
12/5/10	
  

1	
  

Fridayʼs lecture"
Joint densities"
Marginal distributions"
The distribution of a ratio"
Problems"

152 

Problem solutions"
1."

2.  "

153 

E(X) = xfX (x)dx
−∞

∞

∫ = x fX,Y (x,y)dy
−∞

∞

∫
⎛

⎝⎜
⎞

⎠⎟−∞

∞

∫ dx

= xfX,Y (x,y)dxdy
−∞

∞

∫
−∞

∞

∫
E(X) = kpX (k) = pX (1) + 2pX (2) + ...

k=1

∞

∑
= P(X > 0) +P(X > 1) +P(X > 2) + ...

= P(X > k)
k=0

∞

∑

3."

4. From 2, if X and Y are non-negative 
integer-valued, we have "

2 can be generalized for integer-valued 
random variables to"

and almost the same argument applies."
154 

P(X < 1000,Y < 1000) = λ2e−λ (x+y) dxdy
0

1000

∫
0

1000

∫
= (1− exp(−1000λ))2

(1− e−1000λ )2 = 0.01⇒ λ = 0.00011

E(X) = (1−FX (k))
k=0

∞

∑ ≥ (1−FY (k))
k=0

∞

∑ = E(Y)

E(X) = P(X > k) + P(X ≤ k)
k=−∞

−1

∑
k=0

∞

∑

In the continuous case, if X≥0, we have"

and the same argument as in the first 
case applies. Finally, the second 
argument can similarly be extended to 
the continuous case."
5. (a)"

     (b) "

155 

(1−FX (x))dx
0

∞

∫ = fX (t)dt
x

∞

∫ dx
0

∞

∫

= fX (t) dx
0

t

∫
0

∞

∫ = tfX (t)dt = E(X)
0

∞

∫

P(S = i N = k) = k
i

⎛

⎝⎜
⎞

⎠⎟
π i (1− π)k−i

P(S = i,N = k) = P(S = i N = k)P(N = k)

= k
i

⎛

⎝⎜
⎞

⎠⎟
πk (1− π)i−k n

k
⎛

⎝⎜
⎞

⎠⎟
pk (1− p)n−k
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(c)"

(d) "

156 

P(S = j) = P(S = j,N = i) = n!π j (1− π)i− jpi (1− p)n−i

(n− i)! j!(i− j)!i= j

n

∑
i= j

n

∑

= (1− p)n π
1− π

⎛
⎝⎜

⎞
⎠⎟
j n

j
⎛

⎝
⎜

⎞

⎠
⎟

n− j
j− i

⎛

⎝
⎜

⎞

⎠
⎟

i= j

n

∑ (1− π)p
1− p

⎛
⎝⎜

⎞
⎠⎟

i

= (1− p)n π
1− π

⎛
⎝⎜

⎞
⎠⎟
j n

j
⎛

⎝
⎜

⎞

⎠
⎟
(1− π)p
1− p

⎛
⎝⎜

⎞
⎠⎟

j

1+ (1− π)p
1− p

⎛
⎝⎜

⎞
⎠⎟

n− j

= n
j

⎛

⎝
⎜

⎞

⎠
⎟ πp( ) j (1− πp)n− j

P(N = i S = j) =P(N = i,S = j)
P(S = j)

= n− j
n− i

⎛

⎝
⎜

⎞

⎠
⎟

1− p
1− πp

⎛
⎝⎜

⎞
⎠⎟

n−i

1− 1− p
1− πp

⎛
⎝⎜

⎞
⎠⎟

i− j

A conditional density"
If (X,Y) has joint density fX,Y(x,y), we can 
define a conditional density of X, given 
that Y=y, by"

We can then compute"

even though the condition {Y=y} has 
probability 0."
Discrete case?"

fX|Y (x | y) =
fX,Y (x,y)
fY (y)

P(X ∈A | Y = y) = fX|Y (x | y)dx
x∈A
∫

157 

An example"
Let fX,Y(x,y)=2, x≥0, y≥0, x+y≤1. Find the 
conditional density of Y given that X=x."

