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Friday’s lecture

Joint densities

Marginal distributions
The distribution of a ratio
Problems

Problem solutions
1. EX) = Txfx(x)dx= TX(T fx!Y(x,y)dy]dx

= [ [ ¥ xy)dxdly

2. E(X) = 3 kpy (k) = Py (1) + 2y (2) + -
=P(X>0)+P(X>1)+P(X >2)+...
=S P(X>k)

k=0

1000 1000

3. P(X <1000,Y < 1000) = j j A%e ™Y dx dy
0 0
= (1- exp(-10001))?
(1-e7'°*)2 = 0.01= A =0.00011

4. From 2, if X and Y are non-negative
integer-valued, we have

E(X)= 2 (1-Fy () > 2 (1-F, (k) = E(Y)

2 can be generalized for integer-valued
random variables to

oo —1
E(X)=Y P(X>k)+ Y P(X<k)
and almoskiothe same ak?_g“ument applies.

In the continuous case, if X=0, we have
Ja-F () dx= [ [ (t)dtdx
0 0 x

- ]:fx(t)j-dx = Itfx(t) dt=E(X)

and the same argument as in the first
case applies. Finally, the second
argument can similarly be extended to

the continuous case K _ _
[ i ]n'(1—1c)""

5.(a) P(S=iN=k)=
(b) P(S=i,N=k)=P(S=i[N=k)P(N=k)

=[ k ]n"ﬁ—n)“‘[ N ]P"U—IC')"'k
i k
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(c)

P(S=j)=iz:;‘P(S=j,N=i)=i§"in!n 21_—1:))!}!295!'0) :

=(1—p)"(%]j[ " ]2}[ rjn:ii ](%T
=u—m{ﬁ%T(?Ku;2ﬂInu;2ﬂH

=[ T J(np)‘ (1-np)™

(d) el
P(N=i|$=j)='°(':,(‘+f’j)")

_[n=i)(1=p )" (4_1-p )"
n—i 1-np 1-mp 156

A conditional density

If (X,Y) has joint density fy y(x,y), we can
define a conditional density of X, given
that Y=y, by
f, (X,
fy (X1y) = —X’Y( y)

1, (y)

We can then compute

P(XeAlY=y)= [ £, (xly)dx

XeA

even though the condition {Y=y} has
probability 0.
Discrete case?

An example

Let fy y(x,y)=2, x=0, y=0, x+y=1. Find the
conditional density of Y given that X=x.

Independence

Two random variables are independent if
P(Xe A YeB)=P(XeA)P(Y €B)

In particular, this holds if
Pxy (X,¥) =Py (X)Py(Y)

or

fyv (X, y) = T (X)f, (Y)

or

fx‘y (X|y) = fX (X)
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Independence

Two random variables are independent if
P(Xe A YeB)=P(XeA)P(Y eB)

In particular, this holds if
Pxy (X;¥Y) = Px (X)Py (Y)

or

fyv (X, y) = T (X)f, (y)

or

fx‘v (X|y) = fX (X)

The addition rule
for expectations

E(X+Y) = E(X) + E(Y)
NOTE: No assumption of independence.
This result holds whenever the
expectations exist.

A special case: E(aX+b)=aE(X)+b

161

The addition rule
for variances

Var(X+Y) = E((X+Y)?) — (E(X+Y))?2
= E(X2)+2E(XY)+E(Y?) — (E(X))2
— 2E(X)E(Y) - (E(Y))?
= Var(X) + Var(Y)
+ 2(E(XY) — E(X)E(Y))

|If X and Y are independent,
E(XY) = [[xyf, (x)t, (y)dxdy

= [ xt (x)dx [ yf, (y)dy = E(X)E(Y)
[]o] Var(X+Y) = Var(X) + Var(Y)

Covariance

The covariance of X and Y is defined as
Cov(X,Y) = E{(X — E(X))(Y — E(Y))}

= E(XY) — E(X)E(Y) — E(X)E(Y)

+ E(X)E(Y)

= E(XY) — E(X)E(Y)
If X and Y are independent, Cov(X,Y) = 0.
Cov(X,X) =
Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X,Y)

Var(X-Y) =
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Correlation

Units of covariance is product of units of
X and Y. Sometimes one wants a unit-
free quantity. To do that we standardize
XandY:

« X-E(X) - Y-E(Y)

Cvar(x)’  var(Y)
Define the correlation coefficient
p(X,Y) = Cov(X,Y")
_ Cov(X,Y)
- GXGY

where o, =./Var(X)

Properties of
correlation coefficient

p(X,Y) <1

If p(X,Y))=1thenY=aX+b

Last Monday’s lecture

Conditional distribution and density
Independent random variables

The addition rules for expected value
and variance

Covariance and correlation

An example

Let X be -1, 0, or 1 with equal
probabilties 1/3.

