{\theta}(\mathsf{x}_{1},...,\mathsf{x}_{n})\mathsf{f}_{\mathsf{X}}(\mathsf{x}_{1},...,\mathsf{x}_{n};\theta)\mathsf{d}\mathsf{x}_{1}...\mathsf{d}\mathsf{x}_{n} \\ & \mathsf{bias}(\hat{\theta},\theta) = \mathsf{E}_{\theta}(\hat{\theta}) - \theta \\ & \mathsf{Var}_{\theta}(\hat{\theta}) \\ & \mathsf{se}(\hat{\theta}) = \mathsf{sd}_{\theta}(\hat{\theta}) = \mathsf{h}(\theta) \\ & \mathsf{ese}(\hat{\theta}) = \mathsf{h}(\hat{\theta}) \end{split}$$

The method of maximum likelihood

Define the mle $\hat{\theta}$ = argmax(L(θ)) We compute it by setting L'(θ) = 0 and checking that L"(θ) < 0, or that L' has sign change + 0 – about the maximum. Alternatively, plot L'(θ) as a function of θ and find the maximum numerically. Computational trick: maximize the *log likelihood* $\ell(\theta) = log(L(\theta))$

Binomial case

$$L(p) = \prod_{i=1}^{n} \begin{pmatrix} N \\ x_i \end{pmatrix} p^{x_i} (1-p)^{N-x_i} = \operatorname{const} \times p^{\sum x_i} (1-p)^{Nn-\sum x_i}$$

$$\ell(p) = \operatorname{const} + \log \frac{p}{1-p} \sum x_i + \log(1-p)Nn$$

$$\ell'(p) = \frac{\sum_{i=1}^{n} x_i}{p(1-p)} - \frac{Nn}{1-p} = 0 \Rightarrow \hat{p} = \frac{\overline{x}}{N}$$

$$\ell'(p) = \frac{nN}{p(1-p)} (\hat{p}-p) \text{ so } + 0 -$$
179

The method of maximum likelihood Computational tools Checking for a maximum Problems

180

Problem solutions

1. Note misprint in problem:

 $E(X|Y = y) = \int_{x}^{\infty} xf_{X|Y}(x|y)dx$ (a) $E(E(X|Y)) = \int \int x \frac{f_{X,Y}(x,y)}{f_{Y}(y)}f_{Y}(y)dydx =$ $= \iint xf_{X,Y}(x,y)dxdy = E(X)$ (b) $Var(X|Y = y) = E(X^{2}|Y = y) - [E(X|Y = y)]^{2}$ As in (a), $E(E(X^{2}|Y = y)) = E(X^{2})$ Let Z = E(X|Y = y), so $Var(X) = E(Var(X|Y = y)) + [E(Z)]^{2}$

But E(X) = E(E(X|Y = y)) = E(Z) so $[E(X)]^{2} = [E(Z)]^{2}$ whence $Var(X) = E(Var(X|Y = y)) + E(Z^{2}) - [E(Z)]^{2}$ = E(Var(X|Y = y) + Var(E(X|Y = y))(c) $E(Y) = E(E(Y|X = k)) = E(X \times 0.1) = 10 \times 0.1 = 1$ 2. Cov(U,V) = Cov(X+Y,Y+Z) = Cov(X,Y) + Cov(X,Z) + Cov(Y,Y) + Cov(Y,Z) = Var(Y) = 144 Var(U) = Var(X) + Var(Y) + Cov(X,Y) = 169 Var(U) = Var(Y) + Var(Z) + Cov(Y,Z) = 180 $Corr(U, V) = \frac{144}{\sqrt{169 \times 180}} = 0.83$

3. (a)
$$E(\tilde{\mu}) = E(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i E(X_i) = \mu \sum_{i=1}^{n} a_i = \mu$$

(b) $Var(\tilde{\mu}) = \sum_{i=1}^{n} a_i^2 Var(X_i) = \sigma^2 \sum_{i=1}^{n} a_i^2$
(c) By symmetry the weights ought to be equal, in which case they each have to be 1/n. This is indeed optimal, since
 $\sum_{i=1}^{n} \left(a_i - \frac{1}{n}\right)^2 = \sum_{i=1}^{n} a_i^2 - \frac{2}{n} \sum_{i=1}^{n} a_i + \frac{n}{n^2} = \sum_{i=1}^{n} a_i^2 - \frac{1}{n}$
So $\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} \left(a_i - \frac{1}{n}\right)^2 + \frac{1}{n} \ge \frac{1}{n}$
with equality if and only if each $a_i = 1/n$.

4. Cov(X,aX+b) = a Cov(X,X) = a Var(X) Var(aX+b) = a²Var(x) so Corr(X,aX+b) = a / |a|. Conversely, if Corr(X,Y) = 1 write Var(Y* - X*) = Var(Y*) + Var(X*) - 2 = 0 so Y* - X* = c or $\frac{Y - E(Y)}{\sigma_{Y}} = \frac{X - E(X)}{\sigma_{X}} + c$ so Y = aX + b where $a = \frac{\sigma_{Y}}{\sigma_{X}}, b = E(Y) + \sigma_{Y}(c + \frac{E(X)}{\sigma_{X}})$ The case Corr(X,Y)=-1 is simlar, starting from Var(Y* + X*) = 0 5. Let X and Y be the respective arrival times. They are independent, U(9,10). We need to compute P(IX-YI>10) = 1- P(IX -YI ≤ 10). The joint distribution is uniform on the square with corners (9,9), (9,10), (10,9) and (10,10). The probability we want therefore is the area of the two triangles with \star below:

This area is clearly $(5/6)^2 = 25/36$.

But we do not have detailed data on the ≥ 6 group. However,

$$P(Y \ge 6) = \sum_{k=6}^{\infty} p(1-p)^{k-1} = p(1-p)^5 \sum_{k=0}^{\infty} (1-p)^k = (1-p)^5$$

so the log likelihood, the log probability of what we actually observed, becomes $I(p) = \sum (log(p) + (y_i - 1)log(1-p)) + \sum 5log(1-p)$

187

The uniform distribution	перага
Let $X_1,,X_n$ be iid U(0, θ). Then $L(\theta) = \theta^{-n}$, so $I(\theta) = -n \log(\theta)$ and $I'(\theta) = -n/\theta$ What is the mle?	A drug reaction was carried out 11,526 monitore adverse reactio Model: X = # ad Log likelihood
	Standard error The <i>bootstrap r</i> estimate of p in standard error: But the standar What is its mle?

Reparametrization

surveillance program in 9 hospitals. Out of ed patients, 3,240 had an n. verse reactions ~

of the mle: method just plugs in the to the formula for the d error is a function of p. ? what is its mle Fact: The mle of $h(\theta)$ is $h(\hat{\theta})$. 189