158 

Independence"
Two random variables are independent  if"

In particular, this holds if"

or"

or"

159 

P(X ∈A,Y ∈B) = P(X ∈A)P(Y ∈B)

pX,Y (x,y) = pX (x)pY (y)

fX,Y (x,y) = fX (x)fY (y)

fXY (x y) = fX (x)
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Independence"
Two random variables are independent  if"

In particular, this holds if"

or"

or"

160 

P(X ∈A,Y ∈B) = P(X ∈A)P(Y ∈B)

pX,Y (x,y) = pX (x)pY (y)

fX,Y (x,y) = fX (x)fY (y)

fXY (x y) = fX (x)

E(X+Y) = E(X) + E(Y)"

The addition rule  
for expectations"

NOTE: No assumption of independence. 
This result holds whenever the 
expectations exist."

A special case: E(aX + b) = a E(X) + b"

161 

The addition rule  
for variances"

Var(X+Y) = E((X+Y)2) – (E(X+Y))2"
" " "= E(X2)+2E(XY)+E(Y2) – (E(X))2"

" " "– 2E(X)E(Y) – (E(Y))2"
" " "= Var(X) + Var(Y) "
" " "+ 2(E(XY) – E(X)E(Y))"

If X and Y are independent, "

so Var(X+Y) = Var(X) + Var(Y)"

162 

E(XY) = xyfX (x)fY (y)dxdy∫∫
= xfX (x)dx yfY (y)dy∫ = E(X)E(Y)∫

Covariance"
The covariance of X and Y is defined as"
Cov(X,Y) = E{(X – E(X))(Y – E(Y))}"
" "     = E(XY) – E(X)E(Y) – E(X)E(Y)"
" " "+ E(X)E(Y)"
" " "= E(XY) – E(X)E(Y)"

If X and Y are independent, Cov(X,Y) = 0."

Cov(X,X) = "

Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X,Y)"

Var(X–Y) ="

163 
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Correlation"
Units of covariance is product of units of 
X and Y. Sometimes one wants a unit-
free quantity. To do that we standardize"
X and Y:"

Define the correlation coefficient"

where"
164 

X* = X −E(X)
Var(X)

, Y* = Y −E(Y)
Var(Y)

ρ(X,Y) = Cov(X*,Y* )

= Cov(X,Y)
σXσY

σX = Var(X)

Properties of  
correlation coefficient"

165 

ρ(X,Y) ≤ 1

If                 then Y = aX + b"ρ(X,Y) = 1

Last Mondayʼs lecture"
Conditional distribution and density"
Independent random variables"
The addition rules for expected value 
and variance"
Covariance and correlation"

166 

An example"
Let X be -1, 0 , or 1 with equal 
probabilties 1/3. "
E(X) = "
Let Y = 1 if X=0, 0 otherwise."
E(Y) = "
XY = "
E(XY) = "
Cov(X,Y) = E(XY) – E(X)E(Y) = "

Are X and Y independent?"

167 
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Calculating covariance 
and correlation"

168 

fX,Y (x,y) = 2, 0 < x < y < 1
fX (x) = 2(1− x), 0 < x < 1
fY (y) = 2y, 0 < y < 1
E(X) = x 2(1− x)

0

1

∫ dx = 1
3

E(Y) = y 2ydy = 2
30

1

∫
E(XY) = xy 2dxdy

0

y

∫0
1

∫ = 1
4

Cov(X,Y) = 1
4 − 1

3
2
3 = 1

36

Var(X) = x2 2(1− x)dx
0

1

∫ − 1
3( )2 = 1

18

Var(Y) = y2 2ydy
0

1

∫ − 2
3( )2 = 1

18

Corr(X,Y) =
1
36
1
18
= 1

2

Law of large numbers"
Let X1, X2, ... be independent random 
variables, all with the same distribution 
having expected value µ and variance σ2.!
Then"

Link"
We write " " " ", the sample average. "

169 

P 1
n

Xi
i=1

n

∑ − µ > ε
⎛
⎝⎜

⎞
⎠⎟
→ 0 as n→ ∞

Var 1
n

Xi
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟
=

E 1
n

Xi
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟
=

X = 1
n

Xi
i=1

n

∑

Estimation"
I have studied minimum annual 
temperatures in Karlstad, 
Sweden. It has been suggested 
that"

If we knew the parameters ξ, μ 
and σ, we could draw a 
histogram of the data and plot 
the corresponding density to 
see if it is a good fit. "

170 

FX (−x;µ,σ,ξ) = exp − 1+ ξ x − µ
σ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

 Print
Address 660 52 Värmland County

Sweden
Notes

©2010 Google - Map data ©2010 Geocentre Consulting, Tele Atlas -

karlstad - Google Maps http://maps.google.com/maps?oe=utf-8&q=karlstad&ie=UTF8...