E(X) =

Let Y =1 if X=0, 0 otherwise.
E(Y) =

XY =

E(XY) =

Cov(X,Y) = E(XY) — E(X)E(Y) =

Are X and Y independent?

167
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Calculating covariance
and correlation
iy (X,y)=2,0<x<y<1
f (x)=2(1-x),0<x<1
f,(y)=2y,0<y<1
E(X)=J'(:x2(1—x)dx=%
E(Y)=['y2ydy=2
E(xY)=[ [ xy 2dxdy =1
Cov(X,Y)=1-12=1
varR) [ 2013 = 4
Var(Y)=J'o1yi 2ydy—(§)2=%
Corr(X,Y) = 736 =1

18

Law of large numbers

Let X, X,, ... be independent random
variables, all with the same distribution
having expected value p and variance o2.
Then
P[ 12 X, —u
n i=1
1 n
El—) X |=
(5]
Var(lz Xi] =
ni5
Link e
We write X = EZ X, the sample average.

i=1 169

>£J—>0asn—>oo

Estimation

| have studied minimum annual
temperatures in Karlstad, e
Sweden. It has been suggested
that

F, (-x;1,0,€) = exp{—[1 + E"(xc_f_u)]}

If we knew the parameters §, p
and o, we could draw a
histogram of the data and plot
the corresponding density to
see if it is a good fit.

Karlstad data

WO = 22525 Kertetad 1,0,€ = 20.4,4.9,-.23
8 e
S Sl /7
S //\\\
g | \
= ; s
z 3
o (/
g | T ‘\J
o
T T T T T T 1
40 35 30 25 20 a5 <0

Minimum temperature 171
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Monday’s lecture

Concepts
Covariance and correlation
Law of large humbers
Estimation Theoretical Practical
Parameter 6 Parameter value 6,
Sample X;,X5,...,X, Data x4,X5,-..,X,,
Statistic g(X,...,X,) Observed statistic
g(xh"-’xn)
Estimator 6(X4,...,X,) |Estimate 6(xy,...,Xp)
pdf fx(x;0) Estimated pdf fy (x;6)
172
Sampling What estimation
distribution is all about
Since 8(X,,...,X, ) is a random variable, In 1918 R. A. Fisher proposed estimating
we can compute its sampling parameters by considering
distribution cdf PO (X4,..-,Xp) < X) how likely are the data if 0 is the true
and other properties such as parameter?
E (8(X X )= Choosing the parameter that makes the
o (e( 17=="3 n) - . . - -
R observations most likely is formalized
f---f9(X1,---,Xn)fx(X1,---,Xn;9)dx1---dxn using the likelihood function
bias(6,6) = E¢ (§) — 6 fy J8), continuous case
Var, (6) L©) = X,;0), discrete case
se(0) = sdg (6) = h(6) The R.A Fisher
ese(6) = h(0) The 1890-1962
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The exponential case

Consider x,,...,X,, independent
observations from an exponential
distribution with parameter A.

The Iikenlihood is .
L(A) = [ rexp(-Ax,) = A" exp(-1 Y x,)

=1 i=1

o

o
8

1.0e-24

Likelihood

0.0e+00 5.0e-25

The method of
maximum likelihood

Define the mle 6 = argmax(L(6))

We compute it by setting L’(6)=0

and checking that L”(6) <0, or that L’
has sign change + 0 — about the
maximum. Alternatively, plot L’(6) as a
function of 8 and find the maximum
numerically.

Computational trick: maximize the log
likelihood ¢(8)=log(L(6))

177

Exponential case
L(A) = A"e ™2™
L’(A) = nA™ e N _yn (2 xi)e'xzx‘
=A™ (n-AY x,)
£(A) =nlog()\) - XZ X;
z'(x)=£—2xi —0h=1/%

Y4 n
/(h)==;7 <0

Binomial case

n N N=x; X; Nn—) x;
L(|D)=1_j[[ x Jp*‘ﬁ—p) = constx pZ* (1-p)"" 2"

¢(p) = const +log %Z x, +log(1-p)Nn

zx‘ Nn X
rp)=—"t———=0=3p=—
P bi-p) 1-p  PTN
nN .
r(p)= (p—p)so+0-
p(1-p)
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Friday’s lecture