1 of 1 101120 20:21 

Karlstad data"
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Mondayʼs lecture"
Covariance and correlation"
Law of large numbers"
Estimation"

172 

Concepts"

Sampling 
distribution"

Since " "             is a random variable, 
we can compute its sampling 
distribution  cdf "
and other properties such as"

θ̂(X1,...,Xn)

� 

P(ˆ θ (X1, ...,Xn ) ≤ x)

 

Eθ (θ̂(X1,...,Xn) =

 θ̂∫ (x1,...,xn )fX∫ (x1,...,xn;θ)dx1...dxn

� 

bias(ˆ θ ,θ) = Eθ ( ˆ θ ) − θ

Varθ ( ˆ θ )
se(ˆ θ ) = sdθ ( ˆ θ ) = h(θ)
ese(ˆ θ ) = h(ˆ θ )

What estimation  
is all about"

In 1918 R. A. Fisher proposed estimating 
parameters by considering "
how likely are the data if θ is the true 
parameter?"
Choosing the parameter that makes the 
observations most likely is formalized 
using the likelihood function!

The data are fixed!
The parameter is varying!

175 

� 

L(θ ) =
fX1,...,X n (x1, ...,xn;θ), continuous case
pX1,...,X n (x1, ...,xn;θ ),discrete case

⎧ 
⎨ 
⎩ 

R.A.Fisher 
1890-1962 
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The exponential case"
Consider x1,...,xn independent 
observations from an exponential 
distribution with parameter λ."
The likelihood is "

176 

L(λ) = λexp(−λxi ) = λn
i=1

n

∏ exp(−λ xi
i=1

n

∑ )

0.0 0.5 1.0 1.5 2.0

0.
0e
+0
0

5.
0e
-2
5

1.
0e
-2
4

1.
5e
-2
4

lambda

Li
ke
lih
oo
d

The method of 
maximum likelihood"

Define the mle"
We compute it by setting"
and checking that " " "    , or that L′ 
has sign change + 0 – about the 
maximum. Alternatively, plot L′(θ) as a 
function of θ and find the maximum 
numerically."
Computational trick: maximize the log 
likelihood    "

177 

θ̂ = argmax(L(θ))
′L (θ) = 0

′′L (θ) < 0

 (θ) = log(L(θ))

Exponential case"

178 

 

L(λ) = λne−λ xi∑

′L (λ) = nλn−1e−λ xi∑ − λn xi∑( )e−λ xi∑

= λn−1e−λ xi∑ (n− λ xi∑ )

(λ) = nlog(λ) − λ xi∑
′ (λ) = n

λ
− xi∑ = 0⇒ λ̂ = 1/ x

′′ (λ) = − n
λ2

< 0

Binomial case"

179 

L(p) = N
xi

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∏ pxi (1− p)N−xi = const × p xi∑ (1− p)Nn− xi∑

 
(p) = const + log p

1− p
xi + log(1− p)Nn∑

 
′ (p) =

xi
i=1

n

∑
p(1− p)

− Nn
1− p

= 0⇒ p̂ = x
N

 
′ (p) = nN

p(1− p)
(p̂ − p) so + 0 −
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Fridayʼs lecture"
The method of maximum likelihood"
Computational tools"
Checking for a maximum"
Problems"

180 

Problem solutions"
1.  Note misprint in problem:"

(a)"

(b)"
As in (a),  "

181 

E(X Y = y) = xfX Y (x y)dx
−∞

∞

∫
E(E(X Y)) = x

fX,Y (x,y)
fY (y)

fY (y)dydx∫∫ =

= xfX,Y (x,y)dxdy∫∫ = E(X)

Var(X Y = y) = E(X2 Y = y) − E(X Y = y)⎡⎣ ⎤⎦
2

E(E(X2 Y = y)) = E(X2 )
Let Z = E(X Y = y), so

Var(X) = E(Var(X | Y = y)) + E(Z)[ ]2

But " " " " " " " " "so"
" " " "   whence   "

(c) "

2. Cov(U,V) = Cov(X+Y,Y+Z) = Cov(X,Y) +"
Cov(X,Z) + Cov(Y,Y) + Cov(Y,Z) = Var(Y)"
=144"
Var(U) = Var(X) + Var(Y) + Cov(X,Y) = 169"
Var(V) = Var(Y) + Var(Z) + Cov(Y,Z) = 180"

182 

E(X) = E(E(X Y = y)) = E(Z)
E(X)[ ]2 = E(Z)[ ]2
Var(X) = E(Var(X Y = y)) +E(Z2 ) − E(Z)[ ]2