The method of maximum likelihood
Computational tools

Checking for a maximum

Problems

Problem solutions

1. Note misprint in problem:
E(X|Y=y)= j xf, (X[y) dx
fx,v (x,y)
f,(y)
= [[ xfy (x,y) dxdy = E(X)

(b) Var(X|Y = y) = E(X?|[Y =y) - [EX|[Y = y) |
As in (a), E(E(X*|Y=Yy))=E(X?)
Let Z=E(X|Y =Yy),so0

Var(X) =E(Var(X1Y = y)) +[E@)]

(a) EEX|V) =[x f,(y)dydx =

But E(X)=E(E(X|Y=y))=E(Z) so
[E(X)]* = [E(2)]*'whence

Var(X) = E(Var(X ‘Y =y))+E@Z*)- [E@[

=E(Var(X|Y =y)+Var(E(X|Y =y))
(c)
E(Y)=E(E(Y|X=k)) =E(Xx0.1) =10x 0.1=1

2. Cov(U,V) = Cov(X+Y,Y+Z) = Cov(X,Y) +
Cov(X,Z) + Cov(Y,Y) + Cov(Y,Z) = Var(Y)
=144

Var(U) = Var(X) + Var(Y) + Cov(X,Y) = 169
Var(V) = Var(Y) + Var(Z) + Cov(Y,Z) = 180

Corr(U, V) = ﬁ =0.83

3. (@) E@) =E(YaX) = Y aE(X) =pY a = p

i=1 i=1

(b) Var(ji) = iafVar(xi) = 022", a’

(c) By symmetry the weights ought to be
equal, in which case they each have to
be 1/n. This is indeed optimal, since

n 12_ n z_gn ﬂ_ n 2_1
Z(ai_ﬁj —E,ai ng‘ai+n2_§a‘ n

i=1
o 0 1% 1.1
so YaZ= a——| +—>—
Set-3{o-a) e
with equality if and only if each a; = 1/n.
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4. Cov(X,aX+b) = a Cov(X,X) = a Var(X)
Var(aX+b) = a2Var(x) so Corr(X,aX+b) =
a/|a|. Conversely, if Corr(X,Y) = 1 write
Var(Y* — X*) = Var(Y*) + Var(X*) -2 =0 so
Y*-X*=cor

Y-E(Y)_X-E(X)

0-Y o-X
so Y =aX + b where E(X
a=ﬁ,b=E(Y)+oY(c+ ( ))
o

X X
The case Corr(X,Y)=-1 is simlar, starting
from Var(Y* + X*) =0
5. Let X and Y be the respective arrival
times. They are independent, U(9,10). We
need to compute P(IX-YI>10) = 1- P(IX —
Yl =10).

184

The joint distribution is uniform on the
square with corners (9,9), (9,10), (10,9)
and (10,10). The probability we want
therefore is the area of the two triangles
with x below:

4

This area is clearly (5/6)2 = 25/36.

HOV lane needed?

The following data are for passenger car
occupancy during one hour at Wilshire and
Bundy in Los Angeles:

Occupants Frequency Predicted
1 676
227

56
26

v
Yoson
o

14

The geometric distribution py(y) = p(1-p)¥-' is a
reasonable fit. The log likelihood is

I(p) =n log(p) + Y. (vi — 1)log(1-p)
i=1

, n Y- .1

I’(p) = —— =0 =—

(P) b 1-p = P=3

whence

HOV, cont.

But we do not have detailed data on the
=6 group. However,

P(Y26)= 3 p(1-p)*" = p(1-p)° S(1-p)* = (1-p)°
k=6 k=0
so the log likelihood, the log probability
of what we actually observed, becomes
I(p)= 3 (log(p)+(y;—1)log(1-p))+ 3.5log(1-p)
{i:yi <6} {i:yi26}
=(1011-14)log(p)+455log(1-p)+14 x5log(1-p)
=997 log(p) +525 log(1-p)

187
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The uniform distribution

Let X,,...,X, be iid U(0,8). Then

L(6) =6, so
1(6) =-nlog(6) and
1’(6) = -n/0

What is the mle?

Reparametrization

A drug reaction surveillance program
was carried out in 9 hospitals. Out of
11,526 monitored patients, 3,240 had an
adverse reaction.

Model: X = # adverse reactions ~

Log likelihood

Standard error of the mle:

The bootstrap method just plugs in the
estimate of p into the formula for the
standard error:

But the standard error is a function of p.
What is its mle?

Fact: The mle of h(6) s h(6).

Stopping
Flip a coin until the first heads. Suppose it
takes 6 tries. The likelihood is
Now suppose we were going to flip the coin
6 times, and happened to get one head. The
likelihood is

How are the mles different?

Fact: Changing the likelihood by a constant
does not change the mle.

However, the standard errors would be
different.

10