= E(Var(X Y = y) +Var(E(X Y = y))

E(Y) = E(E(Y X = k)) =E(X × 0.1) = 10 × 0.1= 1

Corr(U,V) = 144
169 × 180

= 0.83

3. (a)"

(b)"

(c) By symmetry the weights ought to be 
equal, in which case they each have to 
be 1/n. This is indeed optimal, since"

so"

with equality if and only if each ai = 1/n. "

183 

 
E( µ) = E( aiXi

i=1

n

∑ ) = aiE(Xi)
i=1

n

∑ = µ ai
i=1

n

∑ = µ

 
Var( µ) = ai2Var(Xi

i=1

n

∑ ) = σ2 ai2
i=1

n

∑

ai −
1
n

⎛
⎝⎜

⎞
⎠⎟i=1

n

∑
2

= ai2
i=1

n

∑ − 2
n

ai +
n
n2i=1

n

∑ = ai2
i=1

n

∑ − 1
n

ai2
i=1

n

∑ = ai −
1
n

⎛
⎝⎜

⎞
⎠⎟
2

i=1

n

∑ + 1
n
≥ 1
n
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4. Cov(X,aX+b) = a Cov(X,X) = a Var(X)"
Var(aX+b) = a2Var(x) so Corr(X,aX+b) ="
"    . Conversely, if Corr(X,Y) = 1 write"

Var(Y* – X*) = Var(Y*) + Var(X*) – 2 = 0 so  
Y* – X* = c or"

so Y = aX + b where"

The case Corr(X,Y)=-1 is simlar, starting 
from Var(Y* + X*) = 0"
5.  Let X and Y be the respective arrival 
times. They are independent, U(9,10). We 
need to compute P(|X–Y|>10) = 1– P(|X – 
Y| ≤ 10)."

184 

a / a

Y −E(Y)
σY

= X −E(X)
σX

+ c

a = σY

σX
, b = E(Y) + σY (c +

E(X)
σX

)

The joint distribution  is uniform on the 
square with corners (9,9), (9,10), (10,9) 
and (10,10). The probability we want 
therefore is the area of the two triangles 
with    below:"

This area is clearly (5/6)2 = 25/36."

185 

HOV lane needed?"
The following data are for passenger car 
occupancy during one hour at Wilshire and 
Bundy in Los Angeles:"

The geometric distribution pX(y) = p(1-p)y-1 is a 
reasonable fit. The log likelihood is"

whence"

186 

Occupants Frequency Predicted
1 676
2 227
3 56
4 26
5 6
≥6 14

l(p) = n log(p) + (yi − 1)log(1−p)
i=1

n
∑

′ l (p) =
n
p
−

(yi − 1)∑
1−p

= 0 ⇒ ˆ p =
1
y 

HOV, cont."
But we do not have detailed data on the 
≥6 group. However,"

so the log likelihood, the log probability 
of what we actually observed, becomes"

187 

P(Y ≥ 6) = p(1−p)k−1 = p(1−p)5 (1−p)k = (1−p)5
k=0

∞
∑

k=6

∞
∑

l(p) = log(p) + (yi − 1)log(1−p)( )
{i:yi<6}
∑ + 5log(1−p)

{i:yi≥6}
∑

= (1011− 14)log(p) + 455 log(1−p) + 14 × 5log(1− p)
= 997 log(p) + 525 log(1−p)
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The uniform distribution"
Let X1,…,Xn be iid U(0,θ). Then   "
     L(θ) = θ-n, so "
"l(θ)  = -n log(θ) and "
"l′(θ) = -n/θ	



What is the mle?"

188 

Reparametrization"
A drug reaction surveillance program 
was carried out in 9 hospitals. Out of 
11,526 monitored patients, 3,240 had an 
adverse reaction."
Model: X = # adverse reactions ~"
Log likelihood"

Standard error of the mle:"
The bootstrap method just plugs in the 
estimate of p into the formula for the 
standard error:"
But the standard error is a function of p. 
What is its mle?"
Fact: The mle of " 189 h(θ) is h(θ̂).

Stopping"
Flip a coin until the first heads. Suppose it 
takes 6 tries. The likelihood is"

Now suppose we were going to flip the coin 
6 times, and happened to get one head. The 
likelihood is"

How are the mles different?"

Fact: Changing the likelihood by a constant 
does not change the mle."

However, the standard errors would be 
different."

190 


